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ABSTRACT
The a- and b-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae,
VchCAa, and VchCAb, were investigated for their activation with natural and non-natural amino acids and
amines. The most effective VchCAa activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-mor-
pholine, which had KAs in the range of 8.21–12.0mM. The most effective VchCAb activators were D-tyro-
sine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine,
which had KAs in the submicromolar – low micromolar range (0.18–1.37mM). The two bacterial enzymes
had very different activation profiles with these compounds, between each other, and in comparison to
the human isoforms hCA I and II. Some amines were selective activators of VchCAb, including 2-pyridylme-
thylamine (KA of 180 nm for VchCAb, and more than 20mM for VchCAa and hCA I/II). The activation of CAs
from bacteria, such as VchCAa/b has not been considered previously for possible biomedical applications.
It would be of interest to study in more detail the extent that CA activators are implicated in the virulence
and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent
on the bicarbonate concentration and pH in the surrounding tissue.

ARTICLE HISTORY
Received 8 November 2017
Revised 28 November 2017
Accepted 29 November 2017

KEYWORDS
Carbonic anhydrase;
metalloenzymes; pathogens;
activators; Vibrio cholerae

1. Introduction

Carbonic anhydrases (CAs, EC 4.2.1.1) are a superfamily of ubiqui-
tous metalloenzymes with the catalytically active form represented
by a metal hydroxide derivative acting as a potent nucleophile on
CO2 (the physiological substrate) or other electrophiles (e.g. COS,
CS2, esters, etc.)

1–15. CAs catalyse only one simple but physiologic-
ally highly relevant reaction, which is the reversible hydration of
carbon dioxide to bicarbonate and protons5,6,13,15. These enzymes
are grouped in seven genetically distinct families, named a-, b-, c-,
d-, f-, g- and �-CAs, and although they share a low sequence simi-
larity and protein three dimensional structure, all of them possess
a high efficiency as catalysts for the transformation of the meta-
bolically crucial gas CO2 into soluble products, HCO3

� and Hþ

ions5,6,8,13,15–17. As a consequence, these enzymes are ubiquitous
in all life kingdoms, being found in Archaea, Bacteria, and
Eukaryotes1–5,15. a-CAs are normally present in bacteria and eukar-
yotes, in which they have been thoroughly investigated1–5,15. In
fact many human (h) CAs, of the 15 diverse isoforms known to
date, are drug targets for inhibitors acting as diuretics or agents
for the treatment of glaucoma, epilepsy, obesity, tumors16–19, but
recently they started to be considered as possible drug targets for
neuropathic pain, cerebral ischemia, or arthritis20,21.

The metal ion from the CA active site is crucial for catalysis,
and is coordinated by three His residues in the a-, c-, d-, and prob-
ably the h-classes; by one His, and two Cys residues in b- and
f-CAs or by two His and one Gln residues in the g-class, with the

fourth ligand being a water molecule/hydroxide ion acting as
nucleophile in the catalytic cycle of the enzyme1–15. The rate
determining step in the CA catalytic cycle is the formation of the
metal hydroxide species of the enzyme from the acidic one in
which a water molecule is coordinated as the fourth ligand to the
metal centre3–6,9. This process is usually assisted by amino acid
residues placed in the middle or at the rim of the active site,
which can shuttle protons between the metal centre and the reac-
tion medium by means of moieties possessing a pKa in the region
of 6–8 pH units, such as imidazoles (from His residues), carboxy-
lates (from Asp or Glu residues), etc.3–6,9. In a-CAs, the proton
shuttle residues are His (e.g. His64 in isoforms, such as CA II, IV,
VII, IX, etc.), or His clusters (His3, 4, 10, 15, and 64) placed at the
amino terminal part of the protein and situated on the rim of the
active site cavity, as demonstrated by X-ray crystal work3–6,9. In
b-CAs, which are highly abundant in bacteria and plants, the iden-
tity of the proton shuttle residue is not well established although
it seems that an Asp (or Glu) residue placed in the middle of the
cavity has such a role22. Thus, compounds able to intervene in
such proton transfer processes are known as CA activators (CAAs)
and they were rather well investigated for mammalian a-CAs23–30,
but much less for bacterial such enzymes. In fact, whereas bacter-
ial CA inhibitors (CAIs) were extensively studied, leading to a
detailed understanding of the catalytic and inhibition mecha-
nisms15,31–35, only a few studies are available on the bacterial
CAAs36. Recently, our groups described the biochemical properties
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of a a-, b-, and c-CAs from the pathogenic bacterium Vibrio chol-
erae, responsible of cholera37–43. These enzymes, called VchCAa/
b/c showed a significant catalytic activity for the physiologic CO2

hydration reaction to bicarbonate and protons (kcat 105 s�1)37–43.
Moreover, the study of the inhibition profiles with the classical CA
inhibitors (sulphonamides and anions) revealed interesting struc-
ture–activity relationship for the interaction of these enzymes with
inhibitors27–43, but no activation studies were reported so far.
Here, we present the first activation study of two such enzymes,
VchCAa/b, with a series of amino acid and amine derivatives. The
main interest of this study is to understand whether CA activators
are implicated in the virulence and colonisation of the host by this
pathogenic bacterium, considering the fact that V. cholerae is
highly dependent on the bicarbonate concentration and pH in the
tissue which is colonised.

2. Materials and methods

2.1. Materials

Amino acids and amines 1–19 were commercially available, high-
est purity reagents from Sigma-Aldrich, Milan, Italy.

2.2. CA enzyme activation assay

An Sx.18Mv-R Applied Photophysics (Oxford, United Kingdom)
stopped-flow instrument has been used to assay the catalytic
activity of various CA isozymes for CO2 hydration reaction44.

Phenol red (at a concentration of 0.2mM) was used as indicator,
working at the absorbance maximum of 557 nm, with 10mM
Hepes (pH 7.5) or Tris (pH 8.3) as buffers, 0.1M Na2SO4 (for main-
taining constant ionic strength), following the CA-catalysed CO2

hydration reaction for a period of 10 s at 25 �C. Activity of the
a-CA was measured at pH 7.5 whereas that of the b-class enzyme
at pH 8.3 in order to avoid the possibility that its active site is
closed40. The CO2 concentrations ranged from 1.7 to 17mM for
the determination of the kinetic parameters and activation con-
stants. For each activator at least six traces of the initial 5–10% of
the reaction have been used for determining the initial velocity.
The uncatalysed rates were determined in the same manner and
subtracted from the total observed rates. Stock solutions of activa-
tors (10mM) were prepared in distilled-deionised water and dilu-
tions up to 1 nM were done thereafter with the assay buffer.
Activator and enzyme solutions were pre-incubated together for
15min (standard assay at room temperature) prior to assay, in
order to allow for the formation of the E–A complex. The activa-
tion constant (KA), defined similarly with the inhibition constant KI,
can be obtained by considering the classical Michaelis–Menten
equation (Equation (1)), which has been fitted by non-linear least
squares by using PRISM 3:

v ¼ vmax

1þ KM= S½ � 1þ A½ �f=KA
� �� � (1)

where [A]f is the free concentration of activator.
Working at substrate concentrations considerably lower than

KM ([S]�KM), and considering that [A]f can be represented in the
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Figure 1. Amino acids 1–11 and amines 12–19 investigated as VchCAa/b activators.
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form of the total concentration of the enzyme ([E]t) and activator
([A]t), the obtained competitive steady-state equation for deter-
mining the activation constant is given by Equation (2):

v¼
v0·KA

fKAþð½A�t�0:5fð½A�tþ½E�tþKAÞ�ð½A�tþ½E�tþKAÞ2�4½A�t· ½E�tÞ1=2gg
(2)

where v0 represents the initial velocity of the enzyme-catalysed
reaction in the absence of activator23–30.

3. Results and discussion

The activators 1–19 were included in this study, as they were
employed for investigations as CAAs against many classes of CAs,
including the bacterial ones from Burkholderia pseudomallei,
BpsCAb/c36c,45. Both natural and non-natural amino acids and
amines were included among the investigated compounds
(Figure 1).

Data in Table 1 indicate that L-Tyr (at 10mM concentration) is
an effective activator because this amino acid enhances the kcat
values for all enzymes considered (hCA I, II, and VchCAa/b).
Moreover, KM remains unchanged by addition of L-Tyr, which has
been the case for all CAAs that have been investigated so far,
including those belonging to vertebrates (a-class enzymes) and
microorganisms (enzymes belonging to various CA genetic fami-
lies)23–30,45. L-Tyr was a nanomolar activator for the a-class
enzymes (hCA I and II) with KAs in the range of 11–20 nM23 and a
micromolar activator for VchCAa/b, with KAs of 6.15–8.21 mM. It
should be mentioned that due to its high efficacy as activator,
L-Tyr induced an increase of the kinetic constant of 2.66 times
compared to the uncatalysed rate for the a-CA and of 4.85 times
for the b-CA from V. cholerae. This is the most significant kinetic
effect observed so far any activator that has been identified for
these enzymes to date, and L-Tyr is in fact not even the most
effective activator of VchCAa/b evidenced here (see below).

Amino acids and amines 1–19 (Figure 1) previously investi-
gated as CAAs of human (a-class CAs) and few bacterial enzymes,
showed significant activating effects against VchCAa/b, as
observed from data of Table 2, in which the activation constants
(KAs) of these compounds against four CAs are presented. The fol-
lowing structure-activity relationship (SAR) can be evidenced from
the data of Table 2:

(i) The a-class bacterial enzyme was activated by amino acids
and amines 1–19 in the micromolar range (KAs of 8.21–71.9mM),
and is thus much less sensitive to activation compared to the
human CA isoforms belonging to the same class, hCA I and II,
because some of these compounds acted as nanomolar activators.
However, a distinct SAR could be observed for these CAAs even if
their potency is not very high. The most effective VchCAa activa-
tors were L-Tyr 9, histamine 12, serotonin 14, and 4-aminoethyl-
morpholine 18, which had KAs in the range of 8.21–12.0 mM. The
remaining amines and amino acids were less effective CAAs, with
KAs in the range of 19.4–71.9 mM. The stereochemistry of the
amino acid derivatives influenced the activation potency, with the
D-enantiomers being generally more effective than the L-ones (for
His, Phe, DOPA, and Trp), whereas the reverse situation is true for
Tyr, case in which the L-enantiomer was 4.6 times more effective
at activation than the D-enantiomer (Table 2). In some cases, the
amines were more effective activators compared to the amino
acids structurally related to them, e.g. histamine was more effect-
ive compared to L/D-His, whereas dopamine was less effective
compared to L/D-DOPA. The least effective activators were the

pyridyl-amine derivatives 15 and 16. All these data demonstrate
that relatively small differences in the scaffold of the activator
induce important differences in the activation efficacy, obviously
due to the fact that the structural diversity of these compounds
induces diverse interactions with amino acid residues from the
active site in the enzyme-activator (E-A) complex.

(ii) VchCAb was more sensitive to activation with the amines
and amino acids investigated here, which showed KAs in the range
of 0.18–20.3mM (Table 2). The most effective activators were D-Tyr
10, dopamine 13, serotonin 14, 2-pyridyl-methylamine 15, 2-ami-
noethylpyridine 16, and 2-aminoethylpiperazine 17, which showed
activation constants in the submicromolar – low micromolar range,
of 0.18–1.37mM. Apart D-Tyr, all of these most effective activators
are amines. Another subset of derivatives, such as 4–9, 11, 12, 18,
and 19 were slightly less effective CAAs with KAs in the range of
4.18–12.8mM. They include both amino acid and amine derivatives.
The least effective activators were L/D-His and L-Phe, with KAs in
the range of 15.4–20.3mM. Again, generally D-enantiomers of the
amino acids were generally more effective activators compared to
the L-enantiomers (for His, Phe, DOPA, and Tyr), whereas in the

Table 1. Activation of human carbonic anhydrase (hCA) isozymes I, II, and
VchCAa/b with L-Tyr, at 25 �C, for the CO2 hydration reaction44.

kcat� KM� (kcat)L-Tyr�� KA��� (lM)
Isozyme (s�1) (mM) (s�1) L-Tyr

hCA Ia 2.0� 105 4.0 13.9� 105 0.020
hCA IIa 1.4� 106 9.3 12.8� 106 0.011
VchCAab 8.23� 105 11.7 21.9� 105 8.21
VchCAbb 3.34� 105 8.1 16.2� 105 6.15
�Observed catalytic rate without activator. KM values in the presence and the
absence of activators were the same for the various CAs (data not shown).��Observed catalytic rate in the presence of 10 lM activator.���The activation constant (KA) for each enzyme was obtained by fitting the

observed catalytic enhancements as a function of the activator concentra-
tion44. Mean from at least three determinations by a stopped-flow, CO2

hydrase method. Standard errors were in the range of 5–10% of the
reported values (data not shown).

aHuman recombinant isozymes, from Ref23.
bBacterial recombinant enzymes, this work.

Table 2. Activation constants of hCA I, hCA II and the bacterial CAs VchCAc/b
with amino acids and amines 1–19. Data for hCA I and II are from Ref.23.

KA (lM)�

No. Compound hCA Ia hCA IIa VchCAab VchCAbb

1 L-His 0.03 10.9 43.2 20.3
2 D-His 0.09 43 22.7 18.0
3 L-Phe 0.07 0.013 53.6 15.4
4 D-Phe 86 0.035 34.5 5.12
5 L-DOPA 3.1 11.4 23.1 8.36
6 D-DOPA 4.9 7.8 19.4 6.27
7 L-Trp 44 27 40.9 4.18
8 D-Trp 41 12 38.0 5.89
9 L-Tyr 0.02 0.011 8.21 6.15
10 D-Tyr 0.04b 0.013b 37.8 0.94
11 4-H2N-L-Phe 0.24 0.15 41.6 7.21
12 Histamine 2.1 125 9.12 9.50
13 Dopamine 13.5 9.2 35.2 1.24
14 Serotonin 45 50 11.7 1.37
15 2-Pyridyl-methylamine 26 34 68.3 0.18
16 2–(2-Aminoethyl)pyridine 13 15 71.9 1.00
17 1–(2-Aminoethyl)-piperazine 7.4 2.3 57.3 0.24
18 4–(2-Aminoethyl)-morpholine 0.14 0.19 12.0 12.8
19 L-Adrenaline 0.09 96 18.2 8.73
�Mean from three determinations by a stopped-flow, CO2 hydrase method44.
Standard errors were in the range of 5–10% of the reported values (data not
shown).

aHuman recombinant isozymes, stopped flow CO2 hydrase assay method25.
bThis work.
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case of Trp, the L-enantiomer was a better activator compared to
the D one (Table 1).

(iii) There are important differences in activation efficacy of
these amino acids and amines against the two bacterial enzymes,
with the b-class one being much more sensitive to activation com-
pared to the a-class. There are also important differences of the
activation profiles of these compounds for the bacterial and
human CAs, which is a rather important observation as this may
lead to isoform-selective activators. However, for this small panel
of activators, the human CAs were generally much better activated
compared to the bacterial enzymes, with few exceptions, such as
the activity of 13–17 for VchCAb which was much more suscep-
tible to be activated compared to hCA I, II, and VchCAa. This
observation demonstrates that it may be possible to design bac-
terial CA – selective activators.

4. Conclusions

The first activation study of two CAs from the bacterial pathogen
Vibrio cholerae is reported here, with a series of amino acid and
amine derivatives. The most effective VchCAa activators were
L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine,
which had KAs in the range of 8.21–12.0 mM. The most effective
VchCAb activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-
methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine,
which showed activation constants in the submicromolar – low
micromolar range, KAs of 0.18–1.37mM. The two bacterial enzymes
had very different activation profiles with these compounds,
between them, and also when compared to the human isoforms
hCA I and II. Some amines were VchCAb – selective activators. The
activation of CAs from bacteria, such as VchCAa/b, was never con-
sidered up until now for possible biomedical applications. It would
be of interest to study in more detail whether CA activators may
contribute to processes connected with the virulence and colon-
isation of the host by such pathogenic bacteria, which as Vibrio
cholerae, is highly dependent on the bicarbonate concentration in
the tissue.
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