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Background and Significance: Parallel-group randomized controlled trials (PG-RCTs)

are the gold standard for detecting differences in mean improvement across treatment

conditions. However, PG-RCTs provide limited information about individuals, making

them poorly optimized for quantifying the relationship of a biomarker measured at

baseline with treatment response. In N-of-1 trials, an individual subject moves between

treatment conditions to determine their specific response to each treatment. Aggregated

N-of-1 trials analyze a cohort of such participants, and can be designed to optimize both

statistical power and clinical or logistical constraints, such as allowing all participants

to begin with an open-label stabilization phase to facilitate the enrollment of more

acutely symptomatic participants. Here, we describe a set of statistical simulation studies

comparing the power of four different trial designs to detect a relationship between a

predictive biomarker measured at baseline and subjects’ specific response to the PTSD

pharmacotherapeutic agent prazosin.

Methods: Data was simulated from 4 trial designs: (1) open-label; (2) open-label

+ blinded discontinuation; (3) traditional crossover; and (4) open label + blinded

discontinuation + brief crossover (the N-of-1 design). Designs were matched in length

and assessments. The primary outcome, analyzed with a linear mixed effects model, was

whether a statistically significant association between biomarker value and response to

prazosin was detected with 5% Type I error. Simulations were repeated 1,000 times to

determine power and bias, with varied parameters.

Results: Trial designs 2 & 4 had substantially higher power with fewer

subjects than open label design. Trial design 4 also had higher power than trial

design 2. Trial design 4 had slightly lower power than the traditional crossover

design, although power declined much more rapidly as carryover was introduced.
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Conclusions: These results suggest that an aggregated N-of-1 trial design beginning

with an open label titration phase may provide superior power over open label or open

label and blinded discontinuation designs, and similar power to a traditional crossover

design, in detecting an association between a predictive biomarker and the clinical

response to the PTSD pharmacotherapeutic prazosin. This is achieved while allowing

all participants to spend the first 8 weeks of the trial on open-label active treatment.

Keywords: N-of-1 trials, crossover trials, posttraumatic stress disorder (PTSD), prazosin, biomarkers, personalized

medicine

INTRODUCTION

Parallel-group randomized controlled trials (PG-RCTs) are the
gold standard for detecting differences in mean improvement
across treatment conditions (1). However, PG-RCTs provide
limited information about the response of individuals to
treatment, as they provide no information about the potential
response to active treatment for those in the placebo group,
and for those who do receive active treatment and experience
clinical improvement, it is not possible to distinguish whether
this improvement is treatment-specific, or whether the individual
would have responded similarly to placebo. This makes PG-
RCTs poorly optimized for quantifying the relationship of a
biomarker measured at baseline to a treatment-specific response,
or identifying subgroups of treatment-specific response (2).

These limitations also affect the utility of trial participation for
participants, who receive limited information about whether they
have a treatment-specific response (1, 3). Additionally, this trial
design requires that many participants spend the full duration of
the study on placebo, which may limit the enrollment of patients
with particularly acute symptoms. The risk of under enrolling
acutely symptomatic patients in a PG-RCT may be particularly
high in contexts where the treatment in question or treatments
very similar to it are already in active clinical use (4), as is often
the case in clinical trials designed to address questions in the
realm of personalized medicine.

In N-of-1 trials, an individual subject experiences several
treatment conditions, such as active treatment and placebo,
in order to assess the individual’s specific response to each
treatment (1). In aggregated N-of-1 trials, a cohort of individuals
moves through this same type of trial design, and their
outcomes are analyzed to answer questions about e.g., patterns
of treatment response (5). Aggregated N-of-1 trials can be
designed to optimize both statistical power and clinical or
logistical constraints, such as allowing all participants to begin
with an open-label stabilization phase to facilitate the enrollment
of more acutely symptomatic participants. They can also mix
elements that facilitate standardized assessment of change across
all participants with evaluative elements that are individualized
to address symptoms that are specific or important to individual
participants (1, 6). These features suggest that aggregated
N-of-1 clinical trial designs may have significant advantages
over PG-RCTs in addressing hypotheses related to personalized
medicine (2, 7).

Despite these potential advantages, N-of-1 trials have been
slow to gain traction in the biomedical research community.
One reason may be that N-of-1 trials have statistical complexities
that are different from those encountered in PG-RCTs, and
their design and utilization has been limited by the availability
of statistical methods to validate and interpret the results (1).
Not only do standard methods of power calculations not apply
to an aggregated N-of-1 clinical trial, but the breadth of trial
designs that are possible using an aggregated N-of-1 approach
mean that the questions a researcher would like to ask when
computing power calculations may differ from those asked when
designing PG-RCTs. For example, the power of an aggregated N-
of-1 clinical trial generally increases with increasing repetitions
of each treatment condition (5). This effect is limited, however,
by the fact that the shorter the period of time an individual
is on a given treatment before the effect of that treatment is
measured and the treatment condition changed, the larger any
carry-over effects from the previous treatment blocks are likely
to be (5). The relative cost- vs. benefit of longer but fewer total
blocks of treatment, vs. shorter but a larger number of blocks
of treatment, then, will depend on the researcher’s estimate of
carry-over in their particular experimental context (8)–and it is
important that methods for power calculations for aggregated
N-of-1 trial designs take this type of a factor into account.

Another area in which the assessment of power in an
aggregated N-of-1 trial may be more complex is in the area
of drop-outs. In traditional power calculation methods, it is
often hopefully assumed that dropouts will be unbiased with
respect to the effects being measured (9); when the risk of biased
drop outs is addressed, this is usually done during analysis
by using last-measure-carried-forward, multiple-imputation, or
similar strategies (10). In a clinical trial design where participants
will at some point move from active treatment to placebo, or
from one treatment condition to another treatment condition,
it becomes harder to ignore the likelihood that those who have
the strongest response to one particular treatment condition
may be the most likely to drop out when the move from that
treatment condition to one that is less effective for them (11). At
the same time, the increased flexibility of the trial design means
that it is may be possible to explicitly structure a clinical trial to
both minimize dropouts and maximize the ability to obtain the
most critical information from each participant prior to periods
where the likelihood of dropout increases, if these factors can be
quantified and compared across potential clinical trial designs.
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Finally, while the option to include both open-label and
blinded treatment blocks into an aggregated N-of-1 trial design
has the potential to significantly increase the representation of
acutely symptomatic patients in a clinical trial, it also makes
assessing the impact of a participant’s expectation of benefit
on their outcome more complex than in a purely double-
blinded RCT (5). For example, if a participant begins on open-
label treatment, it is expected that their change in outcome
measurements during this period of time would constitute the
combined effect of both treatment-specific effects and non-
treatment-specific effects, which includes the impact of just
knowing that they are receiving active treatment. The question
arises, then, as to what is expected to happen when they transition
from this period of open-label treatment to a treatment block
when they are on blinded but active treatment. How does the
impact of knowing they may be on treatment compare to the
impact of knowing they are on treatment?

The increased relevance of factors such as biased dropouts and
expectancy related effects to statistical power means that wider
adoption of aggregated N-of-1 clinical trial designs will require
the development of statistical methods that allow clinical trialists
to compare the statistical power of different potential trial designs
in answering their particular research questions, and given their
best estimates of the extent to which effects such as carry-over
or biased dropout rates will impact their study population.
As many of these factors do have non-trivial relevance even
to PG-RCTs, however (12, 13), it is also possible that the
development and such methods may eventually improve our
understanding and interpretation ofmore traditional clinical trial
designs, as well.

Although the simplest form of an N-of-1 trial, the crossover
trial, is one of the earliest forms of clinical trial and has been
studied extensively (14–17), most work addressing the statistical
properties of more complex N-of-1 clinical trial designs has
been done in the past decade (5, 8). In 2014, Chen and Chen
compared both simple (paired t-test) and more complex (mixed
effects models) approaches for conducting tests of treatment
efficacy using aggregated N-of-1 trial results, and found that
in their examples, mixed effects models were inferior in the
absence of carryover effects but superior when these were
included (18). This work was critiqued by Araujo et al. who
point out that the models evaluated by Chen and Chen do not
include a treatment by patient interaction (19), an interaction
that has been advocated for in the meta-analysis literature; the
relevance of Chen and Chen’s approach may also be limited
by the assumption of compound symmetry and auto-regressive
covariance structure. More recently, Percha et al. implemented
a stochastic time-series model to simulate individual N-of-
1 studies, and characterized the impact of the number of
treatment blocks, the ordering of treatments within blocks, the
duration of each treatment, and the sampling frequency on both
the statistical power to detect a difference in efficacy and in
the accuracy of the estimated effect size (20). However, little
work thus far has explicitly attempted to model the impact of
expectancy and biased dropout on statistical power in aggregated
N-of-1 clinical trial design, or to incorporate the possibility of

non-traditional combinations of treatment conditions, such as
trials that include both open label and blinded conditions, or
blinded discontinuation blocks.

Finally, although it is expected to be an important application
of this type of trial design (2, 7), there is extremely little that
has been published addressing methods for the validation of
predictive biomarkers in aggregated N-of-1 trials. A publication
by Grenet et al. earlier this year provides a statistical framework
for comparing the power of crossover vs. parallel-group clinical
trials to detect a relationship between a binary predictive
biomarker and treatment effect (21). However, we are not
aware of any published methods for analyzing more complex
aggregated N-of-1 clinical trials to test for the relationship
between a putative predictive biomarker and treatment
response, nor for calculating a trial’s power to test this type
of a hypothesis.

Here, we provide an initial set of tools designed to address
a number of the above statistical challenges in the design and
analysis of aggregated N-of-1 trials. Specifically, we describe a
set of statistical simulation studies that were used to compare
the expected statistical power of different potential clinical trial
designs, the aim of which was to detect a relationship between
a biomarker measured at entry into the study and the efficacy
of a specific treatment. Importantly, then, the power that is
being calculated in this set of examples does not address whether
the treatment is effective as compared with placebo, but rather
whether the biomarker measured at baseline is able to predict
which individuals will respond to the treatment and which
will not.

This sample application is based on work conducted by
the authors to plan a randomized clinical trial to test the
relationship between standing systolic blood pressure measured
at baseline to the decrease in PTSD symptoms produced by the
α1 adrenoceptor antagonist prazosin. A relationship between this
simple, clinically-accessible biomarker and treatment response
that is large enough to be potentially relevant to treatment
selection has been found in a post hoc analysis of a PG-RCT
of prazosin for PTSD conducted in a primarily young, male
population (22), but the relationship has not yet been validated
in a prospective trial, or in a trial with a less homogeneous
population. Further, the potential to conduct further PG-RCTs
of prazosin for PTSD is believed to be limited by already
wide utilization of prazosin for PTSD, such that the acutely
symptomatic patients thought to be most responsive to PTSD
are unlikely to be referred to trials where they may be placed on
placebo, rather than simply treated (4).

The use of this real example of computing power calculations
for what is now an ongoing aggregated N-of-1 clinical trial
allows us to demonstrate how estimates of population means and
variances were extracted from extant data sets when possible,
while variables that could not be estimated based on existing
data were allowed to vary so that the dependence of the power
calculations on these estimates could be assessed. However, it is
hoped that the methods described will be of general utility. To
this end, the functions used to generate and run these simulations
are also provided in a publicly available github repository.
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METHODS

Approach
Conceptually, the work can be broken down into three broad
steps, which are detailed in Figure 1: the statistical simulation
of a single clinical trial, including a simulated data set and the
estimated effect size and p-value that result from the analysis of
that trial (Figure 1A); the repetition of the individual clinical trial
simulation 1,000 times, producing an estimate of statistical power
and the distribution of bias in the effect size estimate (Figure 1B);
and a repetition of this entire process while systematically varying
the parameter space and the clinical trial design, in order to
quantify the relative power and bias distributions for the different
clinical trial designs, and the sensitivity of these results to
variable parameters such as carryover effects of dropout patterns
(Figure 1C). All work was done using R (23) and RStudio (24).
The R functions and vignettes documenting the steps used to
generate these results are available as a package at https://github.
com/rchendrickson/pmsimstats.

Selection of Clinical Trial Designs for
Comparison
Potential clinical trial designs were selected to allow the
comparison of statistical power and bias across the four most
plausible trial designs for testing the relationship of a baseline
biomarker to treatment response: (1) a single-group open label
trial, (2) a single-group open label trial followed by a blinded

discontinuation block, (3) a traditional crossover trial, and (4) the
proposed N-of-1 trial design, consisting of a single-group open
label trial followed by first a blinded discontinuation block and
then two crossover blocks (Figure 2). In each design, the titration
period for prazosin is expected to be 2.5 weeks each time it is
initiated. In blinded discontinuation blocks, the transition from
blinded but active treatment to placebo can occur at only two
points, either after 1 week or after 2 weeks in the block. However,
this aspect of the design is not revealed to participants, who are
told only that during this block they may be on either active
drug or placebo, and that this may change during the course of
the block.

The inclusion of an open-label period at the beginning of
designs 2 and 4 was selected to address concerns that highly
symptomatic individuals would be less likely to be referred to
or enroll in a clinical trial where they may be initially assigned
to a placebo group. The inclusion of a blinded discontinuation
period in two of the trial designs was designed to allow a
higher intensity of data capture, including of personalized
assessment measures, during the period of discontinuation after
the open-label portion. A traditional PG-RCT was not included
among the tested designs because, in the specific example
being explored, existing data had already demonstrated that
there was a negligible chance that the biomarker predicted
response to placebo (22), which meant that minimal information
would be obtained from the ∼50% of participants randomized
to placebo.

FIGURE 1 | Schematic overview of approach to simulating and analyzing clinical trials data. (A) A multi-step process was used to simulate and analyze the results of a

single simulated clinical trial. Parameters used to generate the simulated data were derived in part from existing data sets, but also involved the selection of some

parameters that could not be estimated directly from existing data. The generation of data was done using a model that presumed there were three basic factors that

linearly combine to describe the trajectory of participants’ symptoms over time (the direct, biologic response to drug (BR), the expectancy-related response to drug

(ER), and the time-varying component unrelated to drug (TR). These results were then analyzed using a linear mixed effects model, as is proposed for the analysis of

the actual clinical trial results. This analysis is structured to test the hypothesis that the biomarker measured at baseline will be significantly associated with the degree

of clinical response a given participant has to the intervention. The analysis produces a p-value describing the statistical significance of the results if they were being

analyzed as a single extant clinical trial, and an estimate of effect size. (B) This simulation process is repeated 1,000 times using the same clinical trial design and

parameter selection, allowing an estimate of the power of this trial design to detect the proposed relationship, and the distribution of bias in the effect size estimated.

(C) This entire process can then be repeated with (a) different clinical trial designs, and (b) different parameter selection, in order to determine how statistical power

and bias in effect size estimation vary as a function of trial design, response parameters, and model assumptions.
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FIGURE 2 | Four potential clinical trial designs that were compared on their ability to detect a relationship between a biomarker measured at baseline and response to

treatment with the pharmacotherapeutic agent prazosin. Trial designs were matched in duration and the number of evaluation points. (A) Open-label trial design: All

participants receive open-label prazosin throughout the trial. (B) Open-label followed by blinded discontinuation design: All participants receive active drug for 16

weeks, then enter a 4 week blinded discontinuation block. During the blinded discontinuation block, all participants receive active drug during the first week and

placebo during the last 2 weeks, such that only the participant is blinded to treatment condition during these weeks; the treatment condition during the second week

is randomly assigned and a double blind is maintained during this week. (C) Traditional crossover trial design: Participants are randomized to 10 weeks on active drug

followed by 10 weeks on placebo, or the reverse. (D) Proposed N-of-1 trial design: all participants begin with an 8 week open label period, then enter a 4 week

blinded discontinuation period, then complete 8 weeks of crossover. There are two independent randomization points—whether the participant is on active drug (A) or

placebo (P) during the second week of the blinded discontinuation block, and whether the participant’s crossover blocks are active drug then placebo or the reverse.

A = Active drug (prazosin); P = placebo. X indications the timing of assessment points for clinical outcome measure.

By the most general definition of an aggregated
N-of-1 clinical trial, all but the open label and PG-RCT
designs can be considered to be a form of N-of-1 trial,
because each participant spends time on both treatment
conditions (active drug and control). However, it is
primarily the fourth trial design that takes advantage of
the opportunity for multiple periods of treatment in each
treatment condition.

Statistical Simulation of Data
The expected trajectory of clinical symptoms over time was
modeled as the linear sum of 3 factors (Figure 1A), each of
which describes one aspect of how symptoms change over time
from their baseline values: (1) a direct, biologic response to
a pharmacologic agent (the biologic response, or BR); (2) an
expectancy-related response to taking a medication that is either
known to be or know to possibly be an active treatment (the
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expectancy-related response, or ER); and (3) a component that
is a function of time since study entry, but which is not related
to the actual or expected presence of active treatment (the time-
dependent response, or TR). The time-dependent response is
presumed to include both regression-to-the-mean effects and the
impact of the structure, attention and regular interaction with
staff involved in study participation.

A function describing the expected mean and variance of
each factor as a function of time and study design was fit using
a three-parameter gompertz function, allowing a non-linear
monotonic trajectory over time with a maximum asymptote.
The three parameters characterize: the maximum response, the
displacement, and the rate. Initial estimates for these variables
were based on fits to existing data from a parallel group
randomized controlled trial of prazosin for PTSD in active duty
service members (25), utilizing the following assumptions: the
trajectory of the BR factor was taken to be the difference between
the trajectory of the prazosin group and the placebo group;
the trajectory of the placebo group was taken to represent the
sum of the TR and ER factors; in the absence of any data to
separate the trajectory of the placebo group into the TR and
ER components, the maximum response, rate and variance of
the TR and ER factors were assumed to be equal [tabula rasa
(TaRa) parameter set]. In further sensitivity analyses, however,
these values were varied to assess the impact of these parameters
on simulated clinical trial performance. The means and variances
of the baseline symptom intensity [as measured by the clinician
administered PTSD scale for DSM-IV, or CAPS-IV (26)] and
baseline biomarker values (systolic blood pressure 2min after
standing) were based directly on the baselinemeasurements from
the existing data.

The ER factor was presumed to be scaled directly by
participant expectancy regarding whether they were taking an
active medication or not. For open label trial components, the
expectancy was set to 1, while for blinded portions where the
participant had been informed there was an equal chance they
were taking active drug vs. placebo the expectancy was set to 0.5.
The BR factor was set to zero at times when participants had
never been on active drug; however, a carryover effect was built
in such that when a participant moved from active drug to being
off active drug, the value of the BR at the last timepoint on active
drug was exponentially decayed, with the half-life of this decay
being maintained as a model parameter.

Using the above factor parameterizations to provide the
expected mean and variance for each factor at each time point,
simulated data with the specified covariance structure, coerced to
be positive definite, was generated using the function mvrnorm
from the R package MASS (27). This simulated data consisted
of baseline symptom intensity, baseline biomarker value, and the
value of each of the three factors at each timepoint within the
trial for a variable number (N) of participants (Figure 3). The
mvrnorm function takes as input a vector specifying the means
of each variable, as well as a covariance matrix. The covariance
matrix was assembled based on a set of modifiable parameters
defining the correlation between the baseline biomarker and the
BR components, the autocorrelation over time (relating the value
of a factor for one participant at one timepoint to the value of

that factor for that participant at subsequent timepoints), the
correlation at a single time point between the 3 factors, and the
variance of each component. Once the factor values at each time
point were generated, the sums of the three factors BR, ER and
TR were subtracted from the baseline values for each simulated
participant to produce a full set of results for the simulated
clinical trial, consisting of the baseline biomarker measurement
and symptom intensity measurement at each timepoint.

In some simulations, a censoring filter was applied following
the production of the stimulated trajectories, in order to assess
the effects of participant dropout. The probability of a simulated
participant dropping out per unit time was calculated as the
sum of a flat hazard function (β0,) and a probability scaled by
the square of the change in symptoms since baseline (shifted
by 100 so that all values are positive; β1). Thus, depending on
the parameters β0 and β1, this function produces a probability
of dropping out that is higher for participants experiencing
worsening or high continued levels of symptoms and lower for
participants who are experiencing benefit.

Analysis of Simulated Data
Each simulated trial data set was analyzed using aMMRM (mixed
effect model with repeated measures) to assess the significance of
the biomarker-vs.-drug exposure interaction. Consistent with the
recommendations of Barr et al. (28), models were initially run
with maximal random effects structure justified by the design,
which was then limited based on empirical success with model
fits. An unstructured variance/covariance matrix was assumed.

For trial designs that include timepoints both on and off
active drug excluding baseline, fixed effects in the model were
time, drug-exposure, baseline biomarker and an interaction
term between drug-exposure and baseline biomarker. Individual
subject was included with a random intercept. The inclusion of
expectancy as a fixed effect was found to increase the frequency
of collinearity leading to poor model fits while changing the
results minimally, and thus was not included in any of the results
presented. Thus, the model implemented for these designs was:
Si,t = βi,0+ β1 ·bm+ β2 ·Db+ β3 · t+ β4 ·bm ·Db. A non-zero
coefficient for the interaction term, β4, serves as indication of a
significant effect of baseline biomarker on drug response.

For trial designs where, excluding baseline, each participant
only experiences a single treatment condition, the above model
was poorly fit, and produced a significantly inflated type I error
rate (data not shown). Instead, consistent with the post hoc
analysis of a parallel group RCT’s results that served as the
preliminary data for this work (22), trial designs of this type
(primarily OL) were analyzed with a model that included time,
baseline biomarker and an interaction term between time and
baseline biomarker: Si,t = βi,0+ β1 ·bm+ β2 · t+ β3 ·bm · t, with
a non-zero interaction term (this time represented by β3) again
signifying a significant effect of biomarker on treatment response.

In each case, the model was fit using the lmer function from
the R package lme4 (29). For each simulated trial analysis, the
p-value for the biomarker-vs.-drug interaction was evaluated
for significance at the alpha = 0.05 level by examining the p-
value corresponding to the interaction terms described above as
calculated by lmer. The rate of significant interactions provided
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FIGURE 3 | Simulated clinical trials data plotted as change in baseline symptom score as a function of time, broken down by clinical trial design (A–H) and

randomization path (numbered facets within each trial design). (A) through (D) show results with carryover set to 0; (E) through (H) show results with carryover set to

0.1 weeks. Individual simulated factors (BR = biologic response to drug, ER = expectancy-related response to drug, and TR = time-varying component unrelated to

drug) are shown along with their summed effect. Plotted data represents the averaged output of 500 replicates for each clinical trial design, divided across the number

of randomization paths, and was generated using the tabula rasa response parameters. OL = open label, OL+BDC = open label followed by blinded discontinuation,

CO = cross over, N-of-1 = proposed N-of-1 trial design. Black bar represents times active drug was scheduled to be present.

an estimate of the power of each design to detect the simulated
interaction signal for each combination of parameters. The
distribution bias in the estimate of the association between
the biomarker and the response to active drug was quantified
for each trial design and censoring pattern as the differences
between the β from each replicate and the β when the analysis
was run across all replicates with that parameter set but
with no censoring.

RESULTS

The statistical power to detect a relationship between the
baseline biomarker and the response to prazosin treatment
was significantly different among the four clinical trial designs.
When simulations were run using tabula rasa parameter set,
assuming equal magnitude and variance for the TR and ER
factors, and without a carryover effect, the proposed N-of-1 trial
design demonstrated superior power to detect a true relationship
between the baseline biomarker and response to drug compared
to the open label and open label + blinded discontinuation
designs (Figure 4A). The N-of-1 design had lower power than
the traditional crossover design. Increased censoring lowered
power across all trial designs, but, consistent with the increased
vulnerability of the open-label plus blinded discontinuation

design to participant loss prior to the blinded component, this
design’s power dropped more rapidly.

Impact of Carryover on Statistical Power
When a non-zero carryover term was added to describe the
persistence of improvement related to the biologic effect of the
drug even after the active drug is discontinued, described as an
exponential decay with t1/2 measured in weeks, the presence
of even a short (0.1 weeks) carryover component resulted in
a precipitous decline in power in both the N-of-1 and, to a
lesser but still very significant degree, the open label + blinded
discontinuation design (Figure 4B). A decrease in power in
the cross over design was also seen, but this was significantly
less severe.

Impact of Response Trajectory Parameters
on Statistical Power
The impact of changes in the parameters used to define the
trajectories of the three response factors (BR, TR, and ER)
were explored by systematically varying either the maximum
values and standard deviations (set equal to the maxima)
of each factor while retaining the tabula rasa values for
the rates (Figure 5A) or by systematically varying the rates
while retaining the tabula rasa values for the maximums
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FIGURE 4 | Heat map showing statistical power as a function of (A) clinical trial design, the number of subjects, the correlation coefficient relating the biomarker to the

biologic response to drug, and the censoring parameters describing dropout patterns, or (B) clinical trial design, the number of subjects, the timecourse of the

carryover effect of the intervention (t1/2 in weeks), and the censoring parameters describing dropout patterns, for each of the clinical trial designs described in

figure 1. In (A) the carryover effect is set to zero; in (B) the correlation between baseline biomarker and the biologic response to drug is set to 0.6. OL = open label,

OL+BDC = open label followed by blinded discontinuation, CO = cross over, N-of-1 = proposed N-of-1 trial design.

(Figure 5B). Consistent with expectation, increased maximal
response of the BR factor improved power across all trial designs.
Increasing the maximal response of the ER factor decreased
power across all trial designs, but with a greater decrease in
power in the two trial designs (OL+BDC and N-of-1) where
the expectancy values changes across the trial. Increasing the

maximal response of the TR factor decreased power across all
trial designs. Increasing the maximal response of the ER factor
decreased power more substantially for the trial design where
expectancy changes.

The impact of changes in rate parameters were less consistent
across trial designs. In the two trial designs with blinded
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FIGURE 5 | Heat maps showing statistical power as a function of trial design and the parameters used to define (A) the maximum response or (B) the rate of change

in the modified gompertz function defining the trajectories of each of the three response factors (BR = biologic response to drug, ER = expectancy-related response

to drug, and TR = time-varying component unrelated to drug). In panel both panels, N is set to 35 and carryover is set to zero. In (A) the correlation between

biomarker and the BR factor is set to 0.6, while in (B) it is set to 0.3. OL = open label, OL+BDC = open label followed by blinded discontinuation, CO = cross over,

N-of-1 = proposed N-of-1 trial design.

discontinuation portions, an increased rate for the BR factor did
generally correspond with increased power across most of the
parameter space; however, for the crossover design, increased
BR rate was associated with decreased power across most of the
parameter space.

Variability and Bias in Effect Size Estimates
The variability and bias in the effect size estimates as a function
of trial design and parameters was also explored. The mean
across replicates of the estimated standard error in the coefficient
for the interaction term used to carry out the hypothesis
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testing increased across all trial designs with increasing
censoring, but with a greater effect for the OL+BDC trial
design (Figure 6).

Bias was assessed in two ways. First, the estimate of
the coefficient for the interaction term used to carry out
hypothesis testing (β) was extracted for all replicates for a
given trial design and parameter set but with the correlation
between the biomarker and BR set to zero, and both the
mean β and the p-value applying a one-sample two-sided t-
test with µ = 0 to the distribution of β were examined
(Figure 7A). The β-values were for most censoring patterns
for the OL+BDC trial design and several censoring parameters
of the CO design significantly biased toward a negative non-
zero effect (p < 0.0001), while for the N-of-1 design, the
non-censored condition showed a significant bias toward a
positive non-zero effect (i.e., in the direction opposite the
expected effect of a biomarker that predicts a decrease in
symptoms; p < 0.0001).

Second, looking this time at simulations where the correlation
between the biomarker and the BR response factor was set to 0.3
or 0.6, the β from each replicate was compared to the β obtained
when the model was applied to all simulated participants across
all replicates in the absence of censoring (Figure 7B). This
analysis method allows the impact of different censoring patterns
on effect size estimates to be assessed. For the open label design,
for a larger true effect size, censoring was seen to result in a larger
estimated effect size across all types of censoring parameters
utilized (p < 0.0001), and in the high dropout case even with
the lower true effect size. Censoring parameters did not have a
significant effect on the other three trial designs.

DISCUSSION

These results suggest that an aggregated N-of-1 trial design
beginning with an open label titration phase may provide
superior power compared to an open label or open label followed

FIGURE 6 | Mean standard error in the coefficient for the interaction term used for hypothesis testing across simulated replicates, as a function of trial design,

response parameters, carryover, and censoring parameters. OL = open label, OL+BDC = open label followed by blinded discontinuation, CO = cross over, N-of-1 =

proposed N-of-1 trial design.
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FIGURE 7 | Quantification of bias in effect size estimate as a function of trial design and censoring parameters. (A) Bias in model coefficient for interaction term being

used for hypothesis testing (β) quantified as the mean coefficient across simulated replicates when the true effect size was set to zero (estimated bias in model

coefficient). P-value (y axis) indicates results of a two-tailed, one-sample t-test comparing the coefficients across the set of replicates to µ = 0. (B) Bias in model

coefficient for interaction term being used for hypothesis testing quantified as the mean difference (1β) between the coefficient for a single replicate (β) and the “gold

standard” coefficient for that parameter set (βt), with the “gold standard” defined as the coefficient calculated across all simulated participants from all replicates with

no censoring. P-value (y-axis) indicates results of a two-tailed, one-sample t-test comparing the 1β across the set of replicates to µ = 0. Dotted line indicates

p = 0.05, dot-dash line indicates p = 0.0001. β and 1β values multiplied by 1,000 for ease of visualization. OL = open label, OL+BDC = open label followed by

blinded discontinuation, CO = cross over, N-of-1 = proposed N-of-1 trial design.

by blinded discontinuation trial design, and similar but slightly
decreased power compared to a traditional crossover trial design,
in detecting an association between a predictive biomarker and
the clinical response to the PTSD pharmacotherapeutic prazosin.
In contrast to the traditional crossover design, this increased
power is achieved in a clinical trial design that allows all
participants to start on open-label active treatment, a significant
advantage in allowing the recruitment of a symptomatic
study population.

The increased statistical power seen in the N-of-1 trial design
as compared with the purely open-label trial design is consistent
with the information-theoretic expectation that any clinical trial
design that provides minimal or no information about who

in a purely active treatment group is showing a response that
is specific to the intervention provided, vs. who is showing a
response to treatment that is not dependent on the specific
biologic treatment provided, will have an associated decrease in
statistical power when used to assess the relationship of a baseline
biomarker to treatment response. A significant decrease in
statistical power was across all tested trial designs except the open
label design when a carryover term was introduced; this effect
was particularly large for the N-of-1 and open-label followed by
blinded discontinuation trial designs. Although this decrease in
power is consistent with expectation, the magnitude of this drop
with even short half-life carryover effects underscored the critical
nature of this parameter in determining the appropriateness of
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an N-of-1 trial design; it also suggests that the development of
analysis methods that incorporate and expectation of carryover
may significantly improve the power and utility of N-of-1 clinical
trial designs in personalized medicine applications.

These results support both the use of aggregated N-of-1
clinical trial designs to optimize both statistical power to detect
a relationship between predictive biomarkers and treatment
response and clinical-logistical constraints, such as a need
to allow patients to begin with active treatment. They also
support the use of statistical simulation to quantitatively compare
alternative clinical trial designs in such a context.

In addition to providing guidance for the design and selection
of aggregated N-of-1 clinical trial designs, these types of results
can help to quantify the extent to which the outcomes measured
in clinical trials depend on factors such as drug carryover effects,
the impact of expectancy on outcome measures, and biased
dropout patterns—each of which has the potential to be highly
relevant to more traditional clinical trial designs, as well.

Implications of Carryover Effect
The impact of carryover on the design and analysis of clinical
trials where participants cross from one treatment condition to
another has been considered for over 50 years, and extensively
researched (16, 17). In these models, we assume an exponential
decay analogous to a pharmacokinetic half-life, although the
simulations could be easily adapted to incorporate an alternative
model. We do not assume that the half-life of the carryover
effect should equal the half-life of the pharmacotherapeutic agent,
however. Instead, the carry-over effect is presumed to reflect a
combination of factors that includes the pharmacokinetic half-
life, the time lag that may be involved in participants becoming
aware of changes in their symptoms or in reporting changes
on assessment tools that may have a longer lookback period,
and the impact of physiologic or behavioral changes that may
have resulted from changes in primary symptoms but may also
serve to sustain positive changes even after the intervention
has ceased. While empirical data describing the magnitude and
relevance of these factors is limited for most treatments of
interest, this gap in our knowledge base regarding even our
relatively well-studied interventions will decrease as N-of-1 trial
designs become more common. Increased characterization of the
effects of discontinuing treatments has the potential to provide
important clinically relevant information well-beyond its utility
in the design of N-of-1 clinical trials.

Potential for Biased Dropout
The impact of both treatment response and side effect burden
on how likely different participants are to withdraw early from a
trial, and at what points, is of particular importance in estimating
the relative power of different N-of-1 type clinical trial designs.
As is illustrated by these results, the impact on a trial of dropout
rates that are biased by a participant’s response to treatment
has the potential to be both positive and negative. For example,
the expense of running a clinical trial in which participants
are enrolled for many months is significant—and if participants
for whom either (a) no significant response to treatment at
all, or (b) a clear response to treatment that is lost when the

participant transitions back to placebo are the most likely to
withdraw prior to later crossover blocks, this actually allows
the additional expense of offering these extended blocks to be
preferentially spent on participants for whom participation in the
initial phases was inconclusive, and for whom additional blocks
are the most important scientifically. This “happy accident” is
of course not truly coincidental—rather, it can be seen as the
result of aligning the participants’ goals for trial participation
(determining whether this treatment works for them, and if so,
whether they need to continue to take it to maintain the effect)
with the scientific goals of the trial (determining who has a
specific response to the treatment that is not present with a
placebo intervention).

At the same time, the potential that participants who are
particularly likely to have strong placebo responses may also
be particularly anxious about and likely to avoid entering
discontinuation blocks is one that would decrease the power and
potentially increase bias in aggregated N-of-1 trials, particularly
ones that begin with an open-label titration and stabilization
phase. Although the current statistical simulations do not
incorporate an estimate of this type of an effect, it would
be a straightforward extension do so. Additionally, as trials
such as the one described here begin to be run, additional
information will become available about the extent to which
non-treatment-specific changes in symptoms may be associated
with transitions in what the participant knows about what
condition they are in (such as from open-label to blinded active
treatment). This type of additional information will have the
potential both to further inform N-of-1 trial design, and also
help elucidate the different mechanisms and implications of non-
specific treatment response. Similarly, these types of statistical
models can easily incorporate the possibility of a confounding
relationship between biomarkers that are putative predictors of
treatment response, side effects, and actual treatment response,
thus allowing researchers to assess the potential magnitude of bias
in their estimates of biomarker-based predictions of treatment
response as a function of drop outs biased by patterns of side
effect emergences.

Implications Regarding Placebo Response
and Expectancy
One of the most complicated factors to emerge when seeking to
statistically model the response patterns of participants moving
between treatment conditions, and particularly between open
label and blinded phases of treatment, is the expected patterns
of non-treatment-specific aspects of clinical responses. By non-
treatment-specific responses, we mean changes in symptoms
over the course of trial enrollment that are not a result of the
direct biologic action of the treatment itself—i.e., are not specific
to the presence of a particular active treatment. In PG-RCTs,
such effects are often grouped together under the term “placebo
response,” which is used to describe all factors that together lead
to changes in symptoms in the group receiving a placebo (30).
This terminology is inconsistent, however, with the definition of
placebo response that is used in research on the pathophysiology
of the placebo effect (31), where the term is most commonly
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reserved for the changes in symptoms and/or physiology that
are the result of a patient’s expectation that they are or may be
receiving an active treatment.

Here, we have considered at least four primary factors
likely to contribute to the overall course of symptom change
in participants: (1) the direct biologic action of the drug;
(2) the average trajectory of symptoms seen as a function of
time following the point at which a participant is recruited to
participate in a trial (generally a regression to the mean effect, for
a trial seeking to recruit acutely symptomatic, treatment-seeking
participants); (3) the change in symptoms related to general
factors involved in clinical trial participation, including regular
contact with warm, supportive staff and ongoing monitoring of
symptoms and behavioral patterns such as substance use; and (4)
the change in symptoms related to the participant’s belief that
they are taking a medication that is likely to help them. In a
typical PG-RCT, factors 2–4 are generally grouped together as the
“placebo response,” and presumed to be present in both groups,
with the additional impact of the direct biologic action of the
medication presumed to be additive, such that it can be obtained
by look at the difference between the response in the placebo
group and the active treatment group (30). In the N-of-1 trial
design discussed here, however, the expected timecourse of factor
4 can no longer be presumed to be static over the course of the
trial, and must be modeled separately. Although this introduces
additional complexity into the interpretation of the clinical trials
data, it also introduces interesting additional potential analyses.

One potential benefit may be the ability to better understand
the relationship of traditional PG-RCT results to the treatment
effects observed in routine clinical care or in open-label trials
(13). Most concretely, it has been observed that open-label
contexts may result in more positive outcomes than blinded
treatment conditions (32). In addition to factors such as patient
selection or contact frequency, one contributing factor could be
that the placebo effect is lessoned in the case of blinded treatment
condition vs. open-label treatment. Additional experience with
how patients’ clinical outcomes differ across blinded and open-
label treatment conditions may thus improve our ability to
understand the relationship between the results of PG-RCTs and
our clinical care contexts.

Importantly, although it is often assumed that such an effect
would be linear and separable from other aspects of treatment
effects, it is increasingly accepted this assumption is frequently in
error, particularly for central nervous system (CNS) clinical trials
(30). For example, the observation effect size and the frequency of
positive clinical trial outcomes have trended downward over time
as the magnitude of placebo effect in these trials has increased is
frequently interpreted in the field as being due to a large placebo
effect “masking” or interfering with the possibility of measuring
a statistically significant treatment-specific effect (31, 33). In
other words, it is being attributed to a presumed non-linearity
in how treatment-specific and non-specific treatment responses
combine, specifically a subadditivity—which is, in fact, consistent
with emerging work on the additivity of treatment-specific and
non-specific effects in clinical trials (31, 34).

There is also evidence to support the presence of interaction
effects beyond subadditivity, as well. For example, in studies of

two different analgesic medications operating via two different
mechanisms, the treatment-specific effect was found to be either
dependent on (35) or bi-directionally modulated by (36) the
presence of an expected result of the intervention. In fact, such
interactive effects between biologic response, non-treatment-
specific effects, and even augmenting treatments are often
explicitly hoped for and pursued in the context of routine
clinical care (37), where a psychiatrist may e.g., remind a patient
with PTSD whose treatment goals include increased behavioral
activation and acclimating to attendance at anxiety-producing
events that one of the expected mechanisms of action of a
treatment is to allow increased ability to tolerate and learn
from being present at such events. In this case, the clinician is
hoping that not only does increased exposure to these activities
have the potential to improve the patient’s outcome both by
itself and in combination with the pharmacologic treatment,
but that the patient’s knowledge that he is taking a medication
that he expects to increase his ability to tolerate and benefit
from this experience will increase his willingness to engage
in the recommended activity. Although such interactive effects
may significantly complicate the design and interpretation of
N-of-1 clinical trials, additional experience throughout our field
exploring and understanding how such factors affect patient
outcomes holds the potential to make our research results more
relevant to and effective for the optimization of actual clinical
care practices.

The potential for complex interactive effects may also come
into play in new ways as we increase the role of precision
medicine methods in research and clinical care. In tests of
biomarker guided treatment selection or decision making, it will
be necessary to keep inmind the possibility that biomarker results
may be associated not just with treatment-specific outcomes,
but also with placebo response or the interaction between
placebo and treatment-specific responses. For example, genetic
variations in the Catechol-O-methyltransferase (COMT) gene,
a key enzyme in catecholamine catabolism, has been found
to be associated with the magnitude of placebo response in
a variety of treatment trials (38–40). For a clinical trial such
as is being modeled here, where the primary disease state
(PTSD) has itself been suggested to be associated with COMT
function (41, 42) and the primary hypothesis being tested is
whether biomarkers of catecholamine signaling at baseline are
predictive of treatment response, this suggests that the potential
for interactive effects between biologic variation in placebo
response, disease state, and relevant biomarkers may not be
simply theoretical. Increasing use of study designs that allow
increased independent assessment of expectancy-related and
other non-treatment specific components of symptom change
may thus become increasingly important as we seek to move
toward personalized medicine models of care.

Potential for Biased Enrollment, and Early
Experience With Currently Enrolling
Clinical Trial
One concern that is sometimes raised in this context is whether
patients with highly distressing symptoms will be willing to enroll
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in a trial that involves discontinuing a what may have already
been demonstrated to be an effective treatment, explicitly to
see if symptoms return. Although the impact of such an effect
is expected to vary significantly based on the specifics of each
trial, in our experience the likelihood of this concern affecting
trial enrollment is often significantly overestimated. First, those
without clinical experience may underestimate the frequency
with which patients in routine clinical care discontinue effective
treatments to see if they still need them, with or without the
awareness of their treating physician(s) (43, 44). Particularly
when a treatment may require indefinite use, patients are often
very interested in finding out whether any improvement they
may have experienced when starting the intervention truly
requires its continuation. In contexts such as antidepressant
or pain management trials, where the placebo effect can be
substantial, this is often a very rational question for patients
to ask.

It is also possible to actively shape the likelihood that
participants concerned about this possibility will avoid
enrollment or not by shaping the way expectations for the
duration of trial participation are conveyed. For example, in
the currently running trial, ensuring a full representation of
the spectrum of patients with PTSD who present for clinical
care was of high priority. Thus, when the trial was described to
patients, it was emphasized not only that participation was at
all times voluntary, but that it was understood that at all times,
the participant would need to do what was best for their own
well-being—and that at times, this might mean discontinuing
participation, if it turned out that symptoms exhibited substantial
return during periods of discontinuation. It was emphasized that
even if the potential participant were not sure if they would be
able to participate in the entire trial, we would appreciate their
participation for as long as it worked for them to participate. As
was incorporated mathematically into the statistical modeling, it
was expected that those choosing to terminate participation prior
to completion of the full trial would more commonly be those
for whom response to prazosin was either clearly significant
or clearly minimal—while those who elected to continue for
the entire trial would more commonly be those for whom it
remained unclear to both participant and researchers alike
whether the participant had had a significant, specific positive
response to treatment or not.

Currently, the authors (RCH and MAR) are just over 1 year
in to recruitment for the clinical trial (NCT03539614) that was
designed based on the statistical simulation work presented
here. Consistent with the concern discussed above that acutely
symptomatic patients would be less likely to enroll in a trial of
a widely available treatment if there were the potential that they
would be initially randomized to a placebo group, and the finding
that statistical power is only minimally worse for the N-of-1
design beginning with an open label period as compared with
a traditional crossover design, the proposed N-of-1 design from
these models was selected as the basis of the currently running
clinical trial. The understanding that the trial would begin with
active treatment for all participants, but that later treatment
blocks would include both blinded drug and placebo, was clearly
conveyed to all participants as part of informed consent. In

addition to the types of outcome measures described in this
simulation study, participants also completed daily symptom
logs for a subset of weeks during the trial; these symptom logs
included both items that were common to all participants, and
items designed by the participants to reflect issues of particular
importance to them in understanding how the treatment did
or did not benefit them. The participants were informed at the
beginning of the trial that they would be provided the data
describing how their symptom reports changed during treatment
with active drug and placebo at the end of the trial, and that
one of our goals in the trial was to provide them as well as us
as much information as possible about the ways in which the
treatment did vs. did not help them, and whether they need to
continue to take the medication in order to maintain any benefit
that was achieved.

We found that recruitment for this type of a trial design was
unexpectedly rapid, and in fact outpaced the resources we had
allocated for the trial; we were eventually awarded a significant
supplemental budget increase to accommodate the larger than
expected recruitment interest. This experience is in contrast to
multiple other PTSD treatment trials that have been run by our
research group and others at our research site. The two factors
that have been cited by participants and by those referring to
the trial have been (1) the fact that everyone starts on active
treatment, and (2) the fact that the trial is designed to provide
participants with personalized information regarding their own
individual response to treatment, including to what extent their
symptoms were found to return when they transitioned from
active treatment to placebo.

Relevance to Clinical Trial Analysis
Methods and the Development of
Predictive Models of Response
One of the primary goals of clinical research into predictive
biomarkers is to allow biomarker guided treatment selection.
For example, if the current running trial, described above, is
found to support a significant association between noradrenergic
biomarkers measured at baseline and response to treatment
with prazosin, the next step in testing the clinical relevance of
this finding would be a clinical trial where all participants are
treated with one of two active treatments, but that randomizes
participants to a biomarker-guided treatment selection group
vs. a non-biomarker-guided treatment selection group, and
compares outcomes across the group where biomarkers are
used and the group where biomarkers are not used in
treatment selection.

To accomplish this, one needs to use the results of the current
clinical trial to inform the development a treatment selection
algorithm, which can in turn be used to guide treatment selection
for individual patients. Although the focus of work presented
here was on the use of statistical simulations to guide clinical
trial design, the methods implemented can also be applied
directly to the results of an actual clinical trial. Because the
measurement of treatment response used here is continuous
rather than binary, the results do not by default take the form
of a classifier of individuals predicted to be treatment responsive
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vs. treatment non-responsive; instead, they produce a predictive
model of expected mean change in total symptom severity, over
a given window of time on treatment, for someone with a
given combination of baseline symptom severity and biomarker
measurements (an example of how to implement this analysis
using existing clinical trial data is provided in vignette three in
the R package accompanying this publication). This predicted
response curve can then be combined with information about
the expected chance of benefit and degree of benefit from
an alternative treatment, along with information regarding the
relative risk, cost, and convenience of both treatment options, in
order to create a treatment selection algorithm for a biomarker-
guided decision making trial, or for use in clinical care.

Limitations
This work has a number of important limitations. First, the
statistical simulations of clinical trials necessarily makes several
simplifying assumptions, such as the presumption of linearity in
combining treatment effects, the adherence of carryover effects
to an exponential decay curve, the constriction of the direct,
biologic response, the expectancy-related response, and non-
treatment dependent effects each to a single time course, and
many others. The addition of further complexity to the models
has the potential for both risk and benefit. Here, where the
primary goal of our statistical simulations was to guide in the
selection of and power calculations for as specific predictive-
biomarker clinical trial, our goal in statistical design choices was
to have known oversimplifications in model implementation be
at least unbiased with respect to impact on clinical trial design,
and for the impact to be small or comparable relative to the
degree of oversimplification in traditional power analyses. In
other contexts, however, the relative cost vs. benefit of adding
in or leaving out explicit modeling of different factors may be
quite different.

There are also potential benefits to aggregated N-of-1 clinical
trial designs that are not directly addressed in this particular
set of models. For example, based on our experiences with
previous clinical trial enrollment patterns, we expect there to be
a significant likelihood of differential enrollment of higher acuity
patients and those with a higher likelihood of being treatment
responders between trial designs that begin with an open label
phase and those that are entirely placebo-controlled. Although
this type of differential enrollment would directly affect the
power for our primary outcome, it was not explicitly included in
the model.

It is also our experience from the first year of enrolling
participants in this clinical trial that the opportunity to receive
one’s own data addressing the extent to which one (a) responded
to a particular intervention, and (b) needs to remain on that
intervention to maintain any observed benefit is perceived as
a significant benefit by many participants, and has helped to
increase not only participant recruitment but also participant
engagement throughout the trial. For example, participants in
the current trial have completed both medication logs and daily
symptom logs at higher rates than has been observed by the
authors in similar studies using PG-RCT designs (unpublished
observations). This experience is consistent with previously

reported assessments of patient experiences in n-of-1 trial
designs (45). Such an effect might well-influence such factors
as dropout and adherence, which could in turn be explicitly
included in the model so as to capture their potential effect
on statistical power and effect size estimation. In addition,
however, these factors appear to reflect the perception by
patients that participation in this type of a clinical trial design
simply provides them increased personal benefit compared with
participation in a traditional PG-RCT—a factors that may not
directly affect power or bias calculations, but which we believe to
be meaningful in and relevant to clinical trial design in and of its
own right.
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