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Abstract: Vitamin K and Vitamin K-dependent proteins (VKDPs) are best known for their pivotal
role in blood coagulation. Of the 14 VKPDs identified in humans to date, 6 play also important
roles in skeletal biology and disease. Thus, osteocalcin, also termed bone Gla-protein, is the most
abundant non-collagenous protein in bone. Matrix Gla protein and Ucma/GRP on the other hand are
highly abundant in cartilage. Furthermore, periostin, protein S, and growth arrest specific 6 protein
(GAS 6) are expressed in skeletal tissues. The roles for these VKDPs are diverse but include the
control of calcification and turnover of bone and cartilage. Vitamin K plays an important role in
osteoporosis and serum osteocalcin levels are recognized as a promising marker for osteoporosis. On
the other hand, matrix Gla protein and Ucma/GRP are associated with osteoarthritis. This review
focuses on the roles of these three VKDPs, osteocalcin, matrix Gla protein and Ucma/GRP, in skeletal
development and disease but will also summarize the roles the other skeletal VKDPs (periostin,
protein S and GAS6) in skeletal biology.
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1. Introduction

Vitamin K belongs to the group of fat-soluble vitamins. In 1929 it was discovered by the
Danish biochemist Henrik Dam as a dietary component essential for blood coagulation [1].
This vitamin is further sub-grouped into the naturally occurring vitamins K1 and K2 [2].
Although still best known for its pivotal role in blood coagulation, Vitamin K has been
identified to be involved in a variety of further physiological functions in the last decades.

Thus, vitamin K has been discovered to play crucial roles in cell growth and prolifera-
tion, apoptosis, oxidative stress, inflammatory processes, and calcification processes [3–6].
Dietary shortage of vitamin K has been associated with increased risk of cancer and car-
diovascular disease [5,7,8]. Surprisingly, however, a recent study suggests that elevated
uptake of vitamin K2 may be linked to increased risk for breast cancer and higher mortality
in breast cancer patients [9].

In the mid-1970s severe cases of bone malformations have been found in newborns of
women who had received anticoagulant therapy with the vitamin K antagonist warfarin
during their pregnancy [10]. These cases of chondrodysplasia punctata or fetal warfarin
syndrome were the first indications that vitamin K is also associated with skeletal develop-
ment and biology. Fetal warfarin syndrome, which is characterized by excessive growth
plate calcification, could be recapitulated in experimental animal models applying a high
dose warfarin diet [11]. Later it became clear that these ectopic calcifications and subse-
quent skeletal malformations were predominantly a consequence of inadequate production
of two vitamin K-dependent proteins: osteocalcin (also termed bone Gla-protein) and
matrix Gla-protein (MGP). Osteocalcin and MGP are both highly expressed in skeletal
tissues. Thus, osteocalcin is specifically expressed by osteoblasts, while MGP exhibits
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a somewhat broader expression pattern, with high expression in chondrocytes, but also
in vascular smooth muscle cells and epithelial cells [12–14]. The biological significance of
these two proteins has been unraveled by the investigation of gene-targeted knock-out
mice. Thus, osteocalcin has been identified as a negative regulator of bone formation, while
MGP has been shown to be an inhibitor of tissue calcification [11].

The biological properties of these skeletal proteins are dependent on a vitamin
K-dependent post-translational modification: specific glutamic acid (Glu) residues are
post-translationally converted into gamma-carboxyglutamic acid (Gla) residues via
a vitamin K-dependent mechanism [13,15]. As a vitamin K antagonist warfarin inhibits
gamma carboxylation of Glu residues of these proteins and thereby impairs their physio-
logical function [2,16].

Since vitamin K has been uncovered to play a pivotal role in skeletal biology after
unraveling the mechanism underlying the fetal warfarin syndrome further implications
of vitamin K in skeletal biology have been uncovered. Thus, the effects of vitamin K
independent of glutamyl γ-carboxylation have been identified. For example, vitamin K
has been shown to modify gene expression by binding to the nuclear receptor steroid
and xenobiotic receptor (SXR)/pregnane X receptor (PXR) and thereby modulate bone
homeostasis [17,18]. Gla-independent suppression of NFκB signaling in osteoblasts and
osteoclasts has also been described [19].

Also, further Gla-dependent effects of vitamin K on skeletal biology have been identi-
fied. In 2008 a new member of the VDKP group, the upper zone of cartilage and matrix
associated protein (UCMA), also termed Gla-rich protein (GRP), was independently identi-
fied by three groups. UCMA/GRP is highly expressed in cartilage, in particular in juvenile
and resting zone chondrocytes, which secrete the protein to the extracellular matrix [20–22].
While zebrafish knockdown experiments indicated a role for UCMA/GRP in skeletal de-
velopment, Ucma/GRP-deficient mice developed surprisingly normally [23,24]. Under
situations challenging the cartilage, in contrast, UCMA/GRP has been found to be protec-
tive for cartilage in adult mice. Thus, UCMA/GRP has been shown to protect cartilage
from degradation in experimental osteoarthritis and inflammatory arthritis models [25,26].

Further skeleton-associated VDKPs include periostin, protein S, and growth arrest-
specific 6 protein (Gas 6). Among other cell types periostin is expressed in osteoblasts and
periosteal cells, protein-S is expressed by osteoblasts and GAS6 has been shown to increase
osteoclast activity [27–32].

This review will focus on the role of vitamin K and in particular of vitamin K-
dependent proteins (VKDPs) in bone and cartilage biology.

2. Vitamin K

The fat-soluble vitamin K exists in three different forms: Vitamin K1 (Phylloquinone),
Vitamin K2 (Menaquinone), and Vitamin K3 (Menadione) [2]. While vitamin K1 and K2
are naturally occurring compounds, vitamin K3 is of artificial origin. Vitamin K1 and K2
are the major forms in the human diet, vitamin K3, in contrast, is only used in animal
food due to its comparatively high toxicity (Table 1). In the human body, vitamin K1 is
predominantly found in the liver and appears to be mainly involved in the production of
coagulation proteins. Vitamin K2, in contrast, is distributed more widely in the body [2].

The three forms of vitamin K share a naphtoquinone group and differ in their side
chains. Thus, vitamin K3 lacks a hydrocarbon side chain and is, therefore, water-soluble.
In contrast, vitamin K1 and K2 carry hydrocarbon side chains, which render the molecule
hydrophobic. The side chain of Vitamin K2 furthermore differs in the number of isoprenyl
residues and thus in length. To categorize the different vitamin K2 forms, they are abbrevi-
ated as MK-n, with n representing the number of isoprenyl residues [2]. In the human diet,
vitamin K1 is mainly found in green vegetables, in particular in kale, spinach, and broccoli.
Vitamin K2, in contrast, is mainly found in meat, dairy products, and fermented food, such
as the Japanese natto, which is based on fermented soybeans [33].
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Table 1. Three forms of vitamin K.

Vitamin K1 (Phylloquinone) Vitamin K2 (Menaquinone) Vitamin K3 (Menadione)

Synonym MK-n

Molecular Structure
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residues and thus in length. To categorize the different vitamin K2 forms, they are 
abbreviated as MK-n, with n representing the number of isoprenyl residues [2]. In the 
human diet, vitamin K1 is mainly found in green vegetables, in particular in kale, 
spinach, and broccoli. Vitamin K2, in contrast, is mainly found in meat, dairy 
products, and fermented food, such as the Japanese natto, which is based on 
fermented soybeans [33]. 

Vitamin K’s role in blood coagulation is probably the most extensively investigated 
function of this compound. The key role of vitamin K in coagulation is mediated by its 
ability to act as a co-factor for an enzyme termed γ-glutamyl carboxylase (GGCX). This 
enzyme catalyzes the γ-carboxylation of glutamic acid (Glu) residues in vitamin K-
dependent proteins (VKDPs) resulting in γ-carboxyglutamic acid residues (Gla). This 
post-translational modification mediates the Ca2+-binding abilities, which are 
indispensable for the blood-clotting properties of prothrombin and other coagulation 
proteins [34,35]. 

During the γ-carboxylation process, vitamin K is not consumed. Instead, the body is 
able to recycle vitamin K and thereby keep the need for vitamin K uptake relatively low. 
Vitamin K recycling is accomplished through a process called the vitamin K cycle. Thus, 
after uptake by the cell, vitamin K is associated with the endoplasmic reticulum where it 
acts as a co-factor for γ-glutamyl carboxylase (GGCX). Prior to γ-carboxylation of 
glutamic acid, the dietary quinone form of vitamin K becomes reduced to its 
hydroquinone form by vitamin K reductase. Thereafter, GGCX-VitK γ-carboxylates 
glutamic acid residues of Gla-proteins, while vitamin K is converted into its epoxide form. 
Finally, vitamin K epoxide reductase (VKOR) reduces vitamin K back to its quinone form 
(Figure 1) [2]. The well-known anticoagulant warfarin suppresses the vitamin K cycle by 
binding and inhibiting VKOR, thereby leading to depletion of vitamin K quinine and 
finally blocking the γ-carboxylation of coagulation proteins [36]. 
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Origin Vegetables Fermented foods synthetic

Usage Human diet Human diet Widely used in animal food but
not for human diet

Vitamin K’s role in blood coagulation is probably the most extensively investigated
function of this compound. The key role of vitamin K in coagulation is mediated by
its ability to act as a co-factor for an enzyme termed γ-glutamyl carboxylase (GGCX).
This enzyme catalyzes the γ-carboxylation of glutamic acid (Glu) residues in vitamin K-
dependent proteins (VKDPs) resulting in γ-carboxyglutamic acid residues (Gla). This post-
translational modification mediates the Ca2+-binding abilities, which are indispensable for
the blood-clotting properties of prothrombin and other coagulation proteins [34,35].

During the γ-carboxylation process, vitamin K is not consumed. Instead, the body is
able to recycle vitamin K and thereby keep the need for vitamin K uptake relatively low.
Vitamin K recycling is accomplished through a process called the vitamin K cycle. Thus,
after uptake by the cell, vitamin K is associated with the endoplasmic reticulum where it
acts as a co-factor for γ-glutamyl carboxylase (GGCX). Prior to γ-carboxylation of glutamic
acid, the dietary quinone form of vitamin K becomes reduced to its hydroquinone form
by vitamin K reductase. Thereafter, GGCX-VitK γ-carboxylates glutamic acid residues
of Gla-proteins, while vitamin K is converted into its epoxide form. Finally, vitamin K
epoxide reductase (VKOR) reduces vitamin K back to its quinone form (Figure 1) [2].
The well-known anticoagulant warfarin suppresses the vitamin K cycle by binding and
inhibiting VKOR, thereby leading to depletion of vitamin K quinine and finally blocking
the γ-carboxylation of coagulation proteins [36].
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by vitamin K reductase (VKR). (2) During γ-carboxylation of Glu residues by γ-glutamyl carboxylase
(GGCX) the hydroquinone form of vitamin K is converted to its epoxide form. During this step,
a Glu residue is γ-carboxylated to a Gla residue. (3) Vitamin K epoxide reductase converts vitamin K
epoxide back to its original form.

3. Vitamin K in Skeletal Development and Disease

As described above, the first insights into the involvement of vitamin K in skele-
tal biology, came from congenital skeletal malformations after treating pregnant pa-
tients with the vitamin K antagonist warfarin during their pregnancy [10]. Later vita-
min K uptake was shown to be inversely related to bone fracture and osteoporosis risk
and vitamin K has been demonstrated to promote bone formation and suppress bone
resorption [19,37,38]. Moreover, Vitamin K has also been associated with osteoarthritis and
rheumatoid arthritis [39–42].

Vitamin K-dependent effects on skeletal development and diseases may, however, not
be only mediated by VDKPs. Instead, the effects of vitamin K on skeletal biology may be
subdivided into VKDP-independent and VDKP-mediated effects.

4. VDKP-Independent Effects of Vitamin K on Skeletal Biology

Besides VDKP-dependent effects, bone turnover also appears to be modified by vita-
min K mediated but VDKP-independent mechanisms. Thus, vitamin K promotes osteoblast
differentiation, while it suppresses osteoclast differentiation by stimulation of osteoprote-
gerin (OPG) expression and inhibiting the expression of receptor activator of nuclear factor
kappa-B ligand (RANKL) [43]. This may be a consequence of vitamin K-dependent but
VKDP-independent suppression of NFκB signaling in osteoblasts [19]. Moreover, Igarashi
et al. have demonstrated that vitamin K may induce osteoblast differentiation also by
pregnane X receptor-mediated transcriptional control of Msx2 [44].

Vitamin K has been shown to ameliorate experimental arthritis in the rat. This ef-
fect has been suggested to be mediated by vitamin-K-dependent inhibition of synovial
hyperplasia and is considered to be independent of VDKPs [41]. In inflammatory arthritis
synovial fibroblast-like cells (SFLCs) exhibit increased proliferation and less apoptosis
in response to inflammatory signals. Thus, they form a pannus-like tissue, infiltrating
the joint space and secreting further pro-inflammatory cytokines on the one hand, and
matrix-degrading enzymes on the other hand [45,46]. Vitamin K has been suggested to
enhance apoptosis of FLSCs in inflamed joints [41]. This effect is most likely independent
of VKDPs. Thus, vitamin K has been demonstrated to induce reactive oxygen species
(ROS) and thereby to increase apoptosis in murine pancreatic acinar cells [47]. Although
the direct target of vitamin K in the induction of SFLC apoptosis in inflammatory arthritis
has not been established yet, a similar mechanism appears plausible [41]. In inflammatory
arthritis, further signaling pathways may be favorably affected by vitamin K. Thus, NFκB
signaling, a target of tumor necrosis factor α (TNFα) and other pro-inflammatory cytokines
are elevated in arthritis FLSCs and a well-known driver of synovial hyperplasia [46,48].
Interestingly, it had been shown that nuclear factor kappa B (NFκB) signaling in hepatocel-
lular cancer cells is inhibited by vitamin K2, thereby reducing cyclin D1 expression and
thus suppressing cell proliferation. A similar mechanism may also contribute to vitamin
K-mediated amelioration of experimental arthritis [41].

5. Vitamin K-Dependent Proteins in Skeletal Tissues

In skeletal tissues, six different vitamin-dependent proteins are found: Osteocalcin,
matrix Gla protein (MGP), Upper Zone of Growth Plate and Cartilage Matrix Associated
Protein (Ucma), which is also termed Gla-rich protein (GRP), periostin, protein S, and
growth arrest specific 6 protein (GAS6). In bone, four extracellular VKDPs are substantially
found. Thus, osteocalcin is specifically expressed by osteoblasts and is considered the most
abundant non-collagenous protein in bone [13]. Besides osteocalcin, bone also contains
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periostin, which is predominantly found in the name-giving periosteum [29]. Protein S and
GAS6 are further VKDPs expressed and secreted by osteoblasts to the bone matrix [32,49].
In cartilage, MGP and UCMA/GRP are highly abundant extracellular VKDPs [13,20–22].

6. Vit K-Dependent Proteins in Skeletal Biology
6.1. Osteocalcin (OC; Bone-Gla-Protein)

The thus far best-studied VDKP in bone is osteocalcin. This hydroxyapatite-binding
protein is considered the most abundant non-collagenous protein in bone. It is mainly
expressed by osteoblasts, but also by odontoblasts and hypertrophic chondrocytes [13,16].
In humans, the transcript is translated to pre-pro-protein of 98 amino acids (11 kDa). The
polypeptide contains an N-terminal signal peptide sorting this highly conserved protein
for secretion. A pro-peptide harboring a binding site for γ-glutamyl carboxylase is subse-
quently cleaved releasing the mature osteocalcin protein of 49 amino acids [13,50,51]. In
most species, the binding of γ-glutamyl carboxylase to its propeptide induces γ-carboxylation
of three Glu residues in osteocalcin. Human osteocalcin, however, remains undercarboxy-
lated at the first of three potential Gla residues [13,51]. Osteocalcin’s Gla residues provide
this secreted protein with a high affinity to Ca2+ and hydroxyapatite in the mineralized
bone matrix [52–54]. This raised the hypothesis that osteocalcin may be an important
player in bone formation.

Osteocalcin-deficient mice, however, develop surprisingly normally. At birth, they
are morphologically indistinguishable from their wild-type littermates. At approximately
6 months after birth, osteocalcin-deficient mice exhibit higher bone mass than wild-type
mice. Thus, osteocalcin was identified as a negative regulator of bone formation [55].
Moreover, the biophysical properties of bones in osteocalcin-deficient mice were altered.
Thus, hydroxyapatite crystals were less organized, thereby possibly causing increased
brittleness [54,56,57]. This indicated that osteocalcin has rather a role in fine-tuning bone
synthesis and remodeling than being a pivotal bone constituent for normal skeletal de-
velopment. In this line, osteocalcin has been identified as a marker for bone formation in
post-menopausal osteoporosis [58]. It is noteworthy that the γ-carboxylation status of os-
teocalcin decreases with age but may be rescued by an increase in vitamin K uptake [59,60].
Elevated serum levels of undercarboxylated osteocalcin have been associated with in-
creased fracture risk in elderly women, indicating that the carboxylation status of osteocal-
cin is of significance for the bone phenotype [61]. This may be the molecular link of the
association of low serum vitamin K levels and decreased bone mineral density and high
fracture risk [62,63].

Osteocalcin has also been associated with osteoarthritis (OA). Thus, serum osteocalcin
levels were elevated in patients with destructive OA and enhanced expression of osteocalcin
in articular cartilage and subchondral bone has been detected in human OA joints [64–66].
Interestingly, particularly the serum levels of undercarboxylated osteocalcin were associ-
ated with OA, and serum levels of undercarboxylated osteocalcin correlated with serum
levels of hyaluronan, which is considered a marker of synovitis [67]. This indicates a link
of vitamin K metabolism, osteocalcin and synovial inflammation in osteoarthritis, although
the exact mechanism is currently unknown. Interestingly, patients with active rheumatoid
arthritis exhibited a decrease in serum osteocalcin levels [68]. Although the physiological
significance of alterations in serum osteocalcin levels in OA and RA is currently not known
they may reflect the different bone phenotypes in these two joint diseases: serum osteocal-
cin levels are associated with bone formation, and while OA is rather characterized by an
increase of subchondral bone mass (osteophytes, subchondral bone plate thickness), in RA
bone resorption and loss of subchondral bone is characteristic [46,69,70].

Although not the focus of this review, it should be mentioned that osteocalcin does
not only have direct effects on the biochemical and biophysical properties of the bone
matrix but also possesses endocrine functions. Thus, osteocalcin can induce testosterone
synthesis in mouse Leydig cells, indicating a role for osteocalcin in male fertility [71].
Moreover, Oury et al. have shown in experiments with osteocalcin-deficient mice that
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osteocalcin is able to cross the blood-brain barrier where it enhances the synthesis of
monoamine neurotransmitters while suppressing GABA synthesis. This prevents anxiety
and depression and promotes memory and learning [72]. Most importantly, the endocrine
functions of osteocalcin couple bone and glucose metabolism. Thus, in osteocalcin-deficient
mice, a decreased β-cell proliferation, glucose intolerance, and insulin resistance has been
observed [73]. Moreover, osteocalcin has been shown to induce insulin production in
β-cells from pancreatic Langerhans islets and to sensitize adipocytes to insulin by inducing
adipocyte expression of adiponectin [73,74].

6.2. Matrix Gla Protein (MGP)

MGP is a further very well investigated skeletal tissue-associated VDKP. It is mainly ex-
pressed in cartilage, but also in fibroblasts and vascular smooth muscle cells [12,13]. Human
MGP consists of 84 amino acids (10.6 kDa) and contains a signal peptide sorting the peptide
for secretion, and a propeptide including a binding site for γ-glutamyl carboxylase, which
is cleaved by a furin-like protease and in its mature for contains 5 Gla residues [13,22,75,76].
This structure provides the protein with a high affinity to Ca2+ and hydroxyapatite [77].
In this line, MGP has been shown to prevent calcification at various sites, including carti-
lage, vessel walls, skin elastic fibers, and the trabecular meshwork of the human eye. It
inhibits vascular calcification [78,79]. Interestingly, the ectopic calcifications observed in
MGP-deficient mice resemble those observed in fetal warfarin syndrome [10,11,78].

MGP has been extensively investigated for its role as a protector of vascular and tissue
calcification. Thus, mice gene deficient in MGP die at the age of approximately 2 months
due to severe vascular calcifications ultimately leading to vessel rupture and massive
bleedings [78]. In the vascular system, particularly γ-carboxylated MGP inhibits ectopic
mineralization by binding to Ca+ crystals, thereby inhibiting their growth. Moreover,
in particular, γ-carboxylated MGP binds to and inhibits BMP-2, a prominent inducer of
osteogenesis-like processes leading to calcification [77,80]. This supports the notion that
the relationship between ectopic calcifications and low vitamin K serum levels may be
linked by MGP. Interestingly, while overexpression of MGP retarded the mineralization of
bone in a chick system, excessive elevation of MGP serum levels by overexpression could
not reduce vascular calcification in mice, indicating that during physiological conditions
MGP levels are already optimal for controlling vascular calcification [14,79].

In the joint compartment, MGP plays a significant role in the progression of osteoarthri-
tis (OA). Thus, low serum levels of vitamin K are associated with OA and OA chondrocytes
secrete mainly uncarboxylated MGP [39,81]. Moreover, MGP-dependent inhibition of
BMP-2 and calcification, and polymorphisms in the MGP gene associated with OA indicate
a role for MGP in OA [80,82,83]. The carboxylation status of MGP in different forms of
arthritis is currently under debate. Thus, Silaghi et al. observed that uncarboxylated
MGP levels in synovial fluid were higher in inflammatory arthritis than in OA. In the
serum it was vice versa: uncarboxylated MGP serum levels are higher in OA patients
than in inflammatory arthritis patients [84]. In contrast, Bing and Feng observed serum
uncarboxylated MGP to be reduced in OA patients and synovial fluid uncarboxylated
MGP levels to be negatively correlated with OA disease severity [85]. Uncarboxylated
MGP levels are furthermore associated with higher fracture risk and osteoporosis [86]. On
the other hand, overexpression of MGP in mice (which probably results in high levels of
γ-carboxylated MGP) ameliorated ovarectomy-induced osteoporosis [87]. Together these
works demonstrate a putative role for MGP in ectopic mineralization and a particular
significance of vitamin K-dependent γ-carboxylation of this protein as well in soft tissue as
in skeletal homeostasis.

6.3. UCMA/GRP

In 2018 the latest member of VDKPs, upper zone of cartilage and matrix associated
protein (UCMA)/Gla-Rich Protein (GRP) was independently discovered and first described
by three groups at virtually the same time: our group (Surmann-Schmitt et al.) identified
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UCMA/GRP in murine chondrocytes, Tagariello et al. in human growth plate cartilage
and Viegas et al. in sturgeon cartilage [20–22].

In mice, our group and Tagariello et al. found a highly specific gene expression of
UCMA/GRP in juvenile and articular cartilage, detected by RNA in situ hybridization,
while Viego et al. observed a gene expression pattern somewhat less confined to chondro-
cytes in sturgeon and rat: in these species UCMA/GRP gene expression was also detected
in hypertrophic chondrocytes and osteoblasts [20–22]. The question of cartilage-specificity
is currently still a matter of debate. Thus, Lee et al. described UCMA/GRP gene expression
also in the murine osteogenic cell line MC3T3-E1 and in primary calvarial osteoblasts
detected by real-time RT-PCR [88]. In fact, our group had also detected UCMA/GRP in
MC3T3-E1 by RT-PCR. However, UCMA/GRP was detected in MC3T3-E1 cells at negligi-
ble levels compared to chondrogenic MC615 cells or primary chondrocytes [20]. In fact,
UCMA/GRP transcripts detected by Lee et al. in MC3T3-E1 cells and primary murine
calvarial osteoblasts were at a similarly low level as collagen2a1, a gene considered highly
specific for cartilage [88]. Moreover, a UCMA/GRP reporter mouse, harboring a lacZ
cassette integrated into UCMA/GRP exon 1, did not indicate gene expression in any other
tissue than cartilage, in particular not in bone, and comparing UCMA mRNA levels in
epiphysial chondrocytes, calvarial cells, and cortical bone from mice aged 3 to 18 days
using real-time RT PCR revealed negligible Ucma gene expression in the bone samples as
compared to cartilage samples [24,26].

Ucma/GRP is highly conserved in vertebrates—except birds—and it is transcribed
into a set of different splice variants [20–22,89,90]. Currently, however, it is not clear, which
physiological significance the different splice variants possess. The full-length open reading
frame in mouse codes for 138 amino acids with a predicted molecular mass of 16.5 kDa.
The translated polypeptide contains a signal peptide for secretion and a cleavage site for
furin-like proteases [20–22]. During or after secretion the amino-terminal pro-peptide,
which contains a binding site for γ-glutamyl carboxylase, is cleaved off and the C-terminal
mature polypeptide is released to the extracellular matrix [20–22]. Usually, Ucma/GRP is
γ-carboxylated at all 14 Glu residues of its amino acid chain, providing the protein with
a high affinity to Ca2+ [22]. Furthermore, Ucma/GRP is sulfated at up to two tyrosine
residues, which is typical for extracellular matrix proteins, such as VDKPs or leucine-rich
repeat proteoglycans, and is considered to promote protein-protein interactions [20,91,92].
In fact, we could later demonstrate that Ucma/GRP is binding to collagen type II with
high affinity [26].

These highly interesting features raised our interest in the physiological function of
Ucma/GRP and pointed to the role of Ucma in skeletal development. Indeed, knockdown
of Ucma in zebrafish resulted in severe skeletal malformations and decreased collagen type
II and aggrecan content in cartilage, supporting the concept of an important function in
skeletal development. Moreover, these malformations were similar to those observed in
zebrafish in which γ-carboxylation of Glu residues had been blocked by warfarin, indicating
that warfarin-induced developmental effects may be mediated by partial or complete lack
of Ucma glutamyl γ-carboxylation [23]. Together these findings encouraged us to generate
and investigate a gene-targeted mouse strain deficient in Ucma/GRP. Surprisingly, however,
these Ucma/GRP-deficient mice developed normally without any impairment of skeletal
development [24]. This indicated that Ucma is not required for normal embryonic and
post-natal development in mice, and maybe also not in other mammals. On the other hand,
Michou et al. identified Ucma/GCP SNPs to be correlated with Paget’s disease during
a genetic association study [93]. This indicated an in vivo role for Ucma in bone-associated
diseases in humans and in particular supported the concept of Ucma acting as a modifier of
calcification processes. Moreover, effects of Ucma/GRP have also been demonstrated on the
cellular level: thus during our initial investigation, we observed recombinant Ucma/GRP
to inhibit osteoblastic differentiation [20]. Interestingly, Lee et al. observed the opposite for
Ucma/GRP overexpressed in osteoblasts: Ucma/GRP overexpression in MC3T3-E2 cells
promoted osteogenic differentiation [88]. These differences may be explained by different
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post-translational modifications of Ucma/GRP and may, in particular, reflect a difference in
γ-carboxylation. These findings raise of cause the question of the origin of Ucma/GRP that
my act on bone in the body. Our analyses indicated only marginal levels of Ucma/GRP in
bone [20,24,26]. Nevertheless, we also found Ucma/GRP to be secreted to the extracellular
space, where it readily migrates through the matrix [20,21,24,26]. Thereby, cartilage-born
Ucma/GRP may act also on tissues other than cartilage.

Ucma/GRP is also expressed in calcifying vascular smooth muscle cells, which un-
dergo a differentiation similar to osteogenesis. Moreover, Ucma/GRP is present in calcified
atherosclerotic plaques. Interestingly, mice deficient in Ucma/GRP exhibited increased lev-
els of vascular calcification, indicating that Ucma/GRP may act as a suppressor of vascular
calcification [94]. Moreover, Ucma/GRP has been detected in serum and in circulating
calciprotein particles (CCPs), which play an important role in calcification processes, partic-
ularly in vascular calcification [95,96]. Chronic kidney disease (CKD) patients often suffer
from enhanced vascular calcification. Notably, CCPs from patients with severe CKD have
been shown to contain less GRP. These findings further support the concept of Ucma/GRP
as a calcification inhibitor [95]. Recently, low serum Ucma/GRP levels have been shown as
a marker of vascular calcification in CKD patients [97].

Looking back to the skeleton, we and others investigated a potential role for Ucma
in typical cartilage-associated diseases. Thus, Cavaco et al. found that carboxylated
Ucma/GRP inhibited calcification of the extracellular matrix in a synoviocyte/chondrocyte
cell system under osteoarthritis (OA)-like conditions [98]. Our group analyzed the pro-
gression of OA in the DMM (destabilization of the medial meniscus) mouse model for
OA. In fact, we observed a profound exacerbation of OA in Ucma/GRP-deficient mice,
pointing to a protective effect of Ucma/GRP on cartilage [26]. Searching for the molecular
mechanism of this protective effect we found three mechanisms that may contribute to
cartilage protection: (i) Ucma/GRP is binding to the cartilage-associated collagen types II,
IX, and XI with high affinity. This interaction may support the interconnection of the carti-
lage matrix and promote its mechanical rigidity. (ii) In articular cartilage of Ucma-deficient
mice with experimental OA we observed a significant increase in chondrocyte apoptosis
or cell death. (iii) The potentially most important feature of Ucma in terms of cartilage
protection is its ability to bind to and inhibit aggrecanases of the ADAMTS family, namely
ADAMTS4 and -5. In line with this finding, Ucma-deficient mice with experimental OA
exhibited elevated levels of ADAMTS-derived aggrecan cleavage products [25,26]. Our
studies were recently supported by a work from Okuyan et al. who demonstrated that
intraarticular injections of Ucma/GRP in the knee joints of rats with experimental OA
ameliorated cartilage degeneration [99]. Interestingly, also, Cavaco et al. have shown that
Ucma/GRP downregulated the expression of pro-inflammatory cytokines and that only
γ-carboxylated Ucma/GRP inhibited the calcification of the extracellular matrix in vitro.
Moreover, they observed that chondrocytes induce Ucma/GRP expression under OA con-
ditions including treatment with IL-1β [98]. This is in line with our observations during
DMM-induced OA in mice, showing an increase in Ucma/GRP expressing articular chon-
drocytes [26]. Ucma/GRP levels in synovial fluid have also been shown to be elevated in
OA patients and they positively correlated to disease stage [100]. Together these findings
suggest that Ucma/GRP is a potent protector of cartilage during OA and the upregulation
of Ucma/GRP in articular cartilage during OA may represent a repair response to damaged
cartilage. These findings may also indicate that Ucma/GRP might at least contribute to the
association of vitamin K with osteoarthritis [39,40]

Interestingly, the effect of Ucma/GRP in experimental OA was not limited to the
cartilage compartment. Thus, we observed reduced osteophyte formation and subchon-
dral bone plate thickness in Ucma/GRP-deficient mice with experimental OA. This was
accompanied not only by reduced osteoblast counts but also reduced osteoclast numbers in
Ucma/GRP-deficient mice with experimental OA [26]. As mentioned above, Ucma/GRP
has the potential to modify osteoblast differentiation in vitro [20,88]. The findings in experi-
mental OA support this notion, demonstrating that in vivo Ucma/GRP appears to promote
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osteoblast formation. Osteoclasts were also affected by Ucma/GRP-deficiency under OA
conditions. In fact, we showed that recombinant Ucma, as well as wild-type cartilage ex-
plants, promoted in vitro osteoclastogenesis. Cartilage explants from Ucma/GRP-deficient
mice, however, exhibited a strikingly reduced potential to promote in vitro osteoclastogen-
esis. The nature of this pro-osteoclastogenesis mechanism is currently not clear, yet. The
effect may, however, be mediated by p38 and ERK, since recombinant Ucma/GRP induced
the phosphorylation of these MAP kinases in osteoclast precursors [20,88].

In inflammatory arthritis, Ucma/GRP appears to play a similar role as a protector of
cartilage and a promoter of bone turnover. In a mouse model for inflammatory art, hritis we
observed strikingly exacerbated cartilage destruction and reduced osteophyte formation
in Ucma/GRP-deficient mice. The cartilage-protective effect was also supported by the
finding that systemic administration of recombinant Ucma/GRP substantially ameliorated
cartilage damage. In contrast, joint inflammation was not affected by Ucma/GRP [25].
Thus, like in OA, Ucma may also provide a link for the ameliorating effects of vitamin K
in arthritis [41,42].

In total, these findings present Ucma/GRP as a multifunctional secreted VDKP that
controls ectopic calcification, promotes bone turnover, and protects cartilage under patho-
logic conditions such as chronic kidney disease, osteoarthritis, and inflammatory arthritis.

6.4. Periostin, Growth Arrest-Specific Protein 6 (Gas6), and Protein S

The role of these VDKPs in skeletal biology has not been studied as extensively. Pe-
riostin is expressed in osteoblasts and periosteal cells among other cell types and is related
to skeletal development, bone fracture healing, osteoporosis, and osteoarthritis [28–31,101]
_ENREF_30. Periostin-deficient mice exhibit a disorganized epiphyseal growth plate
architecture resulting in growth retardation, particularly characterized by shorter long
bones [29,102]. In part, this may be explained by the finding that periostin binds to
collagen I, and periostin-deficient mice exhibit aberrant collagen I fibril formation [103].
Moreover, periostin-deficient mice exhibit increased sclerostin expression. Sclerostin is
a potent inhibitor of bone growth in response to mechanical load. Therefore, elevated
sclerostin levels in periostin-deficient mice may contribute to a loss of bone mass in these
animals [102]. Periostin has also been associated with OA. Thus, serum and synovial
fluid levels of periostin have been reported to be increased in OA [30,104,105]. Interest-
ingly, Attur et al. have observed experimental OA to be ameliorated in periostin-deficient
mice [106]. These findings may introduce periostin as a promising novel target for future
disease-modifying therapies.

Protein-S is also expressed by osteoblasts and secreted to the bone matrix [32]. Short-
age in protein-S has been associated with osteopenia [107]. In contrast, GAS6 has been
shown to increase osteoclast activity thereby promoting bone resorption [27].

7. Prospects

Several lines of evidence demonstrate the importance of Vitamin K for skeletal devel-
opment and health. Vitamin K is not particularly toxic and a high intake of vitamin K is
generally considered beneficial. Thus, high vitamin K intake is negatively associated with
osteoporosis while vitamin K antagonists have been shown to increase the risk for osteo-
porosis and osteoarthritis [37–40]. Moreover, vitamin K possesses some anti-tumorigenic
properties [5,8]. This may suggest a benefit of dietary supplementation with vitamin K.
In fact, vitamin K is approved for the treatment of osteoporosis in Japan [2]. However,
a recent study demonstrated a correlation of high vitamin K intake with elevated risk
for breast cancer [9]. This indicates that dietary vitamin K supplementation needs to be
further evaluated in order to obtain a comprehensive understanding of associated risks
and benefits.

Vitamin K may exert its effect on skeletal tissues either directly, by affecting skele-
tal gene expression or as a co-factor in the post-translational modification of VKDPs.
VDKPs are a group of proteins, which play important roles in skeletal development
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(such as MGP) physiological homeostasis of the skeleton (such as osteocalcin, MGP,
and periostin), or under pathological conditions of the skeletal system (such as osteo-
calcin, MGP, Ucma/GRP periostin). Their roles are often, but not solely mediated by
calcium-binding through the VKDP’s Gla residues and the control of calcification processes
(refer to Sections 4–6, Figure 2).
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Figure 2. Vitamin K-dependent pathways in skeletal biology. Vitamin K applies multiple molecular pathways in order to
affect skeletal biology: I.: Vitamin K may affect cartilage and bone by binding to cell surface receptors, such as the pregnane
X receptor. This results in the modulation of downstream signaling pathways ultimately modifying gene expression
(e.g., of Msx2). II.: Vitamin K may exert actions on skeletal tissues by acting as a co-factor in the γ-carboxylation of VKDPs.
VDKPs, in turn, apply further pathways to affect cartilage and bone biology: (A) Through their Gla-residues VKDPs can
bind to calcium crystals and thereby modulate calcification processes in bone and soft tissues. This has been particularly
investigated for osteocalcin, MGP, and Ucma. (B) The second mode of action of VKDPs is the interaction with extracellular
matrix proteins, supporting the organization of the ultrastructural matrix architecture (shown, e.g., for periostin and
suspected for Ucma/GRP). (C) Inhibition of matrix proteases has been shown for Ucma/Grp and mediates a protective
effect of Ucma/GRP against cartilage matrix degradation. (D) Finally, hormone-like effects of osteocalcin have been shown
to mediate crosstalk between bone and glucose metabolism. ECM: extracellular matrix; Postn: periostin; ProtS: protein S;
VitK: Vitamin K; X: downstream target gene/protein of Vitamin K.
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Particularly, Osteocalcin and MGP, but also Ucma/GRP are involved in calcification
processes in bone and other tissues. Thereby, they contribute to the physiological homeosta-
sis of these tissues. Of particular focus is currently the ability of both MGP and Ucma/GRP,
to ameliorate blood vessel calcification [86,94]. However, MGP and Ucma/GRP may also
be involved in the control of calcification processes in skeletal diseases. Thus, these proteins
play roles in osteoporosis and/or osteoarthritis [81,86,93,98]. These findings open a new
field for targeting calcification-dependent diseases. However, while most of these findings
have been obtained using mouse and rat models, further studies will have to evaluate,
whether these mechanisms may be translated to the situation in humans.

Beyond their roles in calcification processes, VKDPs often apply further modes of
action. Thus, osteocalcin serves as a hormone in the cross-talk between bone and bone
metabolism as well and affects male fertility [71,73]. Ucma/GRP may develop promising
therapeutical potential in the control of cartilage degeneration during degenerative and
inflammatory joint diseases by inhibition of aggrecanases [25,26]. Thus, aggrecanases
ADAMTS-4 and ADAMTS-5 have been shown to mediate pivotal steps in cartilage de-
generation during both animal models and human degenerative and inflammatory joint
diseases [108–111]. Consequently, aggrecanase inhibitors are being extensively investigated
for their therapeutical use against cartilage degeneration [111,112]. However, important
roles for ADAMTS-4 and -5 in the homeostasis of tissues other than cartilage may limit the
therapeutical options for aggrecanases inhibitors. Thus, it had been shown that ADAMTS-5
ameliorates atherosclerosis-related deposition of extracellular matrix proteins to the vessel
wall [113]. In that respect, Ucma/GRP may provide the advantage that its ability to bind to
cartilage-specific collagen type II might target systemically administered Ucma/GRP to
the cartilage compartment [26].

Further studies will have to evaluate, whether the cartilage-protective effect of
Ucma/GRP may be translated to the human situation. Finally, interactions with other
proteins of the extracellular matrix may contribute to VKDP-dependent mechanisms that
determine skeletal homeostasis. Thus, Ucma/GRP has been shown to bind to cartilage-
specific collagen type II and periostin physically interacts with collagen type I, abundantly
present in bone, tendon, and heart valves [26,103]. In mice, lack of periostin has been
shown to result in aberrant collagen fibril formation, indicating a role for periostin in the
ultrastructural architecture of the extracellular matrix in bone and other collagen I-rich
tissues [103]. It remains to be elucidated, whether Ucma/GRP has a similar role in the
architecture of the cartilage matrix.

Together, VKDPs display a wide variety of pivotal functions in development, home-
ostasis, and disease of cartilage and bone. Thereby, they represent promising targets for the
development of specific disease-modifying drugs. Nevertheless, the concepts summarized
here, have predominantly been developed in animal models and their potential translation
to the human system needs to be carefully investigated.
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