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Abstract

This study focuses on enhancing the inference speed of laparoscopic tool detection on
embedded devices. Laparoscopy, a minimally invasive surgery technique, markedly reduces
patient recovery times and postoperative complications. Real-time laparoscopic tool detec-
tion helps assisting laparoscopy by providing information for surgical navigation, and
its implementation on embedded devices is gaining interest due to the portability, net-
work independence and scalability of the devices. However, embedded devices often face
computation resource limitations, potentially hindering inference speed. To mitigate this
concern, the work introduces a two-fold modification to the YOLOv7 model: the feature
channels and integrate RepBlock is halved, yielding the YOLOv7-RepFPN model. This
configuration leads to a significant reduction in computational complexity. Additionally,
the focal EIoU (efficient intersection of union) loss function is employed for bounding
box regression. Experimental results on an embedded device demonstrate that for frame-
by-frame laparoscopic tool detection, the proposed YOLOv7-RepFPN achieved an mAP
of 88.2% (with IoU set to 0.5) on a custom dataset based on EndoVis17, and an inference
speed of 62.9 FPS. Contrasting with the original YOLOv7, which garnered an 89.3% mAP
and 41.8 FPS under identical conditions, the methodology enhances the speed by 21.1 FPS
while maintaining detection accuracy. This emphasizes the effectiveness of the work.

1 INTRODUCTION

Laparoscopy, a form of minimally invasive surgery, reduces
patient trauma and hastens recovery times [1, 2]. However,
it introduces unique challenges due to a limited field of view
and heightened requirements for accurate hand-eye coordi-
nation [3]. Laparoscopic tool detection assists in managing
these challenges by supplying information on tool identifica-
tion and position, thereby facilitating surgical navigation [4].
Image-based laparoscopic tool detection is preferred as it offers
real-time visual feedback on laparoscopic videos and removes
the need for calibration compared to sensor-based techniques,
thereby streamlining surgical procedures [5].

Laparoscopic tool detection requires high inference speed
without compromising accuracy. Currently, the task mainly
relies on CNN models like RCNN [6, 7] and YOLO [8]. These
models are evaluated on two factors. One is detection accuracy
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which is crucial for effective surgical information. The other
is real-time inference speed, matching the laparoscopic video’s
frame rate [9]. A detection speed of 25–30 FPS is generally seen
as real-time [10, 11].

However, an inference speed of 25–30 FPS may be insuf-
ficient for clinical demands. For surgical navigation, advanced
utilization of laparoscopic frame information could involve
the extraction of more details, such as segmentation masks,
laparoscopic tool tracking and pose [12, 13], as well as sur-
gical phases and actions [14, 15], in addition to laparoscopic
tool detection. Such tasks may demand modification of the
detection model. These modifications can possibly increase
complexity of model and slow inference speed. For instance,
augmenting YOLOv5 [16] with YOLACT [17] for segmenta-
tion outputs slows the inference speed to less than two-thirds
of the original YOLOv5 and struggles to maintain accuracy. To
ensure the accuracy of these additional tasks, integrating LSTM
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or attention mechanisms into the detection model [18, 19] is
proven feasible. However, these modules significantly increase
computational complexity and hence, negatively impact the
inference speed. Thus, pursuing higher detection speeds is
significant for optimizing laparoscopic video information use.

The demand for deployment of medical image processing,
including laparoscopic tool detection on embedded devices is
increasing. This lends greater significance to enhance inference
speed of laparoscopic tool detection. Embedded devices offer
portability and save operating room space, enhancing clinical
workflows. They also safeguard patient privacy by operating
without network reliance and scale well for wide medical
image processing applications [20–22]. However, their limited
computational capacity [23] can slow detection models, posing
challenges for tasks that build on laparoscopic tool detection.
For example RCNN-based models [24–26] struggle to meet
the frame rate of laparoscopic videos even on powerful servers,
due to their two-stage process of object localization and clas-
sification. In contrast, YOLO-based models [27–29], which
are one-stage, are faster and show similar detection accuracy
compared with RCNN-based models, making them more
suitable for laparoscopic tool detection on embedded devices.

Existing YOLO-based models for laparoscopic tool detec-
tion often overlook the specific characteristics of laparoscopic
videos. This study chooses YOLOv7 [30], a model known for its
superior speed and accuracy among YOLO models, as the base-
line. We then made improvements, considering the distinctive
features of laparoscopic videos.

Firstly, compared to general object detection datasets [31,
32] used for evaluating YOLO models, laparoscopic videos
[10, 33] have fewer target categories and more uniform back-
ground information. Lightweight models, due to their low
complexity, can achieve high accuracy in detecting laparo-
scopic tools while being faster on resource-limited embedded
devices. However, current YOLO-based models for laparo-
scopic tool detection use large-scale structures for accuracy.
To address this, we halved the number of feature channels
within YOLOv7, creating a more lightweight structure, and
introduced the inference-friendly RepBlock [34] to enhance the
inference speed.

Secondly, objects in these datasets are often tilted, unlike
the vertically or horizontally oriented objects typical in gen-
eral datasets. Bounding boxes, aligned with the frame axis, may
include unnecessary information. To improve detection accu-
racy, we modified the loss function for bounding box regression
(BBR). This step, though crucial, is often overlooked by cur-
rent YOLO-based models. Based on this, we adopted the focal
EIoU [35] as the loss function for BBR, aiming to improve
detection accuracy.

The primary objective of this study is to construct a
lightweight model that can maximize the speed of laparoscopic
tool detection on embedded devices while preserving accuracy.
The primary contributions of this study are as follows:

∙ We propose YOLOv7-RepFPN model, which tailors to the
lower complexity of laparoscopic frame data compared to

general object detection data by reducing feature channels
and integrating the efficient RepBlock.

∙ For improving accuracy of laparoscopic tool detection, we
refined the training process with the application of the focal
EIoU (efficient intersection over union) loss function for
bounding box regression (BBR).

∙ Comparative experiments conducted on an embedded device
using a custom dataset based on a widely-used benchmark,
have shown the effectiveness of our proposal. Furthermore,
ablation studies have been carried out to reveal the impact of
our modifications to YOLOv7.

2 METHDOLOGY

2.1 Characteristics of laparoscopic videos

This study’s goal is to improve the speed of laparoscopic tool
detection on embedded devices while maintaining detection
accuracy. To do this, we adjust the YOLOv7 model based on
the features of laparoscopic videos. Unlike the typical datasets
for general object detection tasks, laparoscopic videos present
the following distinctive characteristics:

∙ Laparoscopic videos present lower data complexity. For
example, the COCO [31] dataset used for YOLO perfor-
mance evaluation includes over 200,000 diverse images with
80 target categories, spanning varied scenes like city streets,
zoos, and landscapes, leading to complex background infor-
mation. Laparoscopic image datasets, like Cholec80 [10]
containing 80 laparoscopic videos, and EndoVis17 [33] with
3000 laparoscopic frames extracted from different laparo-
scopic videos, only have 7 target categories. Since laparoscopy
focuses on specific organs, the background in laparoscopic
videos is more uniform [36], limited to abdominal organs and
tissues.

∙ Laparoscopic tools in laparoscopic videos are usually ori-
ented at an angle, as shown in Figure 1. Unlike the objects
in the general detection datasets, which are typically vertical
or horizontal. As a result, axis-aligned bounding boxes for
target localization in detection tasks may contain extraneous
information due to the tilted laparoscopic tools.

2.2 Overview of the methodology

This study made changes in architecture and optimization
approach to the YOLOv7 baseline.

In terms of architecture, considering the relatively low com-
plexity of laparoscopic videos, we reduced the number of
channels in YOLOv7 to make the model lightweight, as well as
incorporate RepBlock [34] to enhance inference speed, leading
to the formulation of YOLOv7-RepFPN model. Considering
the prevalence of tilted tools in the laparoscopic image dataset,
we substitute CIoU [37] (complete IoU) in YOLOv7 with focal
EIoU [35] loss function for BBR.
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FIGURE 1 Examples of laparoscopic frames containing tools oriented at an angle. The laparoscopic frames in the figure are picked out from the EndoVis17
dataset.

FIGURE 2 Architecture of the YOLOv7-RepFPN model. Detailed explanations of key components of the network are provided in subsequent part of the
section.

To aid understanding to our proposed method, Sec-
tion 2.3 presents a detailed discussion of the proposed
YOLOv7-RepFPN model, and Section 2.4 focuses on the
implementation of the focal loss function for BBR.

2.3 Architecture of YOLOv7-RepFPN

Figure 2 shows the architecture of our YOLOv7-RepFPN.
We kept YOLOv7’s design for both the backbone and the
detection head sections. Since the detection head shared the
same structure with YOLOv4 [38] and YOLOv5 [16], which
have been thoroughly described in prior studies, we skip a
detailed introduction. YOLOv7-RepFPN utilizes the YOLOv7
[30] backbone for efficient feature extraction; key components
of the backbone section are illustrated in Figure 3.

Figure 3(a) illustrates the basic convolutional block, CBS,
of YOLOv7-RepFPN. This module is composed of a con-
volution layer, a batch normalization (BN) layer, and a SiLU
activation function. By adjusting the kernel size and stride of
the convolution layer, diverse functionalities can be achieved.

Figure 3(c) showcases the ELAN-B module from YOLOv7,
which offers multiple forward paths, aiding in model optimiza-
tion and mitigating overfitting for simpler data. In contrast,
the DDS module, depicted in Figure 3(b), combines max
pooling and convolution layers for downsampling, ensuring
minimal information loss and feature detail preservation.
These attributes influenced our choice to adopt YOLOv7’s
design.

Given the relatively low complex of laparoscopic videos,
we halved the number of feature channels in YOLOv7 for a
streamlined structure. In the neck section, we employed the
RepBlock for feature extraction and used the CBR module for

FIGURE 3 Structures of key modules in the backbone section of
YOLOv7-RepFPN. (a) Structure of CBS module. BN and SiLU denote Batch
Normalization and Sigmoid Linear Unit activation function. The colour of the
CBS module corresponds to its convolutional layer parameters, consistent
across all figures in this paper. k and s represent the kernel size and stride of the
convolutional layer, respectively. (b) Structure of DDS (double downsampling)
module. MaxPool represents the max pooling layer. (c) Structure of ELAN-B
module.

down-sampling to enhance inference speed. The integration
of RepBlock within a feature pyramid network (FPN) [39]
design in the neck section is what gives our proposed model its
name, YOLOv7-RepFPN.

2.3.1 Determination of feature channel
numbers

As mentioned, the relatively low complexity of laparoscopic
image data allows lightweight models with faster speeds to
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TABLE 1 Quantitative evaluation of comparative experiments. The abbreviations n, s, m, l, x stand for nano, small, medium, large, and extra-large, respectively,
indicating scale of the model.

Model Parameters/M GFLOPs mAP50 mAP50∶95 FPSa

YOLOv5s 7.03 15.8 0.845 0.662 64.1 ± 0.3

YOLOv5m 20.88 47.9 0.858 0.690 52.6 ± 0.3

YOLOv5l 46.14 107.7 0.865 0.701 38.5 ± 0.2

YOLOv5x 86.21 203.9 0.884 0.696 21.3 ± 0.1

YOLOv6-N 4.63 11.3 0.794 0.585 69.7 ± 0.5

YOLOv6-S 18.50 45.2 0.857 0.667 57.5 ± 0.2

YOLOv6-M 34.81 85.6 0.862 0.658 44.2 ± 0.1

YOLOv6-L 59.54 150.5 0.849 0.653 25.3 ± 0.1

YOLOv7-tiny 6.02 13.1 0.799 0.592 71.9 ± 0.7

Small-scaled YOLOv7b 9.15 26.0 0.849 0.654 53.5 ± 0.2

Medium-scaled YOLOv7b 20.96 59.5 0.864 0.668 47.8 ± 0.2

YOLOv7 36.51 103.3 0.893 0.699 41.8 ± 0.2

YOLOv7-RepFPN 10.58 30.7 0.882 0.681 62.9 ± 0.3

aFor the FPS metric, we documented the mean and standard deviation from ten separate tests.
bSmall-scaled YOLOv7 and medium-scaled YOLOv7 was not provided by the proposer of YOLOv7 model, we built small-scaled YOLOv7 by reducing YOLOv7’s feature channels
by half, and built medium-scaled YOLOv7 by decreasing YOLOv7’s feature channels to three quarters of the original amount, in order to determine the number of feature channels
for YOLOv7-RepFPN.

potentially achieve high accuracy in laparoscopic tool detection.
Therefore, we first explored the most straightforward way to
make the model lightweight, by adjusting the number of feature
channels to achieve a more streamlined structure.

Recently-released versions of YOLO models, like YOLOv5
[16] and YOLOv6 [40], have introduced parameters named
depth multiple (DM) and Width Multiple (WM), respectively.
depth of the model can be modulated with DM by altering
the number of convolutional modules within certain blocks of
the model, while number of feature channels can be adjusted
with WM. By manipulating DM and WM, small, medium, and
large-scale models of varied amount of parameters and com-
putational loads can be derived. YOLOv7 maintains DM and
WM, but only provides a large-scale model. This study adopts
the settings of WM and DM from YOLOv5 and YOLOv6,
We built a small-scale model (listed as small-scaled YOLOv7
in Table 1) by reducing YOLOv7’s feature channels by half,
and a medium-scale model (listed as medium-scaled YOLOv7
in Table 1) by decreasing YOLOv7’s feature channels to three
quarters of the original amount. Our decision to halve the
feature channels was confirmed by experimental comparisons
with YOLOv7 (see Table 1).

2.3.2 Design of the neck section

Figure 4 illustrate the key modules within the neck section of
our YOLOv7-RepFPN, which is designed to improve inference
speed. The SPPCSP module inherited from YOLOv7 [30] is
shown in Figure 4(a). It employs spatial pyramid pooling (SPP)
to handle various target sizes, with “CSP” indicating the group-
ing strategy from the cross-stage partial (CSP) [41] network.

The CBR module used for downsampling in the neck sec-
tion is displayed in Figure 4(b). This module is a sequence
of a convolution layer, a batch normalization layer, and a
ReLU activation function. It replaced DDS module, the only
downsampling module in YOLOv7, in neck section of our
YOLOv7-RepFPN. The CBR module omits pooling oper-
ations, has fewer convolution layers, and opts for the less
computationally demanding ReLU for non-linear activation,
making it a faster module for detection compared to the
DDS module.

Figure 4(c) presents the RepBlock [34], used for feature
extraction in the neck section. This block is constructed sequen-
tially from RepVGGBlocks, borrowed from the structure of
the RepVGG network [42]. Unlike ELAN-B, or the ELAN-
B-like feature extraction module in neck section of YOLOv7,
the feed-forward structure of RepBlock makes model scaling
adjustments possible through the DM. The block reduces
depth of the model by limiting the number of RepVGGBlocks
to four.

The structures of RepVGGBlock during training and infer-
ence stages are outlined in Figures 4(d) and 4(e), respectively.
The term “Rep” signifies reparameterization, a technique
adopted by the module to harmonize training and inference
stages. During training, RepVGGBlock uses a multi-branch
structure for diverse feature learning and robust gradient propa-
gation. During inference, it re-parameterizes into a streamlined
single-branch structure for computational efficiency and swift
inference speed.

Both RepBlock and the combination of RepBlock and
CBR module restructure into a design akin to the VGG
network [43] during inference. This inference structure
consists solely of convolutional layers with a 3 × 3 kernel
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FIGURE 4 Structures of key modules in the neck section of YOLOv7-RepFPN. (a) Structure of SPPCSP module, k represents kernel sizes of the max pooling
layer. (b) Structure of CBR module. ReLU denotes ReLU (rectified linear unit) activation function. (c) Structure of RepBlock. (d, e) RepVGGBlock structure for
training and inference phase, colour of the convolutional layer corresponds to its parameters, k and s represent the kernel size and stride of the convolutional layer,
respectively.

size and ReLU activation functions. This straightfor-
ward, feed-forward architecture greatly enhances inference
speed.

2.4 Loss function for bounding box
regression

As previously mentioned, laparoscopic images contain many
tilted laparoscopic tools. This poses a higher demand on
the accuracy of bounding boxes used for tool localization in
detection tasks. Compared to targets in horizontal or vertical
positions, the length and width of bounding boxes for the same
targets in tilted positions can exhibit noticeable changes. We
first mentioned why CIoU [37] had a hard time handling such
cases by its derivatives and then introduced focal EIoU [35] for
solving this problem.

CIoU loss function considers IoU (intersection over union)
of the predicting bounding box (PBB) and the ground truth
bounding box (GBB), distance between centers of PBB and
GBB, and aspect ratio of PBB and GNN. CIoU loss is

expressed as

LCIoU = 1 − IoU +
𝜌2
(
b, bgt )
c2

+ 𝛼v, (1)

In the given equation, b and bgt denote the center points of
PBB and GBB respectively. The term 𝜌2(b, bgt ) represents the
squared Euclidean distance between the center points of PBB
and GBB, while c corresponds to the diagonal distance within
the minimum bounding box enclosing both PBB and GBB. The
term 𝛼v is a penalty term concentrating on the aspect ratios of
PBB and GBB. Here, v serves to measure the consistency of
these aspect ratios

v =
4
𝜋2

(
arctan

wgt

hgt − arctan
w
h

)2

, (2)

where wgt , hgt , w, h stands for width and height of GBB and PBB,
𝛼 is defined on basis of v by

𝛼 =
v

(1 − IoU) + v
. (3)
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The limitation of CIoU stems from the definition of v. Taking
derivatives of v with respect to w and h

𝜕v
𝜕w

=
8
𝜋2

(
arctan

wgt

hgt − arctan
w
h

)
h

w2 + h2
,

𝜕v
𝜕h

= −
8
𝜋2

(
arctan

wgt

hgt − arctan
w
h

)
w

w2 + h2
,

(4)

are reached. Based on the equations, it can be derived that
𝜕v

𝜕w
= −

h

w

𝜕v

𝜕h
, indicating that

𝜕v

𝜕w
and

𝜕v

𝜕h
have opposite signs for

the process of BBR. Due to this characteristic, w and h cannot
simultaneously increase or decrease during the training process.
This influences training efficiency, as well as detection accuracy
of the model.

EIoU [35] loss was proposed considering the aforementioned
limitation of CIoU, its penalty terms is based on width and
height of PBB. EIoU is defined by

LEIoU = 1 − IoU +
𝜌2
(
b, bgt )
c2

+
𝜌2
(
w, wgt

)
c2
w

+
𝜌2
(
h, hgt

)
c2
h

,

(5)
where cw and ch denote width and height of the minimum
bounding box which encloses both PBB and GBB, 𝜌2(w, wgt )
and 𝜌2(h, hgt ) respectively denote the squared differences in
width and height between PBB and GBB. Given that the penalty
terms considering the w and h are independent of each other,
for training process, w and h can increase or decrease simulta-
neously. The EIoU loss function is more flexible in terms of
bounding box shape compared to the CIoU loss function. Thus,
for laparoscopic tool detection, with the frequent appearance of
tilted tools, using the EIoU loss function for BBR can improve
localization accuracy.

For bounding box regression, to give higher weights to high-
quality anchors, focal EIoU is ultimately selected as the loss
function. Its equation is

LFocal-EIoU = IoU
1

2 LEIoU. (6)

3 EXPERIMENT

3.1 Experimental settings and dataset

Dataset used in this study was manually organized on basis of
EndoVis17 [33], YOLO-format labels were obtained by taking
the minimum enclosing box from the results of laparoscopic
tool segmentation. The EndoVis17 dataset encompasses seven
categories of laparoscopic tools across ten cases (1–10), with
each case containing 300 images. Our dataset division adhered
to the following principles:

∙ Training and validation datasets include images from the
same case, but the test dataset does not share cases with
either training or validation sets, ensuring the validity of
experimental results.

∙ The training dataset represents all seven laparoscopic tool
categories.

∙ The test dataset encompasses as many tool categories as
possible.

Given these principles, 1890 images from Cases 1–6 and 8 were
allocated for training, and the subsequent 210 images from these
cases were designated for validation. The test dataset comprises
900 images from Cases 7, 9, and 10. All images were resized to
640×640 pixels.

Our training was conducted over 300 epochs using Adam as
the optimizer and an initial learning rate of 0.001. To mitigate
overfitting’s potential influence on detection accuracy, we uti-
lized the optimal model from the training epochs following the
strategy of YOLOv7 [30]. The model was trained using a single
NVIDIA Tesla V100 GPU and tested on the NVIDIA Jetson
AGX Orin 32 GB platform. To substantiate the effectiveness of
our proposed model, we performed comparative experiments
with different scales of the YOLOv5, YOLOv6, and YOLOv7
models. Given that the detection model inputs data frame-by-
frame in a clinical setting, we carried out detection on the test
dataset on a frame-by-frame basis in this study.

We employed several evaluation metrics, including the num-
ber of parameters, GFLOPs (Giga floating point operations
per second), mAP50 (mean average precision when IoU thresh-
old is 0.50), mAP50∶95 (average mAP with IoU threshold
from 0.50 to 0.95), and FPS. The number of parameters and
GFLOPs broadly depict the model structure’s scale and com-
plexity, while mAP50 and mAP50∶95 are prevalent indicators for
detection accuracy. FPS provides an indication of the model’s
inference speed.

3.2 Result analysis

Table 1 presents the experimental results of different models.
The information in the table reveals that:

∙ YOLOv7-tiny and YOLOv6-N are ultra-small-sized mod-
els designed for highly resource-constrained scenarios.
They excel in inference speed, achieving around 70 FPS.
While YOLOv7-RepFPN is slower than the fastest model,
YOLOv7-tiny, by 9 FPS, it still maintains a rapid inference
speed and offers a significant advantage in terms of accuracy.
Relative to YOLOv7-tiny, the top performer in mAP metrics
among ultra-compact models, our YOLOv7-RepFPN model
enhances mAP50 by 0.083 and mAP50∶95 by 0.089.

∙ Small-scale models offer a balance between detection accu-
racy and speed, improving upon the accuracy of ultra-
small-scale models while preserving high inference speed.
For instance, small-scaled YOLOv7 boosts mAP50 by 0.05
and mAP50∶95 by 0.062 compared to YOLOv7-tiny. While
maintaining the same detection speed, YOLOv7-RepFPN
outperforms these small-scaled models in terms of accuracy.
Against YOLOv5s, the fastest small-scale model, YOLOv7-
RepFPN improves mAP50 and mAP50∶95 by 0.037 and 0.019,
with only a slight decrease in inference speed by 1.2 FPS.
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FIGURE 5 Examples of laparoscopic frames containing tools oriented at
an angle. The laparoscopic frames in the figure are picked out from the
EndoVis17 dataset.

When compared to YOLOv6-S, the highest mAP small-scale
model, YOLOv7-RepFPN enhances mAP50 and mAP50∶95
by 0.025 and 0.014, and speed by 5.4 FPS.

∙ With increasing model scale, both YOLOv5 and YOLOv7
show improved detection accuracy, but inference speeds
substantially decline. As an example, the medium-scale
YOLOv5m model enhances mAP50 and mAP50∶95 by 0.013
and 0.028 respectively over the smaller YOLOv5s, but suf-
fers a speed reduction of 11.5 FPS. Furthermore, the larger
YOLOv5l model improves upon YOLOv5m by increas-
ing mAP50 and mAP50∶95 by 0.007 and 0.011 respectively,
but decreases speed by 14.1 FPS. When scaling up to the
largest YOLOv5x model, mAP50 is increased by 0.019,
while mAP50∶95 drops by 0.005, and speed falls to 21.3
FPS—less than a third of YOLOv5s. Against YOLOv7, the
best-performing large-scale model in speed and accuracy,
YOLOv7-RepFPN enhances speed by 21.1 FPS while main-
taining similar mAP metrics, with minor decreases of 0.011
in mAP50 and 0.018 in mAP50∶95.

Figure 5 is made based on the experimental data from
Table 1, the figure illustrates the relationship between FPS and
mAP for the YOLOv7-RepFPN model in comparison with
other YOLO models.

3.3 Ablation studies

Ablation studies were performed on our architectural and opti-
mization modifications to YOLOv7, with the results presented
in Table 2. For simplicity in this section, the YOLOv7 model
with halved feature channels is referred to as the small-scaled
YOLOv7 model. It can be concluded from Table 2 that:

∙ Halving the feature channels for lightweight modification of
the model resulted in a substantial reduction in both the

number of parameters and FLOPs. Compared with
YOLOv7, inference speed of small-scaled YOLOv7
increased by 11.7 FPS. However, a decrease of 0.044 in
both mAP50 and a decrease of 0.045 in mAP50∶95 was also
observed. This decrease could be due to the factor that
the reduction in feature channels may lead to insufficient
feature extraction.

∙ To simplify the model structure and improve inference
speed, we introduced RepBlock in the neck section for fea-
ture extraction. Compared to small-scaled YOLOv7, our
YOLOv7-RepFPN model with RepBlock not only improved
inference speed by 9.4 FPS but also increased the mAP50 and
mAP50∶95 metrics by 0.025 and 0.006 respectively.

∙ With the goal of improving detection accuracy, the focal
EIoU loss function was used for bounding box regression.
Whether applied to the small-scaled YOLOv7 or YOLOv7-
RepFPN, use of EIoU loss function led to improvements
in the mAP metrics. For small-scaled YOLOv7, application
of EIoU resulted in a 0.006 increase in mAP50 and a 0.013
increase in mAP50∶95. For YOLOv7-RepFPN, use of EIoU
resulted in a 0.018 increase in mAP50 and a 0.021 increase in
mAP50∶95.

3.4 Discussion

The YOLOv7-RepFPN model demonstrated a notable balance
between speed and accuracy in laparoscopic tool detection, as
shown in Figure 5. With an inference speed of 62.9 FPS, it
considerably exceeded real-time processing requirements. While
achieving high efficiency, the model exhibited a slightly lower
mAP (0.882 for mAP50 and 0.681 for mAP50∶95) compared to
the standard YOLOv7. This minor compromise in precision is
a trade-off for its enhanced speed.

The ablation study, detailed in Table 2, highlighted the impact
of various architectural modifications on model performance.
The integration of the RepBlock and focal EIoU, along with
halved feature channels, resulted in a balance of high frame
rates and maintained accuracy. Each modification contributed
to the model’s efficiency, indicating that our proposed revi-
sions significantly enhance the performance of the standard
YOLOv7 architecture.

Figure 6 visualizes tool detection and failure instances, also
reveals limitation that the model struggles with localization
when separate tips of the same target appear at frame edges.
It may only detect one larger tip or identify two tips as dis-
tinct targets of the same category, as shown in Figure 6(b). This
issue is also present in the original YOLOv7, YOLOv5, and
YOLOv6 models under the same experimental conditions and
dataset.

The limitations above might be related to the design of
the YOLOv7 detection head. YOLOv7 uses a simple, non-
decoupled classification head to favour speed. Reducing the
number of feature channels, hence feature information, could
contribute to decreased detection accuracy. Additionally, the
non-decoupled head, treating classification and localization as
one task, might impact detection precision. Lastly, the oversight
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TABLE 2 Ablation study for our proposed revisions (✓for corresponding revision). Effectiveness of each combination of the revisions are also evaluated.

Halved feature channels RepBlock Focal EIoU Parameters/M GFLOPs mAP50 mAP50∶95 FPSa

36.51 103.3 0.893 0.699 41.8 ± 0.2

✓ 9.15 26.0 0.849 0.654 53.5 ± 0.2

✓ ✓ 10.58 30.7 0.874 0.660 62.9 ± 0.3

✓ ✓ 9.15 26.0 0.855 0.667 53.5 ± 0.2

✓ ✓ ✓ 10.58 30.7 0.882 0.681 62.9 ± 0.3

aFor the FPS metric, we documented the mean and standard deviation from ten separate tests.

FIGURE 6 Visualization of some detection results as well as failure cases. Different colours of bounding boxes suggests different categories of laparoscopic
tools.

of tool tips at image edges might be due to YOLO’s inability to
extract and merge more scaled feature information.

4 CONCLUSIONS

Our study aimed to increase the speed of laparoscopic tool
detection on embedded devices without sacrificing accuracy.
By optimizing the architecture of YOLOv7, we developed
YOLOv7-RepFPN. The model exhibited a detection accu-
racy of mAP50 of 88.2%, while achieving an inference
speed of 62.9 FPS, which substantially exceeds real-time
requirements.

Although YOLOv7-RepFPN is proficient in its core objec-
tives, it exhibits limitations in specific scenarios, such as
detecting tool tips at the edge area of images, this limitation
is also discovered when analyzing detection results of other
YOLO models. To address these issues, incorporating a decou-

pled detection head or modules based on attention mechanisms
is a potential avenue for future work.

The speed advantage of YOLOv7-RepFPN affords the
possibility of further architectural enhancements. The increased
efficiency enables the incorporation of more advanced
modules, like attention mechanisms, without sacrificing
real-time performance. This is in line with our original
research goals and paves the way for extended function-
alities such as segmentation, localization, and tool pose
estimation.
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