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ABSTRACT

Eukaryotic DNA is packaged into chromatin, which
regulates genome activities such as telomere main-
tenance. This study focuses on the interactions
of a myb/SANT DNA-binding domain from the
telomere-binding protein, TRF2, with reconstituted
telomeric nucleosomal array fibers. Biophysical
characteristics of the factor-bound nucleosomal
arrays were determined by analytical agarose gel
electrophoresis (AAGE) and single molecules were
visualized by atomic force microscopy (AFM). The
TRF2 DNA-binding domain (TRF2 DBD) neutralized
more negative charge on the surface of nucleo-
somal arrays than histone-free DNA. Binding of
TRF2 DBD at lower concentrations increased the
radius and conformational flexibility, suggesting a
distortion of the fiber structure. Additional loading
of TRF2 DBD onto the nucleosomal arrays reduced
the flexibility and strongly blocked access of micro-
coccal nuclease as contour lengths shortened, con-
sistent with formation of a unique, more compact
higher-order structure. Mirroring the structural
results, TRF2 DBD stimulated a strand invasion-
like reaction, associated with telomeric t-loops, at
lower concentrations while inhibiting the reaction
at higher concentrations. Full-length TRF2 was
even more effective at stimulating this reaction.
The TRF2 DBD had less effect on histone-free DNA
structure and did not stimulate the t-loop reaction
with this substrate, highlighting the influence of
chromatin structure on the activities of DNA-binding
proteins.

INTRODUCTION

Eukaryotic chromosomes are assembled into chromatin
structures comprised of core histones and other

architectural proteins. Central to chromatin structure is
the arrangement of the nucleosome core, which has four
pairs of small, basic histones to form the core octamer,
wrapped within 1.67 left-handed superhelical DNA turns
(1). This special arrangement of nucleosomal DNA within
nucleosomal fibers sets up a specific binding substrate for
many DNA-binding factors and chromatin architectural
proteins (2). Although it has been shown that nucleosomes
affect the binding of several factors, the influence of
these factors on the structure of nucleosomal array fibers
is less studied.
One region of the genome where chromatin structure

has an influence on function is the telomere (3).
Telomeres are specialized nucleoprotein complexes
assembled on repetitive, guanine-rich DNA which func-
tion to protect chromosome ends from being recognized
and processed as double-stranded DNA breaks.
Mammalian telomeres possess periodically spaced nucleo-
somes with relatively short spacing of �160 bp (4,5), an
organization that extends to the very end of the telomere
(6). Additionally, linker histones (H1) were detected
in telomeric chromatin (4), and H1-depletion in mice
increases telomere length (7). Mammalian telomere
length maintenance is also regulated by trimethylated
lysine 9 of histone H3 and lysine 20 of histone H4,
along with the presence of heterochromatin protein 1
subtypes (8). The relationship of hallmark features of
heterochromatin and telomere length suggests key roles
of mammalian telomeric chromatin structure in proper
function.
Mammalian telomeres possess a tandemly repeated,

50-TTAGGG-30 DNA sequence which is maintained by
telomerase (9). Telomere integrity is also preserved by a
specific telomere nucleoprotein complex (10,11) referred
to as shelterin (12). A key player in the shelterin complex
is TTAGGG repeat factor 2, TRF2. Cells expressing a
dominant negative TRF2 undergo cellular senescence or
apoptosis mediated by p53/ATM (13). Telomere dysfunc-
tion induced by dominant negative TRF2 expression
results in chromosome end-to-end fusions and a reduction
of the G-strand overhang (14). Overexpression of TRF2
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triggers telomere shortening; however, cells with these
shortened telomere lengths appear to be protected from
senescence (15).
In addition to its role in the shelterin complex, TRF2

has been shown to stabilize looped higher-order struc-
tures, which are thought to sequester the G-strand
overhang from degradation and DNA damage signaling
(16–18). Both TRF2 and another shelterin protein, TRF1,
interact with telomeric DNA sequence through a myb/
SANT DNA-binding domain (19). This DNA-binding
domain was shown to be important for interactions of
TRF2 with telomeric chromatin in vivo; a temperature
sensitive mutation in this domain disrupted the shelterin
complex and rendered telomeres dysfunctional (20). These
interactions occur mainly through the C-terminal helix
within the DNA major groove, while an N-terminal exten-
sion interacts with the minor groove (19). Consequently,
it is possible that binding to DNA sites may be hindered
in nucleosomes; an important consideration if the binding
substrate is nucleosomal chromatin. TRF1 has been found
to bind to telomeric chromatin (21), but no detailed ana-
lysis on the interactions of TRF2 and TRF1 with nucleo-
somal fibers have been published to date. Nevertheless,
TRF1 and the yeast ortholog, Rap1p, have been shown
to interact with mononucleosome cores, while binding is
inhibited when binding sites are situated near the nucleo-
some dyad (22,23). Furthermore, TRF1 has a strong pref-
erence for sites facing outward from the nucleosome and
these interactions produced DNase I hypersensitive
regions, suggesting that it alters nucleosome structure.
Despite this, no histone dissociation was observed, sug-
gesting that TRF1 and, by extension, TRF2 may have
specific requirements for interacting with nucleosomal
fibers and potentially altering their global structure.
Currently, no information exists explaining how myb-
like DNA-binding domains interact with and affect
nucleosomal array fibers, which is particularly important
considering the finding that telomeric chromatin has been
shown to be in the form of t-loops (21).
This study represents a structural characterization of

the interactions of the TRF2 myb/SANT DNA-binding
domain (TRF2 DBD) interacting with its sites within a
nucleosomal array fiber. Although effects on global chro-
matin structure are difficult to recapitulate in vitro, this
study takes advantage of the fact that telomeric DNA
provides a tandem array of many factor-binding sites
which essentially amplify subtle structural changes. In
addition, the key to analysis of factor binding to compli-
cated nucleosomal fiber assemblies in solution is the use of
an analytical agarose gel electrophoretic (AAGE) tech-
nique which provides parameters associated with the sur-
face electrical charge density, hydrodynamic radius and
conformational flexibility of these assemblages (24,25).
This method was successful in revealing previously
unknown structural characteristics of chromatin reconsti-
tuted in vitro (24,26–29) and isolated from cells (30).
Interpretation of nucleosomal fiber structures analyzed
by AAGE in the present study was facilitated by imaging
single molecules with atomic force microscopy. The data
show that the TRF2 myb/SANT DNA-binding domain
(TRF2 DBD) had the ability to access its sites within

nucleosomal arrays and alter their structure, resulting in
a reduction in negative surface charge concomitant with
an increase in effective radius. Unique to this approach
was the ability to observe that the TRF2 DBD increased
the flexibility of nucleosomal arrays when added at low
concentrations. The increase in fiber radius and flexibility
caused by lower concentrations of TRF2 DBD coincided
with an increase in the ability of these fibers to interact
with a single-stranded 50-d(TTAGGG)7-3

0 oligonucleotide
in a reaction associated with t-loop formation (31).
In contrast, addition of higher concentrations of the
TRF2 DBD did not cause a further increase in radius
but did continue to reduce the negative surface charge,
flexibility and access of micrococcal nuclease. At these
higher concentrations, the TRF2 DBD inhibited the
reaction of nucleosomal arrays with the single-stranded
oligonucleotide. These results suggest that TRF2 may
influence telomere function by modulating chromatin
structure.

MATERIALS AND METHODS

Materials

The 3.5-kb pRST5 plasmid (17) contains �96 TTAGGG
DNA repeats. The plasmid was digested with PvuII to
liberate a 1-kb fragment containing the telomeric DNA
and 2.5-kb non-telomeric DNA (Figure 1A). Alterna-
tively, the plasmid was digested to liberate a �2-kb frag-
ment containing the telomeric DNA with a �1-kb and two
�220-bp fragments of non-telomeric DNA. The telomeric
DNA was situated approximately in the center of the 1-
and 2-kb fragments. The p208-12 plasmid (32) contains 12
repeats of the Lytechinus 5S rDNA that positions nucleo-
somes and the 2.5-kb, 208-12 fragment is liberated by
HhaI digestion. Fragments containing telomeric DNA
were either gel purified using Qiagen QIAXII gel extrac-
tion kit or were left unpurified allowing for non-telomeric
DNA to be used as an internal control for the AAGE
analysis. For atomic force microscopy (AFM) studies,
the pRST5 plasmid was digested with SfaNI and the
2-kb fragment with the telomeric region was separated
on a 0.8% agarose gel. The fragment was excised, elec-
troeluted and concentrated with an 8000-kDa filter
(Amicon, Millipore), followed by phenol–chloroform
extraction and ethanol precipitation.

Recombinant, His6-tagged TRF2 DBD was expressed
in E. coli BL21 cells (Invitrogen) and purified using Talon
Co2+ (Clontech) beads (33). Recombinant, His6-tagged
full-length TRF2 was baculovirus expressed in Sf9 cells
and purified as previously described (34).

Reconstitution of nucleosomal arrays

Histone octamers were purified from HeLa cells (35) or
chicken erythrocytes (32). Nucleosomal arrays were recon-
stituted by polyglutamate transfer or stepwise salt dilution
(36–38). For the polyglutamate transfer method, histone
octamers (0.1 mg/ml) isolated from HeLa cells were
incubated with poly-L-glutamate (Sigma, P4886) at a
final concentration of 0.2 mg/ml in 10mM Tris–HCl pH
8.0, 100mM NaCl overnight at 48C. This solution was
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combined with DNA to achieve histone octamer and
DNA concentrations of 50 ng/ml and 25 ng/ml, respectively
in 10mM Tris–HCl pH 8.0, 30mM NaCl, and then incu-
bated overnight at 378C. To reconstitute nucleosomal
arrays by salt dilution, 1.3 mg of histone octamers were
incubated with 1.1mg of DNA in 20 ml of 2M NaCl/
HEPES (50mM HEPES pH 7.5, 1mM EDTA, 5mM
DTT, 0.5mM PMSF) for 15min at 378C. The reaction
was then serially diluted to 1.5, 1, 0.8, 0.7, 0.6, 0.5, 0.4,
0.25 and 0.2M NaCl by adding the appropriate volume
of HEPES buffer followed by incubation for 15min at
308C for each step.

For AFM studies, 3 mg of 2-kb SfaNI fragments were
used for each reconstitution. The ratio between the DNA
and chicken erythrocyte histone octamer was adjusted to
1 or 1.5 (histone/DNA, mass ratio). The histone octamer
and DNA were mixed to achieve final concentrations of
0.1 mg/ml DNA and histone octamer, 1� TE (10mM Tris–
HCl pH 7.5, 1mM Na2EDTA), 1mM DTT and 1M
NaCl. The mixture was placed on ice for 30min before
stepwise salt dialysis against 0.8M NaCl, 0.6M NaCl and
0.15M NaCl with 1� TE (pH 8.0) buffer for 2 h each at
room temperature. The sample was finally dialyzed
against 1mM Na2EDTA (pH 8.0) overnight at 48C.

Micrococcal nuclease digestion

To validate proper reconstitution, an aliquot of 0.5mg of
reconstituted nucleosomal arrays was digested for indi-
cated times (Figure 1B and C) with 12 units of micrococcal
nuclease (Worthington) in reaction buffer containing
20mM Tris–HCl and 2mM CaCl2 (final concentrations)
in a total of 20 ml. Reactions were stopped by 5mM
Na2EDTA. The samples were phenol/chloroform
extracted, ethanol precipitated and separated on a 1.5%
agarose gel.

To analyze the effect of TRF2 DBD on micrococcal
nuclease digestion, nucleosomal arrays were reconstituted
on SalI or ScaI digested pRST5, which put the
telomeric DNA in the center of the linearized plasmid.
Reconstituted nucleosomal arrays (250 ng) with indicated
amounts of TRF2 DBD (Figure 4) were digested for
10min by 6 units of micrococcal nuclease in reaction
buffer containing 20mM Tris–HCl and 2mM CaCl2
(final concentrations in 20 ml total volume). The reaction
was stopped with a mixture of 5mM Na2EDTA and 1%
SDS, then placed on ice. After digestion with 6 mg protei-
nase K, the samples were electrophoresed on a 12% native
polyacrylamide gel (37.5:1 bis). After staining with SYBR
Green (Invitrogen) to observe total DNA present, the gels
were transferred to a nylon membrane (Nytran N,
Whatman) and detected with a biotin-d(TTAGGG)7
probe using the North2South hybridization and detection
kit (Pierce).

Formation of TRF2 DBD complexes with DNA or
nucleosomal arrays

Indicated concentrations of TRF2 DBD were incubated
for 30min at room temperature with 1.73 nM DNA or
2.71 nM reconstituted nucleosomal arrays (166 nM and
260 nM TTAGGG, respectively) in EMSA buffer

(20mM HEPES pH 7.8, 150mM KCl, 1mM MgCl2,
20% glycerol). Complexes were either detected by electro-
phoresis on 0.6% agarose gels in TAE (40mM Tris–acet-
ate, pH 8.0, 1mM EDTA) running buffer and staining
with SYBR Gold or analyzed by AAGE.

Analytical agarose gel electrophoresis

Multi-gels were poured using a specially designed appara-
tus (Aquabogue) and previously described method (24,39).
Agarose (Low EEO, Research Organics) concentrations
within the multi-gels ranged from 0.25% to 1.0% for
data presented in Figure 3A and B, or 0.4–2.0% and
0.7–2.3% for data presented in Figures 3C and D, respec-
tively. Samples were prepared as described for binding
experiments. Bromophenol blue/xylene cyanol-loading
dye was added to the samples, which were loaded into
the multi-gels and run for 3 h at 2V/cm. One hour
before the gel run was finished, charged microspheres
(carboxylate, 35 nm radius, Duke Scientific) were added
to the gels and samples were electrophoresed for the
remaining hour. Gels were stained with SYBR Gold,
imaged and migrations were measured with ImageQuant
software to obtain electrophoretic mobilities (m) of DNA/
nucleosomal arrays and microspheres.
Linear portions (0.2–1.3%) of Ferguson plots (semilo-

garithmic plot of m versus agarose concentration) were
extrapolated to 0% agarose to obtain the gel-free mobility
(�00) for DNA, nucleosomal arrays and microspheres. The
pore sizes of the gels (Pe) for each multi-gel experiment
were calculated as described previously (24,39) using the
equation,

�

�00
¼ 1�

Re

Pe

� �2

1

and Re of the microspheres (35 nm). To determine the Re

of DNA or nucleosomal arrays, equation [1] was used
again, this time with the microsphere-derived Pe values,
along with the m and �00 of DNA or nucleosomal arrays.
The Re values from dilute gels in Figure 3B were obtained
by averaging Re values from 0.25% to 0.6% gels in which
no DNA reptation was observed.

Atomic force microscopy

Histone-free DNA or nucleosomal arrays reconstituted
with chicken erythrocyte histones were incubated with
TRF2 DBD in EMSA buffer lacking Mg2+, at concentra-
tions indicated in Figure 5, for 30min at room tempera-
ture. The resulting complexes were crosslinked with 0.1%
glutaradehyde for an additional 30min and diluted with
1mM EDTA to 0.3 ng/ml (in DNA) for imaging. A 10 ml
aliquot of each sample was deposited on APTES-mica
(40), pretreated with 2 mM glutaraldehyde and incubated
for 20min, followed by rinsing with distilled water and
drying with nitrogen. The imaging was carried out with
a PicoPlus 2500+ [Molecular Imaging, 5500 AFM
(N9410S) from Agilent] AFM equipped with a Si3N4 can-
tilever (AppNano SPM) and a spring constant range from
25 to 75N/m. The resonance frequency was around
300 kHz; and the scan rate was 1.71Hz. Gwyddion and
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Chromatin Analysis 1.1.7 software was used for image
analysis.

Uptake of single-stranded oligonucleotides by
nucleosomal arrays or histone-free DNA

The single-stranded DNA uptake assay was performed
similar to the method described previously (31,41).
Nucleosomal arrays or histone-free DNA (200 ng), created
using undigested or SfaNI digested PRST5, were incu-
bated for 15min at room temperature, in the presence of
TRF2 DBD at specified concentrations, with 100mM
NaCl and reaction buffer containing 50mM HEPES,
1mM DTT and 2% glycerol. 50-32P-labeled d(TTAGGG
)7 oligonucleotide (T7) was added to a final concentration
of 25 nM and the reaction was incubated for an additional
30min. The reaction was stopped with 1% SDS (final) and
6 mg of proteinase K. Bromophenol blue-loading dye was
added and the samples were run on a 1.3% agarose gel
in TBE (90mM Tris–borate, pH 8.3, 2mM EDTA).
The DNA control lane and 1-kb base pair ladder (New
England Biolabs) were stained with SYBR Green, while
the rest of the gel was dried and then exposed to a phos-
phorimage screen to detect the presence of the radioactive
oligonucleotide.

RESULTS

In order to analyze the effect of the TRF2 DBDon nucleo-
somal chromatin fibers, we reconstituted DNA containing
50-TTAGGG-30 repeats into nucleosomal arrays. TRF2
DBD-dependent changes in the global structure of his-
tone-free DNA and nucleosomal arrays were monitored
using atomic force microscopy, micrococcal nuclease
digestion and a technique we have termed Analytical
Agarose Gel Electrophoresis, AAGE. The AAGE system
utilizes a multi-gel apparatus (24,39) to detect changes in
macromolecular surface electrical charge density (m0),
hydrodynamic radius (Re) and ‘conformational flexibility’
(change in Re versus gel pore sizes) all in one experiment.
The structural analysis of the TRF2 DBD-nucleosomal
fibers was correlated to telomere function through a bio-
chemical assay that monitors a reaction associated with
t-loop formation and telomere protection.

Reconstitution of telomeric nucleosomal array fibers

The pRST5 plasmid (17) contains �580 bp of telomeric
DNA. The plasmid was digested with various enzymes
to obtain different substrates for analysis (Figure 1A).
To ensure that fragment size and composition did not
alter our data interpretation, we analyzed the reconstitu-
tion efficiency of both 1-kb and 2-kb telomeric fragments
(Figure 1A) into nucleosomal arrays and their binding by
the TRF2 DBD (Figure 2). Nucleosomal array fibers were
reconstituted with purified histone octamers from HeLa
cells using the polyglutamate histone transfer or salt dilu-
tion methods (36,38) but higher levels of nucleosome sat-
uration were better achieved with the polyglutamate
method. One possible explanation for this is that polyglu-
tamate facilitates assembly on telomeric DNA; previously
shown to form relatively less stable nucleosomes

compared to nucleosome-positioning sequences (42,43).
Nevertheless, we only used reconstitutes that had a rea-
sonable level of nucleosome saturation in this study.
Micrococcal nuclease digestion results (Figure 1B and C)
suggest that nucleosomes were properly assembled with
periodic spacing. Southern blotting and probing with a
telomeric probe (Figure 4B) showed that the 580 bp of
telomeric DNA was also assembling into nucleosomes.

AAGE was used to analyze nucleosome saturation
levels for each reconstitution. Figure 1D and E illustrate
multi-gels of pRST5 digested to obtain 1- and 2-kb telo-
meric fragments (Figure 1A) either as histone-free DNA
or reconstituted nucleosomal fibers. Extrapolation of
the Ferguson plot (log m versus agarose%) to the y-axis
provides the gel-free mobility or �00, which is proportional
to the electrical surface charge density of the macromole-
cule (24,39). Since this term refers to a density of charges,
it was expected that similar values would be achieved
for the different DNA fragments, and this is demonstrated
by the results for the 208-12 and telomeric DNA in
Supplementary Table I. The histone octamer contributes
positive charge to the fiber surface through its lysine/argi-
nine-rich tail domains. In addition, a smaller amount of
negative surface charge neutralization is contributed by a
positively charged surface created by the histone-fold
domains that interact with DNA assembled in the nucleo-
some core (44,45). Consequently, properly assembled
nucleosomes should result in a defined level of DNA neg-
ative surface charge neutralization that is proportional to
the number of nucleosomes per DNA base pair (24).
Analysis of the effect of nucleosomal saturation on the
�00 of nucleosomal arrays in low salt buffers has been
extensively characterized with the 208-12 DNA template,
which contains 12 repeats of the Sea Urchin 5S nucleo-
some positioning DNA (32,46). The �00 term was highly
reproducible, and a linear drop in negative surface charge
density with increasing nucleosome assembly correlated
well with an increase in s20,w (24), with an �20% drop
in negative charge pertaining to �1 nucleosome/208 bp
of DNA. As shown in Supplementary Table I, a
�22–25% drop in �00 was observed for the telomeric
DNA fragments as they were saturated with nucleosomes.

Nucleosome saturation is also revealed by a drop in the
effective radius (Re) (24). In order to calculate the effective
radii (Re) of the DNA and chromatin, the pore sizes (Pe)
of the gels must be obtained. Previously, bacteriophage
T3, a spherical bacteriophage with a 30.1 nm radius, was
added to samples to calculate the Pe for each gel concen-
tration (24). We tested whether similar multi-gel pore sizes
could be attained with commercially available, carboxy-
late-coated microspheres. Figure 1F shows that Pe values
derived from multi-gel experiments with microspheres
were similar to those achieved with bacteriophage T3.

The Re of both DNA and nucleosomal arrays remains
constant in dilute gels (averaged from 0.25–0.6% gels) and
is likely a reflection of the hydrodynamic radius of the
molecules in solution. This is demonstrated by a decrease
in Re with increasing nucleosome saturation on the 208-12
DNA template, which coincided with an increase in s20,w
(24). The Re in dilute gels of the 208-12 and 2-kb telomeric
fragments were reduced by 40–50% with nucleosome
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reconstitution (Supplementary Table I). The Re of the
1-kb telomeric DNA was only reduced by �20%, which
is similar to that observed with reconstitution of 208-5
DNA (T. M. Fletcher and J. C. Hansen, unpublished
results). From the �00 and Re data we can infer that the
nucleosomal arrays had a density of �1 nucleosome per
170–190 bp or 11–12 nucleosomes on the 2-kb fragment
and only reconstituted material with this level of satura-
tion was used in experiments.

The nucleosome density of the reconstitutes was also
determined by atomic force microscopy. Nucleosomal
array fibers reconstituted with the 2-kb telomeric fragment
using a 1-1.5:1 mass ratio of histone octamer to DNA
typically had an average of 12 nucleosomes (Supplemen-
tary Figure 1A and C) indicating a level of saturation in
agreement with the AAGE analysis. To ensure that proper
nucleosomes were assembled, heights of the nucleosomal

structures within the fibers were determined. The maxi-
mum height distributions ranged from 2.5 to 3.5 nm (Sup-
plementary Figure 1B and D), in agreement with previous
findings (47).

The TRF2 DBD interacts specifically with telomeric
DNA and nucleosomal arrays

Binding of TRF2 DBD to the 1-kb and 2-kb fragments
containing 580 bp of telomeric DNA (�95 TRF2 DBD-
binding sites) was detected by a decrease in mobility in
0.6% agarose gels (Figures 2A and C, telo). As expected,
the mobility of non-telomeric DNA (N-telo) was not
affected by TRF2 DBD. This demonstrates that the
TRF2 DBD bound specifically to telomeric DNA.
Interestingly, the mobility of nucleosomal arrays was
shifted more by lower concentrations TRF2 DBD than
that of histone-free DNA. However, the nucleosomal
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array mobility shift leveled off at higher TRF2 DBD con-
centrations. It is possible that the mobility of nucleosomal
arrays leveled off at the higher concentrations because the
binding sites became saturated. The apparent Kd of TRF2
DBD with a 50-GTTAGGGTTAGGG-30 oligonucleotide
ranged from 180 to 750 nM depending on the KCl con-
centration (48). It is important to note that the concentra-
tion of TRF2 DBD-binding elements in our studies is
likely to be near the Kd of TRF2 DBD since the fragments
contain �96 TTAGGG repeats.
The TRF2 DBD-induced mobility shifts are likely due

to changes in charge, size and shape of the DNA and
nucleosomal fibers which can be assessed by AAGE.
To ensure that the TRF2 DBD-DNA and TRF2 DBD-
nucleosomal array complexes were stable during AAGE
experiments, the samples were electrophoresed at a higher
voltage potential in two dimensions (Supplementary
Figures 2A and B). If electrophoresis causes the complexes
to dissociate, the samples should have a higher apparent
migration rate in the second dimension. However, the
complexes appear to have a similar mobility in the
second dimension as the first, suggesting that they are
stable enough to be studied with AAGE.
Another potential complication is that mobility shifts

may be caused by interactions of these complexes with
the gel fibers, which may slow down the migration rate
resulting in misleading data. If interactions with the gel
matrix significantly reduced the migration rate, higher
concentrations of both TRF2 DBD and either DNA or
nucleosomal arrays should result in faster migration rates
since some of the sample will ‘coat’ the gel fibers, allowing
the rest of the sample to proceed. Supplementary
Figure 2C and D show that a nearly 10-fold increase in

TRF2 DBD-DNA or TRF2 DBD-nucleosomal array fiber
concentration resulted in even slower migration rates, sug-
gesting that the mobility shifts are mainly due to changes
in complex charge and structure as opposed to interac-
tions with the gel. Also, note that the highest concentra-
tions of both TRF2 DBD and DNA or nucleosomal
arrays resulted in a mobility shift of the non-telomeric
DNA, suggesting that some binding specificity was lost,
but at concentrations significantly higher than the AAGE
experiments in this study. Both of these controls demon-
strate that the observed mobility shifts are most likely due
to TRF2 DBD-dependent changes in surface charge den-
sity and effective radius, which can be revealed by AAGE
analysis.

The TRF2 DBD reduces negative surface charge density
on nucleosomal fibers more than histone-free DNA

AAGE was used to determine the differential effects of the
TRF2 DBD on the biophysical characteristics of nucleo-
somes and histone-free DNA. Since the TRF2 DBD is a
relatively basic DNA-binding domain, it was expected to
neutralize some of the DNA charge when bound. Indeed,
increasing concentrations of the TRF2 DBD (Figure 3A)
resulted in a drop in DNA surface charge density (�00)
until �20% less negative surface charge was observed at
1 mM TRF2 DBD (a mole ratio of �6 TRF2 DBD: 1 TTA
GGG). If the �00 accurately represents changes in the
charge density as TRF2 DBD fills TTAGGG sites, the
TRF2 DBD should have a greater effect on the �00 of
the 1-kb fragment. The 1-kb fragment has twice the den-
sity of TRF2 DBD-binding sites than the 2-kb fragment.
This was indeed the case (Figure 3A). Interestingly, the
TRF2 DBD also caused a more dramatic drop in negative
surface charge of the 2-kb nucleosomal arrays than the
2-kb histone-free DNA (Figure 3A), suggesting that
TRF2 DBD has unique binding interactions with telo-
meric nucleosomal arrays and/or it alters their structure.

The TRF2 DBD increases the effective radius of
nucleosomal arrays but not that of histone-free DNA

The TRF2 DBD may be neutralizing more negative
surface charge on the nucleosomal array because it is
inducing a conformational change when it binds to the
fiber. A TRF2 DBD-induced conformational change was
detected with AAGE by observing a TRF2 DBD-depen-
dent change in Re. The radii from dilute gels (0.25–0.6%),
where the gel fibers were least likely to affect macromolec-
ular structure, were averaged for each multi-gel experi-
ment. Comparison of changes in sedimentation
coefficient and the Re in dilute gels with nucleosome
assembly levels, Mg2+-dependent nucleosomal array fold-
ing, or reconstitution of sub-nucleosomal arrays demon-
strate that this parameter can reflect a hydrodynamic
radius similar to a Stokes radius (24,26–28).

Binding of the TRF2 DBD to histone-free DNA
resulted in only a slight increase in Re (Figure 3B).
However, binding of the TRF2 DBD at low concentra-
tions to nucleosomal arrays gradually increased their Re

until they were �40% larger than the control (Figure 3B).
This effect appeared to level off (or even partially reversed)
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Figure 2. TRF2 DBD binds specifically to telomeric DNA and nucleo-
somal arrays. 0.6% agarose gels of TRF2 DBD binding to DNA
(DNA) (A) and nucleosomal arrays (NA) (B) from the pRST5 fragment
digested to obtain a 1-kb DNA fragment with 580-bp telomeric DNA
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(B), respectively except the pRST5 was digested to obtain a 2-kb frag-
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with further addition of TRF2 DBD (Figure 3B, >400 nM
TRF2 DBD).

The mo and Re data in Figure 3 are consistent with the
binding data in Figure 2 where increasing levels of TRF2
DBD resulted in a more gradual shift in mobility of telo-
meric histone-free DNA in a single concentration agarose
gel. Since very little change in the Re of telomeric DNA
was observed, this gradual change in mobility can be lar-
gely attributed to the apparent linear decrease in negative
surface charge density. However, the mobility of nucleo-
somal arrays was shifted more by TRF2 DBD at lower
concentrations, which then leveled off at higher TRF2
DBD concentrations. These TRF2 DBD-dependent
effects on the mobility of nucleosomal arrays can be attrib-
uted to both a greater reduction of negative surface charge
density relative to histone-free DNA, and an increase
in radius. In addition, the leveling off of the mobility at
higher TRF2-DBD concentrations corresponds to a lack
of increase in Re with increasing TRF2 DBD.

The TRF2 DBD alters the ability of telomeric DNA and
nucleosomal array fibers to reptate through the gel pores

Although DNA is thought to exist as a random coil in
solution, with a predicted average radius based on the

length of the DNA chain and its persistence length, its
movement has been shown to be restricted by the gel
matrix. The outcome is that DNA reptates through the
gel by both stretching and end-first movement through
the pores (49–51). This suggests that DNA has a degree
of conformational flexibility that depends mainly on its
persistence length. Reptation can be observed in 2-D
gels by increased mobility of DNA at higher voltage
potentials relative to spherical bacteriophage standards
(24). Reptation of DNA can also be observed with the
AAGE technique when samples are electrophoresed in
multi-gels with high concentrations of agarose where the
gel pores impinge upon the structure of the DNA (24).
Reptation is demonstrated by a decrease in Re as a func-
tion of decreasing pore sizes (Pe). As expected, DNA, in
the absence of TRF2 DBD, reptated in more concentrated
gels (Figure 3C). Although reptation was only slightly
affected by adding 200 and 600 nM TRF2 DBD, it was
significantly reduced in the presence of 1000 nM TRF2
DBD, suggesting that extensive binding of the TRF2
DBD to the tandem binding sites reduced the conforma-
tional flexibility of the DNA.
Assembly of the 208-12 DNA into an array of nucleo-

somes results in a structure that does not appear to be
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Figure 3. TRF2 DBD-dependent changes in surface charge density (�00), effective radius (Re from dilute gels) and conformation flexibility (Re versus
Pe). The �00 at each indicated TRF2 DBD concentration was obtained by Ferguson plots of mobilities derived from multi-gels with agarose
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altered by decreasing gel pore size. Instead, reducing the
gel pore sizes causes the nucleosomal arrays to move
slower through the gel matrix (24). The likely explanation
for this is that, depending on the internucleosomal spa-
cing, the linker DNA is shorter than the persistence length
resulting in a nucleosomal fiber that is relatively less flex-
ible. As expected, the Re of telomeric nucleosomal arrays,
in the absence of TRF2 DBD, was unaltered by a decrease
in Pe (Figure 3D). The presence of 200 nM TRF2 DBD
resulted in a structure with a larger Re in more dilute gels
where Pe> 100 nm (Figure 3B and D). However, a gradual
decrease in Re was observed for this structure as gel pores
were reduced below 100 nm (Figure 3D), indicating that
low concentrations of TRF2 DBD increased the confor-
mational flexibility of nucleosomal fibers allowing them to
reptate through the gel pores. However, the nucleosomal
fibers in the presence of 600 and 1000 nM TRF2 DBD
(Figure 3D) did not substantially reptate, even though
the complexes formed at these TRF2 DBD concentrations
were larger than nucleosomal array fibers in the absence
of TRF2 DBD. This suggests that the flexibility initiated
by low-level binding of TRF2 DBD binding was lost
as additional TRF2 DBD loaded onto the nucleosomal
arrays.

TRF2 DBD protects nucleosomal arrays from
micrococcal nuclease digestion

The increase in Re and flexibility of nucleosomal fibers
in the presence of low concentrations of TRF2 DBD sug-
gests some form of nucleosome disruption or nucleosome
sliding. Both of these scenarios should be detected by
alterations in micrococcal nuclease digestion. To observe
nucleosome disruption, nucleosomal fibers were subjected
to micrococcal nuclease digestion under conditions that
yield mostly mononucleosome with some di- and trinu-
cleosomal fragments as detected on native polyacrylamide
gels (Figure 4). Staining gels with SYBR Green showed
that nucleosome cores remained largely intact throughout
the nucleosomal fiber in the presence of low concentra-
tions of TRF2 DBD (Figure 4A). A Southern blot with
a telomeric DNA probe confirmed that telomeric nucleo-
somes remained intact with TRF2 DBD concentrations up
to 500 nM (Figure 4B). If the increase in flexibility
observed in Figure 3D was due to TRF2 DBD-induced
nucleosome sliding, a smearing of the mono-, di- and tri-
nucleosomal bands would be apparent; however, this did
not appear to be the case. These results suggest that the
increase in radius and flexibility observed in Figure 3 were
not due to significant nucleosome disruption or sliding.
The AAGE and mobility shift data in Figures 2 and 3
show that TRF2 DBD has different effects on nucleosomal
arrays at higher concentrations. This coincided with the
weak appearance of an �600-bp micrococcal nuclease
resistant fragment in the SYBR Green-stained gels
(Figure 4A), which was slightly larger than the trinucleo-
somal fragment. The telomeric DNA-specific Southern
blot revealed that this band pertained to telomeric DNA
that became significantly inaccessible to micrococcal
nuclease (Figure 4B).

AFM of TRF2 DBD complexed with DNA and
nucleosomal array fibers

The AAGE data in Figure 3 demonstrated that addition
of TRF2 DBD did not increase the Re beyond a concen-
tration of 400 nM even though the negative charge con-
tinued to decrease as the concentration was raised to
1000 nM. Moreover, access of micrococcal nuclease to
the fibers was dramatically reduced at TRF2 DBD con-
centrations of >500 nM. These results suggest that the
TRF2 DBD continued to bind beyond 400 nM concentra-
tions but may have induced compaction. To analyze
further the effect of the TRF2 DBD on the structure of
nucleosomal arrays, single molecules were visualized by
AFM. Here TRF2 DBD was first incubated with telo-
meric nucleosomal arrays then fixed with glutaraldehyde
and adhered to AP-mica slides. AFM images were
obtained of nucleosomal array fibers in the presence of
0–1000 nM TRF2 DBD.

Observation of individual fibers in the presence of
TRF2 DBD revealed larger complexes frequently
located in the center of the fiber, suggesting that TRF2
DBD is preferentially binding to telomeric sequence
(Supplementary Figure 3C and E). Interpreting this data
alone, it is not clear whether TRF2 DBD is binding spe-
cifically to nucleosomes, displacing a nucleosome or indu-
cing compaction. However, the micrococcal nuclease
digestion results were not consistent with nucleosome dis-
placement (Figure 4), and an increase in Re (Figure 3B)
at low TRF2 DBD concentrations was not consistent with
significant compaction. Complexes were also observed on
histone-free DNA (Supplementary Figure 3F).

Quantifying TRF2 DBD-dependent changes in
the structure of nucleosomal fibers was achieved by ana-
lysis of fiber heights and contour length as a function of
TRF2 DBD concentration (Figure 5 and Supplementary
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Figures 4 and 5). Nucleosomes typically have heights that
vary from 2.5 to 3.0 nm (Supplementary Figure 1D).
Figures 5A and B illustrate an example of a nucleosomal
fiber in the presence of TRF2 DBD that has structures
with heights in the nucleosomal (�3 nm), intermediate-
sized (4–6 nm) and taller (>6 nm) ranges. Histograms of
the number of molecules (counts) with observed heights
were generated for each TRF2 DBD concentration
(Supplementary Figure 4). These were then normalized
to total counts to allow for direct comparison between
TRF2 DBD concentrations (Figure 5C). The presence of
200 nM TRF2 DBD shifted the population of fiber heights
from around 3 nm to closer to 4 nm. In addition, there was
an increase in the population of fibers with heights ranging
from 4 to 8 nm. Increasing the concentration of TRF2
DBD from 400 to 1000 nm did not increase the number
of fibers with intermediate heights, but increased the
number of fibers with heights >6 nm.
An increase in heights could be due to TRF2

DBD–nucleosome complexes, fiber compaction, or both.
To determine whether fibers compact, contour lengths
were measured as a function of TRF2 DBD concentration
(Figure 5D and Supplementary Figure 5). In the absence
of TRF2 DBD, a broad distribution of fiber lengths
was observed that centered around 240 nm. Addition of
200 nM TRF2 DBD resulted in a more narrow length
distribution, but it was still centered at 240 nm. This was
also observed in the presence of 400 nM TRF2 DBD
(Supplementary Figure 5). However, further addition
TRF2 DBD (1000 and 2000 nM) significantly increased
the population of fibers with contour lengths <200 nm,

suggesting that TRF2 DBD concentrations of >400 nM
induced fiber compaction.

The TRF2 DBD increases uptake of a single-stranded
telomeric oligonucleotide by nucleosomal arrays

One of the major functions of TRF2 is the protection of
chromosome ends. TRF2 is thought to perform this func-
tion by stabilizing a t-loop structure, which safeguards the
30 G-strand overhang from undesirable DNA metabolism
and damage signaling (16). The structure involves looping
back of the telomere end allowing for invasion of the ter-
minal 30 overhang into the duplex region and creating a
displacement or D-loop (16). Telomeric D-loop formation
has been mimicked by observing the uptake of a labeled
single-stranded telomeric oligonucleotide by a double-
stranded plasmid containing telomeric DNA, in the pres-
ence of crude cellular extracts or recombinant TRF2
(31,41,52). Uptake only occurs with telomeric DNA
sequence and the process is stimulated by the addition
of Na+ and TRF2 (31,41). TRF2 was shown to alter
DNA topology through a dimerization domain (TRFH),
destabilizing the plasmid duplex DNA and providing
an opportunity for annealing of the telomeric oligonucleo-
tide (31).

Since the most likely substrate for TRF2 binding and
t-loop formation at the telomeres is nucleosomal chroma-
tin, we chose to analyze the effects of full-length TRF2
and the TRF2 DBD on the insertion of a 32P-labeled,
d(TTAGGG)7, single-stranded oligonucleotide (T7) into
reconstituted telomeric nucleosomal fibers (Figure 6A).
The results with nucleosomal arrays were compared
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with histone-free linear and supercoiled plasmid DNA.
The presence of 100mM Na+ stimulated the insertion of
labeled T7 into unlabeled, nucleosomal fibers (Figure 6A),
similar to that observed with histone-free supercoiled plas-
mid DNA (41). A further stimulation of this reaction was
observed with increasing TRF2 DBD up to 500 nM, at
which point the stimulation was lost; further addition of
TRF2 DBD inhibited the reaction (Figure 6B and C).
Note that the loss in stimulation at 500 nM TRF2 DBD
coincided with a change in the effect of TRF2 DBD on the
Re, flexibility and access of micrococcal nuclease
(Figures 3 and 4). The TRF2 DBD-dependent stimulation
of T7 uptake was not observed with histone-free, linear
DNA (Figure 6B and C). Interestingly, the TRF2 DBD
also promoted T7 uptake by supercoiled plasmid DNA
but this effect was not as dramatic as that observed with
nucleosomal fibers. Moreover, higher concentrations
TRF2 DBD did not inhibit the reaction with supercoiled
plasmid DNA as much as was observed with nucleosomal
fibers.

Similar to the effect with TRF2 DBD, full-length
TRF2 increased T7 uptake by nucleosomal fibers
(Figure 6D and E). In contrast to that observed with
TRF2 DBD, additional TRF2 stimulated the reaction
even further, up to a nearly 4-fold increase with 800 nM
TRF2. A TRF2-dependent increase in oligonucleotide
uptake by supercoiled, histone-free DNA was also
observed [Figure 6D and E and (31,41)] but to a lesser
extent than the uptake by nucleosomal fibers. As with
TRF2 DBD, TRF2 did not substantially increase T7
uptake by linear DNA. Together these results suggest
that both TRF2 and TRF2 DBD stimulated reactions of
T7 with nucleosomal arrays and supercoiled plasmids
more than linear DNA. Moreover, TRF2 DBD-depen-
dent effects on the reaction with nucleosomal arrays par-
alleled the effects on nucleosomal array structure. Finally,
full-length TRF2 not only was more efficient at stimulat-
ing this reaction, but also did not inhibit the reaction at
higher concentrations, suggesting that optimal formation
of t-loops in the context of nucleosomal arrays requires
more than just the DBD.

DISCUSSION

This work represents the first biophysical analysis of the
interactions of a myb/SANT DBD with its sites within
nucleosomal array fibers. Nucleosomal arrays with telo-
meric DNA sequence were successfully reconstituted
in vitro with an acceptable level of nucleosome saturation
and spacing similar to that observed in vivo. The TRF2
DBD bound to telomeric DNA and nucleosomal arrays
with little non-specific binding to non-telomeric DNA
sequence.

Analytical agarose gel electrophoresis has been a useful
tool in characterizing solution attributes of nucleosomal
array fibers (24,27,28,39). This study extends the work on
nucleosomal array fibers to observe how a DNA-binding
factor alters their overall structure. As shown in earlier
studies, the surface charge density parameter has been
surprisingly informative in providing explanations for

changes in chromatin structure. In this study, we found
that TRF2 DBD reduced more negative surface charge
density on the 2-kb nucleosomal fibers than histone-free
DNA. One explanation for this is that TRF2 DBD has a
higher affinity for the DNA within nucleosomal arrays
than histone-free DNA. However, binding studies with
the homologous TRF1 and telomeric mononucleosomes
show that assembling telomeric DNA into nucleosomes
significantly reduces the affinity of TRF1, particularly
when its binding elements are near the nucleosome dyad
and facing toward the histones (23). In fact, yeast Rap1p
also has a lower affinity for mononucleosomes when the
binding sites are near the dyad and its myb/SANT DBD
has an even lower affinity for nucleosomal DNA even
when its element is placed near the nucleosome edge
(22). Another explanation is that the TRF2 DBD may
have a higher affinity for nucleosomal fibers by interacting
with histone tails similar to other myb/SANT domains
(53–56).
The TRF2 DBD may also reduce the negative charge on

nucleosomal arrays by inducing a conformational change.
Earlier studies with AAGE demonstrated that Mg2+-
dependent fiber compaction was associated with a
decrease in both mo and Re (26). The loss of negative
charge from the surface was attributed to the loss of
DNA (and associated counterions) from the surface of
the compacted fiber. The study here shows that TRF2
DBD had two effects on the structure of nucleosomal
fibers, depending on the amount of TRF2 DBD added
to the mixture.The results at higher concentrations are
partially consistent with fiber compaction. While the sur-
face charge density continued to decrease with increasing
TRF2 DBD concentrations, the Re only increased with
TRF2 DBD concentrations up to 400 nM at which point
it leveled off or even decreased. This could be due to a
saturation of binding sites. However, the surface charge
density continues to decrease with increasing TRF2 DBD
concentrations and there is no evidence of binding to
the non-telomeric fiber, suggesting that the TRF2 DBD
continues to bind to telomeric DNA within the fiber
(Figure 2). AFM images showed that TRF2 DBD
formed large complexes along the nucleosomal fiber with
increased heights, while higher TRF2 DBD concentra-
tions reduced the contour length. The reduction in nega-
tive surface charge density, Re, flexibility, contour lengths
and micrococcal nuclease digestion of the telomeric region
are consistent with TRF2 DBD filling TTAGGG sites
within the fiber and inducing some type of compaction.
It should be noted that the level of fiber compaction in
this study is less than that observed with AAGE in the
presence of Mg2+ (26) or linker histones (29) partly
because it is restricted to the telomeric region of the
fiber. Furthermore, the striking lack of access of micro-
coccal nuclease to the telomeric DNA suggests that the
three nucleosomes in that region form a unique higher-
order structure as illustrated in the AFM image in
Figure 5.
The mechanism and precise nature of the confor-

mational changes occurring with lower concentrations
of TRF2 DBD is more complicated. TRF2 DBD bind-
ing increased both the radius and flexibility of the
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nucleosomal fiber (Figure 3B and D). This is consistent
with some kind of ‘loosening’ of the fiber structure but it is
unclear whether this type of conformational change
should reduce the negative charge on the surface of the
fiber. TRF2 DBD could also be interacting with linker
DNA and extending the structure. However, a significant
reduction of micrococcal nuclease access to linker DNA
was only observed with higher concentrations of TRF2
DBD (Figure 4). Alternatively, TRF2 DBD may promote
the intrinsic ability of telomeric nucleosomes to slide to a
new position (57). This should result in TRF2 DBD-
dependent smearing of the nucleosome repeat ladder
with micrococcal nuclease digestion, yet little smearing
was observed (Figure 4). Another alternative is that
TRF2 DBD disrupts nucleosome structure. Interestingly,
overexpression of full-length TRF2 in epithelial cells dis-
rupts telomeric chromatin associated with histone loss
(58). Our results may be consistent with this, since earlier
studies with AAGE showed that a reduction of nucleo-
some density, removal of H2A/H2B dimers or histone’tail’
domains increased the size and flexibility of nucleosomal
fibers (24,26–28). However, the lack of subnucleosomal
fragments in the micrococcal nucleosome digest
(Figure 4) suggests that telomeric nucleosomes were still
largely intact in the presence of TRF2 DBD. Perhaps the
alteration in nucleosome structure by TRF2 DBD is more
subtle. The homologous TRF1 did not eject histones from
mononucleosomes in vitro but DNase I hypersensitive sites
were observed in TRF1-mononucleosome complexes
implicating an alteration in nucleosome structure (23).
We propose that the effect of TRF2 DBD on nucleoso-

mal array structure is at least partly responsible for the
observed increase in the access of a single-stranded d(TTA
GGG)7 oligonucleotide (Figure 6). This would be an inter-
esting finding since telomeric chromatin is nucleosomal,
and would suggest an additional role of TRF2 in pro-
moting t-loops: modulation of the chromatin structure.
It has been shown that TRF2 can change DNA topology
but through the TRFH domain, thereby weakening the
duplex DNA within a supercoiled plasmid and allowing
for annealing of the free oligonucleotide (31). In cells, this
reaction is proposed to occur between the duplex region
of the telomere and the G-strand overhang (16). We
now show that by distorting the structure of the fiber
and/or nucleosomes, the DNA-binding domain of TRF2
may also be involved in promoting this reaction.
Interestingly, high concentrations of TRF2 DBD inhibited
the uptake of the single-stranded oligonucleotide by
nucleosomal arrays (Figure 6), suggesting that either load-
ing of telomeric DNA with TRF2 DBD and/or fiber com-
paction has the ability to inhibit a strand invasion-like
reaction. This inhibition was not observed with full-
length TRF2. Most importantly, the described structural
and biochemical effects of TRF2 DBD on nucleosomal
arrays were not observed with histone-free DNA. The dif-
ferential effects of TRF2 DBD on telomeric nucleosomal
arrays, as opposed to histone-free DNA, emphasize the
importance of analyzing the interactions of DNA-binding
factors with a more native substrate such as nucleosomal
chromatin.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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