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Abstract

Data on hundreds or thousands of single nucleotide polymorphisms (SNPs) provide detailed information about the

relationships between individuals, but currently few tools can turn this information into a multigenerational pedi-

gree. I present the R package SEQUOIA, which assigns parents, clusters half-siblings sharing an unsampled parent and

assigns grandparents to half-sibships. Assignments are made after consideration of the likelihoods of all possible

first-, second- and third-degree relationships between the focal individuals, as well as the traditional alternative of

being unrelated. This careful exploration of the local likelihood surface is implemented in a fast, heuristic hill-climb-

ing algorithm. Distinction between the various categories of second-degree relatives is possible when likelihoods

are calculated conditional on at least one parent of each focal individual. Performance was tested on simulated data

sets with realistic genotyping error rate and missingness, based on three different large pedigrees (N = 1000–2000).

This included a complex pedigree with overlapping generations, occasional close inbreeding and some unknown

birth years. Parentage assignment was highly accurate down to about 100 independent SNPs (error rate <0.1%) and

fast (<1 min) as most pairs can be excluded from being parent–offspring based on opposite homozygosity. For full

pedigree reconstruction, 40% of parents were assumed nongenotyped. Reconstruction resulted in low error rates

(<0.3%), high assignment rates (>99%) in limited computation time (typically <1 h) when at least 200 independent

SNPs were used. In three empirical data sets, relatedness estimated from the inferred pedigree was strongly corre-

lated to genomic relatedness.
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Introduction

Pedigrees have many uses in a wide variety of fields,

ranging from animal breeding and human genealogy to

wildlife genetics and ethology. Parentage assignment

remains essential for unbiased estimation of trait heri-

tabilities, as even though pairwise relatedness coeffi-

cients can now be estimated more precisely directly from

genomic data than from a pedigree (Visscher et al. 2006;

B�er�enos et al. 2014), heritability estimates still require

proper accounting for the similarity due to shared par-

ents (Kruuk & Hadfield 2007; B�er�enos et al. 2014). The

relevant shared parent is unobservable in many marine

species, den-sharing social mammals or seed-dispersing

plants, and in such cases, a pedigree is required to distin-

guish parents from full-siblings and offspring, or

between paternal and maternal half-siblings. Moreover,

in natural populations, pedigrees provide estimates of

reproductive success, the key indicator of individual

fitness. Thus, pedigree reconstruction remains useful in

the current genomics era.

A plethora of methods have been developed to recon-

struct pedigrees based on a dozen or so multi-allelic

microsatellites (see Jones et al. (2010) for an overview).

High-resolution SNP data can open up new ways of

pedigree reconstruction, by utilizing the more reliable

distinction between different categories of relatives.

Simultaneously, the lower information content per SNP

necessitates a large number of markers to obtain the

same accuracy as with a dozen microsatellites. This puts

a considerable strain on machinery intended to deal with

variable number of alleles per marker, while the binary

nature of typical SNPs allows some computational short

cuts to be taken. For example, dealing with genotyping

errors and missing data requires summation of probabili-

ties over all possible actual genotypes (Wang 2004; Had-

field et al. 2006. For an offspring–mother–father trio,

there are 33 = 27 possible genotype combinations per

SNP, and all probabilities for each locus are easily
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calculated once and stored in look-up tables. This is less

practical for a microsatellite locus with say 10 alleles and

(102 + 10)3/2 = 166 375 possible trio genotypes, and

alternative tactics have been developed (e.g. Wang 2004).

Therefore, new tools are required, specifically designed

for SNPs.

Pedigree reconstruction not only entails parentage

assignment, but when sampling of candidate parents is

incomplete, also clustering of (half-)siblings sharing the

same, nongenotyped parent. This is often performed using

COLONY (Wang 2004, 2012; Jones & Wang 2010), and can

substantially increase the number of within-cohort pedi-

gree links (e.g. Walling et al. 2010). However, amalgamat-

ing sibships across multiple cohort is not straightforward,

and reconstructed sibships are typically unconnected to

earlier parts of the pedigree, affecting amongst others esti-

mates of inbreeding coefficients (Taylor et al. 2015).

Assigning grandparents to sibship clusters would over-

come the latter limitation and involves highly similar com-

parisons to assigning half-siblings. To my knowledge, this

is not attempted in any available software, although meth-

ods to assign grandparents to individuals have been

described (e.g. Letcher & King 2001; VanRaden et al. 2013).

Pedigree reconstruction methods

Most pedigree reconstruction methods can be grouped

into three broad categories: exclusion methods, related-

ness-based methods and likelihood-based methods,

which are of increasing power, but have increasing com-

putational cost as a trade-off. The first simply excludes

all candidate parents which do not share at least one

allele with the focal individual at each marker locus, and

has been used with both microsatellites (see Thompson

& Meagher 1987) and SNP data (Calus et al. 2011; Hayes

2011). Often some genotyping errors or mutations are

allowed for, and the main advantage is that it is very fast.

When a very large number of SNPs are used, the number

of opposing homozygotes can also be used to differenti-

ate full-siblings and half-siblings from unrelated pairs

(Calus et al. 2011). The major caveat is that when several

candidate parents are nonexcluded, other methods are

required to differentiate between them.

Methods in the second category estimate pairwise

relatedness r or kinship coefficients between individuals,

and use these to categorize the data into first-degree rela-

tives, second-degree relatives and unrelated (Thompson

1975). In systems with nonoverlapping generations and

no inbreeding, this may be sufficient to fully reconstruct

a pedigree. When generations overlap, different statistics

are required to differentiate between parent–offspring
pairs and full-siblings, for example, which are both

related by r = 0.5. Parent–offspring and full-sibling pairs

can be distinguished using the Cotterman coefficients,

the probabilities that the pair share 0, 1 or 2 alleles identi-

cal by descent at a locus, but neither pairwise measure

can distinguish between half-siblings, grandparents and

full aunts/uncles (all r = 0.25).

In comparison, likelihood methods (the third category)

are considerably more powerful (Thompson 1986; Hill

et al. 2008), although computationally notably slower. The

likelihood of a particular pedigree configuration is the

probability of observing the observed genotypes, condi-

tional on the genotypes of the assigned parents, multiplied

over all individuals and, when loci are assumed indepen-

dent, multiplied over all loci. This approach makes use of

heterozygous genotypes, which are ignored by exclusion

methods, and can be calculated over many individuals

jointly, whereas relatedness is typically calculated pairwise

(although see Wang (2007) for a triadic version). Likeli-

hoods allow more powerful distinction between alterna-

tive candidate fathers when one can condition on the

genotype of a known mother, as implemented in CERVUS

(Marshall et al. 1998), COLONY (Wang 2004) and MASTERBAYES

(Hadfield et al. 2006), amongst others. Likelihood calcula-

tions that condition on at least one parent each of a pair of

individuals can distinguish between the three types of sec-

ond-degree relatives (see Methods in Appendix S1, Sup-

porting information), which is impossible when

considering only the genotypes of the two focal individu-

als and (presumed) unlinked markers (Epstein et al. 2000).

Likelihood maximization

Maximizing the total likelihood over all individuals is chal-

lenging, as the number of possible pedigree configurations

increases quickly with the number of individuals. A com-

mon way to reduce computational cost is to consider only

pairwise likelihoods, and find the most likely parent(s) for

each individual in turn (e.g. CERVUS, Marshall et al. 1998).

One caveat with this is that close relatives who are not par-

ent and offspring (not PO) may have a higher pairwise

likelihood to be PO than to be unrelated (U) and thus a

positive log-likelihood ratio ΛPO/U (Thompson 1986). To

put it differently, when PO and U are not the only possible

alternatives, rejecting hypothesis U is not equivalent to

accepting PO, and ΛPO/U is no longer the most powerful

test statistic (the Neyman–Pearson lemma, Anderson &

Garza 2006). Consequently, there is often considerable

overlap in the distribution of ΛPO/U of true PO pairs and

other types of relatives (Thompson & Meagher 1987; Mar-

shall et al. 1998). Those true full-siblings who have at least

one allele in common at every locus have a higher

expected ΛPO/U than parent–offspring pairs, but have an

even higher expected likelihood to be full-siblings (Thomp-

son & Meagher 1987). Therefore, while ΛPO/U and ΛPO/FS

are necessarily highly correlated, each provides informa-

tion that the other does not (Thompson 1986).
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Thus, one solution to ensure that one indeed maxi-

mizes the total likelihood is to calculate for each set of

candidate relatives the likelihoods under many possible

alternative relationships. This is implicit to KINSHIP

(Goodnight & Queller 1999) and has been implemented

for parentage assignment in FRANZ (Riester et al. 2009),

and is implemented more comprehensively here. One

reason for the limited implementation of this approach

with microsatellites is the large computational costs

involved with calculating likelihoods of many relation-

ship alternatives over the very large number of possible

true genotypes. Moreover, with a typical number of 10–
20 microsatellites, it is nearly infeasible to distinguish

reliably between the various relationship classes. In con-

trast, with a large number of SNPs, different relation-

ships can be distinguished reliably.

Inbred and complex bilineal relationships (see Fig. 10)

are often excluded from consideration, to keep computa-

tions feasible and tractable (Goodnight & Queller 1999;

Wang 2004; Jones & Wang 2010; Anderson & Ng 2016)

However, pedigree reconstruction in small populations

is regularly performed with the specific aim to study the

amount of inbreeding. Moreover, in a range of mammal

species, female relatives live together and are therefore

likely to mate with the same male (Stopher et al. 2012,

and references therein). The resulting offspring are

related by more than r = 0.25 and can therefore easily be

misclassified as full-siblings when full-sibling, half-sib-

ling and unrelated are the only alternatives considered.

Here, I present an algorithm that compares likelihoods

for seven different relationship alternatives, including their

inbred derivatives, speeded up by steps to exclude unli-

kely relatives. It (1) assigns parents, (2) clusters sibling

groups across multiple cohorts, (3a) assigns grandparents

to sibships and singletons and (3b) identifies avuncular

links between sibships (Fig. 1), using presumed indepen-

dent SNPs. Pedigree inference based on the length and dis-

tribution of genome segments shared between individuals

is theoretically a more powerful approach (Hill & White

2013), but for many species, a reliable linkage map is not

(yet) available. Performance of SEQUOIA is illustrated on

simulated data sets from three different pedigree struc-

tures, and empirical data sets from wild red deer (Cervus

elaphus), great tits (Parus major) and domestic pigs (Sus

scrofa). I show that several hundred independent SNPs

with high minor allele frequency are sufficient to obtain a

high assignment rate (>99%) and low error rate (<0.1%).

Methods

Overview

The input format for SEQUOIA is easily obtained from a

genotype file in standard PLINK format (Fig. 2, details in R

vignette) and should be provided together with sex and

birth year information for the majority of genotyped

individuals.

When SEQUOIA is called, first a check for duplicate

identities and genotypes is performed to avoid down-

stream problems. Next, several iterations of parentage

assignment are performed, until the total likelihood

(defined in Eqn 1 below) asymptotes. This provides a

robust, conservative ‘pedigree scaffold’, as distinguish-

ing parents from nonparents has a lower false-positive

rate than distinguishing between various other classes of

relatives (see Results). The pedigree scaffold is returned

for user inspection, to check for swapped or mislabelled

samples, for example. In addition, a list is returned of

identified parent–offspring pairs for which polarity

could not determined, due to absent or incompatible age

or sex information.

Then, clusters of half-siblings with an unsampled par-

ent are found and assigned a ‘dummy’ parent. Subse-

quently, parents may get assigned to these dummy

individuals, providing pedigree links across generations.

This is again done in an iterative fashion. Alternative

orders of the various steps were explored but resulted

in higher error rates (see Appendix S1, Supporting

information).

Biological feasibility of the resulting pedigree is

achieved by ensuring that, given the current pedigree, (i)

an individual cannot be its own ancestor; (ii) ancestors

are born prior to their descendants, or either or both

Fig. 1 Example part pedigree with only paternal links shown.

Abbreviations indicate when the link is inferred: during (1)

parentage assignment, (2) sibship clustering (assignment of a

dummy parent), (3a) assignment of genotyped grandparents to

sibships, (3b) assignment of dummy individuals as grandpar-

ents to other sibships, or (dashed) based on nongenetic data

only (not by SEQUOIA). Note that links 3a and 3b are not inferred

by other programs, which would result in four unconnected

pedigree fragments.
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have an unknown birth year; and (iii) the two parents of

an individual are of opposite sex, or either one is of

unknown sex (i.e. no hermaphrodites or asexual repro-

duction allowed and thus no selfing).

Filtering steps

Use of opposite homozygosity as a filtering step is a com-

putationally fast method to dramatically reduce the

number of potential parent–offspring (PO) pairs (Hill

et al. 2008; Hayes 2011; Anderson 2012). By default, a lib-

eral threshold of TOH = 3 + eL is used to avoid exclusion

of true PO pairs, where L is the number of loci and e the
per-locus genotyping error rate. Typically some pairs of

non-PO close relatives will be nonexcluded, particularly

full-sibling (FS) pairs (see Calus et al. 2011).

A second filtering step for parentage assignment, and

the only filtering step for the other stages, consists of cal-

culating the log-likelihood ratio K�
R=U between the focal

relationship R and unrelated U, without conditioning on

the parents in the current pedigree to simplify and speed

up computations. A liberal, log-scale negative threshold

(the user-adjustable TFilter) is used to again avoid exclu-

sion of true relatives.

Parentage assignment

For each individual in turn, from earliest born to last

born to unknown birth years, all individuals with

which the focal individual is nonexcluded as a PO

pair and which are older or of unknown age differ-

ence are considered as candidate parents, and the

likelihoods for the seven alternative relationships are

calculated (Table 1, LH0–LH6). If the focal relationship

R (here PO) has a higher likelihood than the most

likely alternative relationship (denoted by ∨ for brev-

ity), by a user-defined margin Tassign, an assignment

is made (ΛR/∨ > Tassign; glossary provided in Table 2).

If there are multiple candidate parents, these likeli-

hoods are calculated for all possible opposite-sex can-

didate parent pairs and all possible single candidate

parents (details in Appendix S1, Supporting informa-

tion). Parent assignments are made according to the

highest likelihood, which may include removal of ear-

lier-assigned parents. This approach maximizes

assignment rate and minimizes the chance that, for

example, full-siblings or double-grandparents are

assigned as parents.

CompareList

SEQUOIA(GenoM, LifeHistData)

PedCompare(SeqList$Pedigree, OldPed)

SeqList

GenoM

plink mydata --recodeA

GenoConvert("mydata.raw")

mydata.raw

mydata.ped
mydata.map

LifeHistData

OldPed

External file

External program

R object

SEQUOIA function
OldPed

SimGeno(OldPed, nSnp = 400)

PedigreePar
MaybeParent
AgePriors
Pedigree
DummyIDs
MaybeRel 

Scaffold pedigree
Nonassigned likely PO pairs
Age-difference-based prior
Full pedigree
Details per half-sib cluster
Nonassigned likely relatives

Counts
MergedPed
ConcensusPed 

Matches & mismatches

Sex & birth year

Fig. 2 Overview of program use. Input consists of a numeric matrix with genotypes either converted from standard PLINK format or

simulated from a pedigree, and a dataframe with life-history data (ID, sex and birth year), and output of an R list with the pedigree and

various other elements. A detailed manual is given in the R vignette.
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Likelihood calculations

The quantity that is maximized is the total likelihood L
of the pedigree configuration P over all N genotyped

individuals,

LðPÞ ¼
YN
A¼1

LðA;DA; SAÞ �
YN
A¼1

Y
l

PðAl ¼ XjDA; SAÞ;

ðeqn 1Þ

where P(Al = X|DA, SA) is the probability of observing

genotype X at locus l in individual A, conditional only

on its parents DA and SA in pedigree P. It is assumed a

set of SNPs is used which are unlinked and in low link-

age disequilibrium, such that a simple multiplication

over all loci provides a good approximation of the total

likelihood.

The probability P(Al = X|DA, SA) can be broken down

into a genotyping error term Pe, a Mendelian inheritance

term PM (denoted transmission probability T in Meagher

(1986) and Marshall et al. (1998)) and a parental genotype

probability term PP:

PðAl ¼ XjDA; SAÞ ¼
X
x

X
y

X
z

P�ðAl ¼ XjAl ¼ x; �Þ

�PMðAl ¼ xjDAl
¼ y; SAl

¼ zÞPPðDAl
¼ yÞPPðSAl

¼ zÞ:
ðeqn 2Þ

The first term (Pe) is a function of A’s actual genotype

x and the genotyping error rate e, which is assumed con-

stant across loci. Details of the genotyping error model

are given in Methods in Appendix S1 (Supporting infor-

mation). The second term (PM) is the probability that

individual A inherited actual genotype x from its parents

DA and SA, conditional on their actual genotypes y and z.

This probability can take values of 0, 1/4, 1/2 and 1. As

SNP genotypes can only take three possible values (0, 1

or 2 copies of the minor allele), the likelihood compo-

nents Pe and PM can be calculated once at initiation and

stored in look-up tables, for increased computational effi-

ciency. In contrast, the parental genotype probabilities PP

(the third term) are continuously updated. They give the

probability that A’s parents carry actual genotypes y and

z and come in three different flavours, denoted by a

superscripted prefix:

PP ¼
hPP for an unknown parent;
gPP for a known, genotyped parent;
dPP for a dummy parent.

8<
:

When say parent DA is unknown, hPP(DA = y|ql) takes
the standard values when assuming Hardy–Weinberg

equilibrium of q2l , 2ql(1 � ql) and (1 � ql)
2, that is

unknown parents are assumed a random draw from the

population. When DA is a known genotyped individual,

the probabilities for all possible actual genotypes y are

calculated conditional on DA’s observed genotype Y and

its parents, if any. Using that P(A|B) = P(B|A)P(A)/P(B)
(Bayes’ theorem) and dropping subscripts l for brevity,

gPPðDA ¼ yjDA ¼ Y;DDA ; SDAÞ
¼ P�ðDA ¼ YjDA ¼ yÞPMðDA ¼ yjDDA

; SDA
Þ

PðDA ¼ YÞ ;

ðeqn 3Þ

where

PðDA ¼ YÞ ¼
X
y0

P�ðDA ¼ YjDA ¼ y0ÞPMðDA

¼ y0jDDA
; SDA

ÞÞ;

and DDA
and SDA

are grandparents of A. When DA is

not genotyped at a particular locus, the term

Pe(DA = Y|DA = y) is omitted from Eqn 3, and
gPP(DA = y) becomes dependent on the grand-parental

genotypes only. When both DDA
and SDA

are

unknown, gPP(DA = y) reduces further to hPP(DA = y|ql).
The probability dPP for dummy parents is defined in

the section ‘Sibship likelihoods’ (Eqn 5).

Pe, PM and PP can be combined to calculate the

likelihood of observing the genotypes of a group of

individuals (n ≥ 1) under any relationship configura-

tion. Single-locus likelihoods are illustrated in Fig. 3

for the special case of two focal individuals A and B,

when neither individual has any parent yet assigned.

In this case, second-degree relatives (HS, GG and FA)

cannot be distinguished from each other. However,

Table 1 Genealogical relationships considered in this article,

and their mean pairwise relatedness r in absence of inbreeding

or additional relationships between the pair of individuals

Relationship Code Mean r

H1 Parent-offspring PO 1/2

H2 Full-siblings FS 1/2

H3 Half-siblings HS 1/4

Maternal siblings (full or half) MS 1/2 or 1/4

Paternal siblings (full or half) PS 1/2 or 1/4

H4 Grandparent–grand-offspring GG 1/4

H5 Full aunt/uncle–niece/nephew FA 1/4

H6a Half aunt/uncle–niece/nephew HA 1/8

H6b Great-grandparent–great-
grand-offspring

GGG 1/8

H6c Full cousins CC 1/8

H0 Unrelated U 0

Double full first cousins (r = 1/4) are currently not explicitly

considered
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when one can condition on the genotype of a parent

or dummy parent of each individual, such a distinc-

tion can be made. Details on these likelihood equa-

tions, and those for inbred relationships, are given in

Appendix S1 (Supporting information).

Sibship clustering

A sibship is here defined as a group of half-siblings

sharing an unsampled parent, containing zero or more

sets of full-siblings. During each iteration of sibship

clustering, first all pairs of likely HS and FS are identi-

fied using K�
HS=U [Tfilter, followed by calculation of

LH0–LH6 for the pair. These pairs are clustered into sib-

ships using likelihoods calculated over the pair and all

putative siblings. Assignments are made when

(max (ΛHS/∨, ΛFS/∨) >Tassign. Subsequently during each

iteration, all sibships of the same type are considered

for merging to minimize erroneous splitting of true sib-

ships, and all individuals who lack a parent of type k

are considered for addition to each sibship of type k to

maximize assignment rate (Methods in Appendix S1,

Supporting information).

Sibship likelihood equations

The marginal likelihood of sibship A in absence of

inbreeding is

LðAjDA ¼ xÞ ¼
Y
l

X
v

X
w

PMðDA ¼ xjDDA ¼ v; SDA

¼ wÞPPðDDA
¼ vÞPPðSDA

¼ wÞ

�
YnA
i¼1

X
yi

PPðSi ¼ yiÞ
YmA;i

j¼1

X
z

P�ðAi;j

¼ ZjAi;j ¼ z; �ÞPMðAi;j ¼ zjDA ¼ x; Si ¼ yiÞ;
ðeqn 4Þ

where Si is the parent of full-siblings Ai;1. . .Ai;mA;i
, Si of

opposite sex than DA, and sibship A consists of nA full-

sib families. This is a standard expression, used by for

example COLONY (Wang 2004; Eqn 3) and Fullsniplings

(Anderson & Ng 2016, implicit). A more general expres-

sion allowing for inbreeding (Equation S16 in

Appendix S1, Supporting information) is implemented

in the algorithm.

The parental probability dPP is then calculated as

dPPðDA ¼ xÞ ¼ LðAjDA ¼ xÞP
x0 LðAjDA ¼ x0Þ : ðeqn 5Þ

Note that when Si also is a dummy parent,
dPP(Si = yi) in Eqn (4) is calculated without the

contribution of the joined offspring Ai, to avoid dou-

ble counting. Most often, the joined likelihood over A

and all directly connected sibships is calculated, as

PP(Si = yi) will be a function of the presumed

genotype of DA, and therefore, the PP(Si = yi)’s of

different connected sibships are nonindependent

(Methods in Appendix S1, Supporting information).

Parents and grandparents of sibships

Initial parentage assignment may have been incom-

plete, for example when the true parent has an

unknown birth year. Therefore, replacement of

dummy parents by genotyped individuals is

attempted for all sibships, as well as assignment of

parents to singletons, as described above.

Lastly, in each iteration, grandparents are assigned, in

a process similar to parentage assignment. This includes

potential assignments of the dummy parent of one sib-

ship (say DB) as the grandparent of sibship A, when DB

is more likely to be the grandparent of A1;A2; . . .;AnA

than related in any of the alternative ways listed in

Table 1). To minimize false positives, grandparent

assignment to sibship is conducted from the second itera-

tion onwards, and assignment to singletons from the

third iteration onwards; this should not prevent assign-

ment of any true grandparents (Results: Algorithm order

in Appendix S1, Supporting information). Grand-

offspring–grandparent pairs are treated as sibship clus-

ters with a single member, to which additional siblings

may be added in subsequent iterations.

Table 2 Glossary

Definition

A Focal individual

A Focal sibship (group of half-siblings)

DA Mother (Dam) of focal individual

k Parent or sibship type; maternal or paternal

l Locus

Pe Genotyping error term

PM Mendelian inheritance term

PP Parental probability term

R Focal relationship

SA Father (Sire) of focal individual

Tassign Threshold ΛR/∨ for assignments

Tfilter Threshold for K�
R=U to differentiate ‘possibly relatives’

from ‘certainly not relatives’

X Observed genotype

x Actual genotype

∨ Most likely alternative relationship

LH0 Likelihood under H0

K�
R=U Likelihood ratio, does not condition on current parents

ΛR/∨ Likelihood ratio, does condition on current parents

© 2017 The Authors. Molecular Ecology Resources Published by John Wiley & Sons Ltd.
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Age information

The age difference between individuals can be highly

informative to distinguish between, for example, parents

and full-siblings, or between grandparents and half-sib-

lings. SEQUOIA makes use of an age-difference-based prior,

which in its simplest form is an indicator whether a given

relationship is possible (1) or not (0) given the age differ-

ence between the two individuals. After parentage assign-

ment, the empirical age distribution of fathers and

mothers and between maternal and paternal siblings is

used as prior to assist subsequent sibship clustering

(Methods in Appendix S1, Supporting information). For

each hypothesized relationship, the genetic-based likeli-

hoods are multiplied by these age-difference-based prior

probabilities, that is genotypes and age differences are

treated as independent sources of information. Methods

are implemented to deal with missing age or sex

information (Methods in Appendix S1, Supporting

information).

Assignment confidence

In the returned pedigree, a value ΛPO/∨ is associated

with each assigned parent and dummy parent, which is

the log10 likelihood ratio between the candidate parent

being the parent and the most likely alternative relation-

ship, calculated conditional on all other pedigree links.

The ΛPO/∨ for the parent pair is calculated relative to the

highest likelihood scenario with one or neither parent

assigned. For dummy individuals, a similar approach is

followed with respect to the sibship grandparents; calcu-

lations are always conditional on all its offspring.

Assignment confidence is currently not expressed as a
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probability, but various post hoc approaches could be

considered if these are required (see Results and Discus-

sion in Appendix S1, Supporting information).

Data sets

The algorithm was tested on simulated data sets gener-

ated from three different pedigree structures, described

below, to give a general indication of assignment and

error rates. For each pedigree, after simulation of geno-

type data (Methods in Appendix S1, Supporting infor-

mation), a varying proportion of parental genotypes was

discarded to assess sibship clustering. For all simulated

data sets, 0.5% of per-locus genotypes were set to miss-

ing, and 0.1% were replaced by a random genotype,

which is a low but realistic error rate (Methods, see also

Fig. S7 in Appendix S1, Supporting information).

In addition, the algorithm was run on empirical SNP

data sets from red deer (Huisman et al. 2016), great tits

(Santure et al. 2015), and pigs (Cleveland et al. 2012). In

each case, PLINK (Purcell et al. 2007) was used to select

400–600 SNPs for pedigree inference, with minor allele

frequency above 0.4 and in low linkage disequilibrium

with each other.

Pedigree I: Full-sib families. Pedigree I consisted of 1157

genotyped individuals in a single generation, divided

over 432 full-sib families (Table 3) with 1–11 individuals

each (mean: 2.68, 143 singletons). It is identical to the

pedigree structure used in Anderson & Ng (2016) to

compare performance of COLONY (Wang 2012) and

FULLSNPLINGS (Anderson & Ng 2016), and is derived from

an empirical salmon data set.

Pedigree II: Multigenerational half-sib. The second pedigree

mimicked a small closed population and consisted of five

nonoverlapping generations, with full-sib families nested

within interconnected half-sib clusters. Each female

mated with two random males and each male with three

random females, producing four full-sib offspring per

mating (Fig. 4). Each generation, 24 female and 16 male

breeders were drawn at random from the 192 offspring

born. Matings between full or half-siblings were allowed,

and average inbreeding coefficient in the fifth generation

was 0.053 (range: 0.008–0.289). This artificial pedigree is

provided with the R package.

Pedigree III: Red deer. The third set of simulated data sets

was based on the empirical pedigree of red deer detailed

below. It consists of the last 17 birth year cohorts (1999–
2015) and their parents, totalling 1998 individuals.

Empirical data set 1: Insular red deer. The pedigree from

the study population of wild red deer on the Isle of Rum

is characterized by extensively overlapping generations,

matrilineal association of females, and numerous

instances of close and moderate inbreeding (Clutton-

Brock et al. 1982). Each breeding season, immigration of

males born elsewhere on the island occurs. The previous

pedigree was reconstructed based on 9–15 microsatellite

markers using MASTERBAYES and COLONY (Walling et al.

2010), and includes 441 founders and 2340 nonfounders

born up until 2012. The SNP data set used consisted of

2572 individuals born up until 2013 genotyped for

37 410 polymorphic autosomal SNPs (Huisman et al.

2016), of which 440 SNPs were used for pedigree

inference.

Empirical data set 2: Pig breeding line. This data set was

made available for comparing genomic prediction meth-

ods (Cleveland et al. 2012), and contained 3534 individu-

als with genotypes for 52 843 SNPs, of which 652 SNPs

were used here. The provided pedigree consisted of 6473

individuals and included the parents and grandparents

Table 3 Total number of individuals in various categories for

each Pedigree

Pedigree I Pedigree II Pedigree III

Total 2021 1000 1998

Mother known 1157 960 1642

Father known 1157 960 1202

Unique mothers 432 80 462

Unique fathers 432 120 193

Pedigree I consists of a single generation of full-sib families,

Pedigree II of 5 discrete generations of full- and half-sib families,

and Pedigree III is the empirical pedigree of the 17 most recent

birth year cohorts of a wild Red deer population.

G2

G1

G0

Fig. 4 Mating scheme in Pedigree II, showing a subset of indi-

viduals selected to breed in G1, their parents (in G0) and their

offspring (in G2), some of which are selected at random (larger

symbols) to become parents of G3. Note that by chance, two

full-siblings are selected as mates (2nd and 3rd individual from

the left in G1).
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of genotyped individuals, where known. No birth year

information is publicly available; therefore, the genera-

tion numbers in the provided pedigree (1 = founders,

2 = offspring of founders, 3 = offspring of g2 or

g2 9 founders, etc.) were treated as cohorts.

Empirical data set 3: Wild great tit. The second data set

was the larger of the two data sets used for a study on

the genetic architecture of quantitative traits by Santure

et al. (2015), from a open population of great tits in

Oxfordshire. It consisted of genotype data for 2497 indi-

viduals on 5592 SNPs, of which 488 SNPs were used

here. The provided social pedigree included 1035 foun-

ders and 1674 nonfounders, and birth year data for 1558

individuals was extracted from the excel file with pheno-

typic data.

Comparison to other software. SEQUOIA’s performance was

compared to that of COLONY 2.0.6.1 (Wang 2013), using its

full-likelihood–pair-likelihood score combined (FPLS)

analysis method, with otherwise default settings: with-

out inbreeding (as recommended by the COLONY user

guide when the inbreeding level is not high), medium

run length, weak sibship size priors of 1.0, and with sib-

ship scaling.

In addition, the program FRANZ (Riester et al. 2009) was

run, which performs parentage assignment only, option-

ally assisted by clustering of full-siblings. Lenient settings

were used throughout, with a maximum number of can-

didate parents of 500, reproductive ages of females and

males between 1 and 20, and otherwise default settings.

Lastly, exclusion based on the number of opposing

homozygous loci was evaluated as a parentage assign-

ment method, assigning the first nonexcluded parent of

each sex. The same allowance for genotyping errors was

used as in SEQUOIA, of maximum 3 mismatching loci.

Assignment and error rates. The assignment rate (AR) for

the simulated data sets was calculated as the number of

individuals with a correctly inferred parent, divided by

Nk, the number of individuals with a parent of sex k in

the true pedigree, averaged over maternal and paternal

links. The error rate (ER) was calculated as the fraction

of the total number of individuals (founders + non-

founders) with an incorrectly assigned parent. A sibship

parent, say dummy father, was deemed correct if the

majority (>50%) of inferred paternal siblings (PS) were

true PS. For both erroneous merging and erroneous non-

merging, the error count equalled the size of the smaller

of the two sibships.

−40 −20 0 10 20 30 −40 −20 −20 −15 −10 −5 0 5 100 10 20 30

−40 −20 0 10 20 30 −40 −20 −20 −15 −10 −5 0 5 100 10 20 30

R: parent−offspring R: full-siblings R: half-siblings

True
relation

PO
FS
HS
HA
U

Tfilter

Tassign

Fig. 5 Pairs truly related according to a focal relationship (headers, solid outline) are more clearly distinguished from other related

pairs (dashed outline) using ΛR/∨ (bottom row) than when using ΛR/U (top). Likelihoods are not conditional on any parental genotypes

for PO (left) and FS (middle), and conditional on the genotypes of one parent each for HS (right) (not shown: ΛHS/∨ for true FS is around

�170). Vertical lines indicate the values of Tfilter = �2 (top) and Tassign = 0.5 (bottom) used throughout the Results. Based on 10 000 sim-

ulations of a simple pedigree with unrelated founders and 400 SNPs with MAF 0.3–0.5 and e = 0.005. [Colour figure can be viewed at

wileyonlinelibrary.com]
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Results

Distribution of Λ

Simulated distributions of ΛPO/∨ showed a clearer divide

between true PO pairs and non-PO pairs than did ΛPO/U

(Fig. 5, left panels). A similar pattern is apparent for FS

(middle), and HS (right), although the latter shows less

clear separation. Note that when both parents of both

individuals are unknown, no HS assignments can be

made as it is impossible to distinguish between maternal

HS, paternal HS, FA and GP.

The thresholds for an optimal trade-off between AR

and ER will depend on the proportions of different cate-

gories of relatives in the sample, which by definition are

not known a priori, as well as the number of SNPs and

their allele frequencies. Initial explorations showed that

for the three different types of simulated data sets and

200 SNPs, results were largely insensitive to varying

TFilter between �3 and �1, while a value of TAssign =
+ 0.5 gave the best overall trade-off between AR and ER

(Appendix S1, Supporting information). Results will be

shown using the same thresholds across all simulations,

of TFilter = �2 and TAssign = + 0.5.

Parentage assignment

When all individuals are genotyped, assignment rates

are high (AR > 99.8% in pedigrees I and II) and error

rates low (ER < 0.1%) when at least 100 SNPs are used
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ulated data sets based on three different pedigree structures, with all parental genotypes assumed known. Each point denotes the aver-

age over 20 simulations, values are given in Table S4 (Supporting information). Note log scale and broken y-axes for 1-AR and ER.
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(Fig. 6, Table S4 in Appendix S1, Supporting informa-

tion). When using over 400 SNPs, opposite-homozygos-

ity-based exclusion (OH-Exclusion) performs similar to

SEQUOIA (ER < 0.1%), in a fraction of the time. FRANZ is

somewhat slower than SEQUOIA, but the difference is neg-

ligible compared to for example MASTERBAYES (Hadfield

et al. 2006) which takes many hours for a data set of simi-

lar size (C. Berenos, pers. comm.). In Pedigree III, some

parents with unknown birth year are never assigned by

SEQUOIA or OH-Exclusion, while FRANZ appears less con-

servative, resulting in higher AR but also higher ER. Per-

formance of FRANZ in pedigree II was unchanged or

worsened when using the option to assist parentage

assignment by clustering of full-siblings (Fig. S6 in

Appendix S1, Supporting information).

Full-sib clustering

Clustering of full-sib families within a single generation,

without any parental genotypes, gave high ARs (>98.4%)

and low ER (<0.1%) when at least 200 SNPs were used

with SEQUOIA, but ER was consistently higher than for COL-

ONY (Fig. 7). Even at high marker numbers SEQUOIA erro-

neously inferred some FS as HS (Fig. S8, see Discussion

in Appendix S1, Supporting information). Both COLONY

and SEQUOIA performed better when a monogamous

breeding system was assumed (grey filled symbols in

Fig. 7; Fig. S9 in Appendix S1, Supporting information).

Combination of parentage assignment and sibship
clustering

The combination of parentage assignment, sibship clus-

tering and grandparent assignment resulted in recon-

struction of 99% of parent–offspring links in Pedigree II

when at least 20% of parental genotypes was treated as

known (Fig. 8). When simulating 60% of parental geno-

types as known, AR was somewhat lower in Pedigree III

at 86%–89% (Table 4), partly because for some identified

likely HS it could not be determined whether they were

paternal or maternal half-siblings, or FA. Additionally,

when generations overlap and one of a pair of individu-

als truly is a founder, SEQUOIA cannot differentiate

between GG or FA, which would require that one parent

is already assigned to each individual. AR for parentage

assignment (e.g. FRANZ) is necessarily limited by the num-

ber of PO pairs where both are genotyped, while the

upper limit for COLONY is determined by the number of

dummy individuals (=number of sibships), to which it

does not assign parents.

Error rates for SEQUOIA were low when at least 200

SNPs were used (0.1%–0.3%) and were undetectably low

for COLONY (Table 4) despite both data sets containing

closely related parents, which is not explicitly dealt with

by this program. Computational time had a minimum

around 200 SNPs, increased approximately quadratically

with the number of individuals (Fig. S10 in

Appendix S1, Supporting information), and was consid-

erably longer for the more complex Pedigree III. A slight

increase in ER with increased pedigree size and depth

(to 0.26%) and with decreased proportion of genotyped
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Fig. 7 As Fig. 6, for clustering of FS families with no genotyped
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tem. Averages over 10 replicates (SEQUOIA) or three replicates

(COLONY) were used; COLONY was not run for 800 SNPs.
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parents (to ER= 0.9%) was observed (Fig. S10 in

Appendix S1, Supporting information).

For Pedigree II and 200 SNPs, ER increased and AR

decreased approximately exponentially with an increase

in simulated genotyping error rate (Fig. S7 in

Appendix S1, Supporting information).

Empirical data sets

As a proxy for the true pedigree relatedness between

pairs of individuals, the genomic relatedness rgrm as esti-

mated by GCTA (Yang et al. 2011) from all 40 000–50 000

SNPs was used. For each of the three data sets, the relat-

edness estimated from the SEQUOIA-reconstructed

pedigree (rped, sequoia) was more strongly correlated to

rgrm than rped, FRANz (Table 5). Note that correlations dif-

fered between the three data sets not only due to the

pedigree accuracy, but also due to the proportion of close

relatives in the sample (see Fig. 9; if fewer pairs were

closely related, the correlation would be lower) and the

amount of Mendelian variance, determined by the num-

ber and size of chromosomes. Correlations were lowest

in the pig data set, amongst others because maternal

siblings were often fully nested within paternal sibling

groups, which cannot be differentiated from paternal sib-

lings nested within maternal sibling groups when none

of the parents are genotyped (see also Discussion). Cor-

relations between rped, sequoia and rped, provided ranged

from 0.72 for the red deer data set to 0.87 in the great tits

and 0.89 in the pigs.

The fraction of pairs with a much higher rped than

rgrm provides a rough estimate of ER, and was consis-

tently lower for SEQUOIA than for FRANZ, and lower than

the provided pedigree for the two wild species. The

pattern for the fraction of pairs with much higher rgrm
than rped (likely but nonassigned relatives) showed a

similar pattern across data sets and pedigrees (Table 5).

Note that pairwise AR and ER are not directly compa-

rable to the per-individual AR and ER reported else-

where in the Results, as a single erroneous assignment

typically results in erroneous rped between multiple

pairs (see also Fig. S8 in Appendix S1, Supporting

information).

As illustrated for the red deer data set (Fig. 9), rgrm
was more closely correlated to rped, sequoia than to the

genomic relatedness estimated from the 440 SNPs used
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Fig. 8 AR of parentage assignment (open circles) is necessarily

strongly correlated with the proportion of genotyped parents,

but this dependence is much weaker for full pedigree recon-

struction (filled circles). Results shown for L = 400 SNPs; see

Fig. S10 in Appendix S1 (Supporting information) for ER and

runtimes.

Table 4 Results when 40% of parental genotypes are discarded from the simulated data sets, for a range of marker numbers

Pedigree SNPs

Assignment rate Error rate Computational time*

FRANZ SEQUOIA COLONY
†

FRANZ SEQUOIA COLONY FRANZ SEQUOIA COLONY

II 75 0.550 0.802 0.951 8.38E�2 4.41E�2 <4.5E�4 01:44 03:45 2:23:00

100 0.561 0.927 0.955 5.17E�2 1.42E�2 <4.5E�4 01:03 02:54 2:36:00

200 0.559 0.989 0.958 1.37E�2 1.25E�3 <4.5E�4 00:36 01:53 4:34:00

400 0.559 0.993 6.50E�4 <5.0E�5 00:42 01:51

800 0.564 0.991 <5.0E�5 <5.0E�5 01:13 03:59

III 75 0.540 1.25E�1 04:12

100 0.546 0.725 6.62E�2 2.40E�2 02:11 49:32

200 0.554 0.861 1.38E�2 1.48E�3 00:52 27:19

400 0.549 0.888 2.98E�3 6.51E�4 00:50 27:38

800 0.555 0.894 2.20E�3 7.26E�4 01:28 57:30

For FRANZ (parentage only) and SEQUOIA, averages over 10 simulations are given, and for COLONY (polygamous), numbers are extrapolated

from running on generations 1 and 5 (founders = 0) for three replicates. Times in minutes: seconds for FRANZ and SEQUOIA, and hours:

minutes: seconds for COLONY.

*On a laptop with a quadcore intel i7 2.3 GHz processor and 8 GB RAM.
†AR = within-cohort AR – 0.042, to take into account that no grandparents are assigned to the on average 48 + 32 sibships (see data set

description).
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for pedigree reconstruction. This may partly be an arte-

fact of the different average allele frequencies in the two

sets of markers, but is probably largely due to Mendelian

noise. It suggests that when only a few hundred SNP

markers are available, it can be better to estimate quanti-

tative genetic parameters using rped than rgrm.

Discussion

SEQUOIA enables pedigree inference even with complex

mating structures, extensively overlapping generations

and inbreeding. Parentage assignment performs very

well down to about 100 independent highly informative

SNPs, while for subsequent sibship clustering, at least a

few hundred SNPs are required. For these marker num-

bers, false-positive rates in the simulated data sets are

low (<0.1%) and assignment rates high (>99%). As for

any software, performance in real data sets will be some-

what lower, but results in three empirical data sets are

favourable compared to existing pedigrees and parent-

age assignment only.

Comparison to other methods

The main difference in approach between SEQUOIA and

most other methods is that a high likelihood solution is

found in a handful of iterations, rather than the tens of

thousands of iterations typical of MCMC approaches.

SEQUOIA’s sequential, heuristic method requires a conser-

vative approach to assignments, which results in lower

AR than COLONY under identical conditions. There is also

some loss of accuracy, but this can be overcome using a

few hundred extra SNPs. When less than approximately

200 independent, high frequency SNPs are available, due

to a small genome size or for budgetary reasons, the

methods initially developed for a dozen or so microsatel-

lite markers still perform best. For limited marker num-

bers, Mendelian noise can be substantial, and as a result,

the true configuration may not be amongst those with

the highest partial likelihood, violating a core assump-

tion underlying SEQUOIA. The true pedigree will typically

still have the highest global likelihood, which can be

more easily found by MCMC or simulated annealing

Table 5 Correlations q between genomic and pedigree relatedness (rgrm and rped, respectively) in three empirical data sets, with three

pedigrees each, and rough estimates of pairwise 1 � AR (proportion of pairs with rped � rgrm < �0.2) and ER (rped � rgrm > 0.2); pro-

portions are multiplied by 105 to ease comparison

Pedigree

cor(rgrm, rped) rped � rgrm < �0.2 rped � rgrm > 0.2

Deer Pig Tits Deer Pig Tits Deer Pig Tits

Provided* 0.66 0.55 0.70 270 1700 110 20 4.1 6.1

Provided† 0.45 0.55 0.56 550 1700 110 8.5 4.1 2.9

FRANZ 0.72 0.34 0.53 130 2500 140 0.37 0.13 3.2

SEQUOIA 0.81 0.47 0.64 5.3 2200 71 0.091 4.5 0.096

*Correlation over genotyped individuals present in the pedigree only.
†Assuming that individuals not present in the pedigree are unrelated to all others.
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Fig. 9 Pairwise relatedness in an empirical red deer data set, as estimated from 40 000 polymorphic SNPs using GCTA (y-axes), and (a) a

previous microsatellite-based pedigree, (b) from the pedigree inferred using SEQUOIA on 440 SNPs with high MAF and in low LD, or (c)

from these same 440 SNPs using GCTA. n denotes the number of pairwise relationships, related to the number of unique individuals i as

n = i 9 (i � 1)/2.
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algorithms such as COLONY, than by a hill-climbing algo-

rithm such as SEQUOIA.

Parentage assignment

When interest is solely in parentage assignment, SEQUOIA

performs intermediately between opposite-homozygos-

ity-based exclusion and FRANZ (Riester et al. 2009). The

former performs very well when a large number of mark-

ers is available, although allowing for genotyping errors

creates room for false-positive assignments (Strucken

et al. 2015). FRANZ explicitly deals with genotyping errors

and makes use of birth year, death year and gender infor-

mation, but is less conservative than SEQUOIA when this

life-history information is lacking for some individuals.

Note that while FRANZ performs clustering of full-siblings,

it does so only to support parentage assignment, and in a

less integrated way than SEQUOIA.

Sibships

It has been observed that likelihood scores tend to favour

more complex explanations (Thomas & Hill 2002;

Almudevar 2007), resulting in splitting true sibling

groups (Almudevar 2007) as well as creation of spurious

sibling groups (Anderson & Ng 2016). With SEQUOIA, the

number of unrelated pairs spuriously inferred as HS or

FS was orders of magnitude lower than nonassignment

of true siblings (Fig. S8 in Appendix S1, Supporting

information). Nonassignment in Pedigree I was predomi-

nantly due to a limited likelihood difference for true full-

siblings to be FS (r = 1/2) versus paternal HS and mater-

nally related as HA or CC, for example (r = 1/4 + 1/8,

Fig. 10). Such configurations might be comparatively

common in some species, but very rare in others. A pri-

ori estimates of the fraction of pairs in each type of rela-

tionship (PO, FS, HS, CC, etc.) are likely to lessen this

problem, as implemented in FRANZ (Riester et al. 2009)

and SNPPIT (Anderson 2012). Assuming a monogamous

breeding system could be seen as a special case of this

and did indeed improve performance. However, in real

data sets, there is typically no a priori certainty about

monogamy.

In the empirical red deer data set, SEQUOIA identified

many paternal half-sib links across cohorts, which can-

not be identified with per-cohort sibship clustering

using COLONY. Several birth year cohorts may be anal-

ysed together using a sliding-window approach, but

combining the results into a single pedigree is hindered

by the presence of erroneous sibship clusters, and the

lack of concordance between a sibship’s posterior prob-

ability and its correctness (Anderson & Ng 2016). More

generally, separate reconstruction within each cohort

may lead to biologically impossible pedigrees when

combining results (Taylor et al. 2015) and complicates

inclusion of individuals with unknown birth year. In

the red deer example, immigrant males were never

considered as offspring during paternity assignment,

but SEQUOIA identified various paternal links between

immigrants.

Potential caveats

Real-world data sets are often incomplete and imper-

fect, especially those for wild populations. For example,

birth years may be unknown for many individuals, as

was the case for the great tit data set. Nonetheless, the

pedigree reconstructed by SEQUOIA showed strong corre-

lation with rgrm, and 81 unique fathers were assigned

despite unknown hatching year. In such cases, lists of

per-cohort candidate parents, such as used by MASTER-

BAYES and COLONY, may be more convenient than esti-

mating birth years, although great care should be taken

to not inadvertently leave out the true parent.

HS + CC

B

SABDBDADBDA

SAB

A

HS + HAHS + GP

DB

SAB

A

HS + PO

DB SAB

A

B B

DB DB

DA

B DB

A

Fig. 10 Examples of double relationships between genotyped individuals A and B, where DB and SAB may or may not be genotyped,

and DA is not genotyped. Description and likelihood equations in Methods in Appendix S1 (Supporting information).
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Candidate parent lists allow implicit incorporation of

data on year of death, when available, which is used

explicitly by FRANZ but currently cannot be used by SE-

QUOIA. Note as well that uncertainty around birth year

estimates is currently not accounted for by SEQUOIA,

although parent–offspring pairs with impossible or

unknown age differences will be flagged.

One general problem with pedigree reconstruction is

the differentiation between maternal and paternal rela-

tives. For example for a full-sib family (n ≥ 1) and in

absence of parental genotypes, it is impossible to distin-

guish between maternal and paternal HS. Programs

incorporating prior information on observation-based

parents are then preferred, such as COLONY (Wang 2012). I

am not aware of any programs that incorporate data on

sex-linked markers, which would provide an alternative

way to differentiate between maternal and paternal

relatives.

Currently, no confidence probability is attached to

SEQUOIA’s assignments, but various methods to estimate

these exist (Results and discussion in Appendix S1, Sup-

porting information). For example, one may simulate

many SNP data sets according to the observed allele fre-

quencies and inferred pedigree, and count the mis-

matches between pedigrees reconstructed from

simulated data and the initial pedigree, similar to CERVUS

(Marshall et al. 1998). To this end, and to investigate the

sensitivity of pedigree inference to specific relatedness

structures or various other properties of real-world data

sets, including genotyping errors, the R package includes

functions to simulate genotypes of unlinked SNPs

through any pedigree and to count mismatches between

two pedigrees. The sensitivity to various aspects is likely

to be data set specific and therefore not explored in detail

here.
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The R package is available on CRAN (CRAN.R-projec-

t.org/package=sequoia) and includes a pedigree and

life-history file for Pedigree II, a user manual, and the

Fortran source code. The red deer SNP data are available

from github.com/JiscaH/Manuscripts-Papers, the great

tit data were retrieved from datadryad.org/resource/

doi:10.5061/dryad.5t32v (UK part), and the pig data

were from www.g3journal.org/content/suppl/2012/04/

06/2.4.429.DC1.

Supporting Information

Additional Supporting Information may be found in the online

version of this article:

Appendix S1 Supporting Methods and Results.

Appendix S2 Sequoia R vignette.
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