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Abstract

With recent advances in biotechnology, genome-wide association study (GWAS) has been widely used to identify

genetic variants that underlie human complex diseases and traits. In case-control GWAS, typical statistical strategy is

traditional logistical regression (LR) based on single-locus analysis. However, such a single-locus analysis leads to the

well-known multiplicity problem, with a risk of inflating type I error and reducing power. Dimension reduction-based

techniques, such as principal component-based logistic regression (PC-LR), partial least squares-based logistic regression

(PLS-LR), have recently gained much attention in the analysis of high dimensional genomic data. However, the perfor-

mance of these methods is still not clear, especially in GWAS. We conducted simulations and real data application to

compare the type I error and power of PC-LR, PLS-LR and LR applicable to GWAS within a defined single nucleotide

polymorphism (SNP) set region.We found that PC-LR and PLS can reasonably control type I error under null hypothesis.

On contrast, LR,which is corrected byBonferronimethod, wasmore conserved in all simulation settings. In particular, we

found that PC-LR and PLS-LR had comparable power and they both outperformed LR, especially when the causal SNP

was in high linkage disequilibrium with genotyped ones and with a small effective size in simulation. Based on SNP set

analysis, we applied all three methods to analyze non-small cell lung cancer GWAS data.
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Introduction

With the rapid development of high-throughput gen-

otyping technologies in recent years, genome-wide

association studies (GWAS) has emerged as popular

tools for identifying genetic variants involved in com-

plex diseases and traits
[1]
. GWAS have identified hun-

dreds of associations of common susceptibility loci

with more than 100 complex diseases or phenotypes,

including cardiovascular disease, cancer, Parkinson’s

disease and type 2 diabetes
[2-7]

.

Although our understanding of genetic basis of these

complex diseases and trait has been improved, there are

still many analytic challenges in GWAS
[8-9]

. Published

case-control GWAS typically used a single-locus logis-

tic regression (LR), in which each variant is tested indi-

vidually for association with a specific phenotype in the

whole genome. However, such a SNP-by-SNP analysis

leads to the well-knownmultiplicity problem, with a risk

of inflating type I error and reducing power
[10]
. One way

that was widely used to deal with this challenge is to per-

form correction, such as Bonferroni correction method,

which corrects the significance level of each testing and

controls the family-wide type I error. However, since

many single nucleotide polymorphisms (SNPs) are in

linkage disequilibrium (LD) with each other, this

approach is highly conservative as we showed in our

previous work
[11]
.

Another common strategy is to utilize dimension

reduction techniques, so as to improve power by using

information "borrowed" from correlated SNPs, and

reducing the unnecessary degree of freedom.

Dimension reduction techniques, such as principal

components analysis (PCA) or partial least squares

(PLS), have recently gained much attention in the ana-

lysis of high-dimensional genomic data. For a binary

dependent variable, Gauderman et al. introduced a

PC-based logistic regression (PC-LR) to assess whether

a gene region, represented by multiple SNPs, is asso-

ciated with disease
[12]

. It establishes a relationship

between the binary response variable and the selected

PCs of the explanatory variables. However, one impor-

tant limitation of PC-LR that commonly arises is that

the coefficients that make up each eigenvector lack

interpretation in detail.

The PLS method is another powerful approach for

the analysis of high-dimensional data. PLS regression

was introduced by Wold et al. and later developed

by many authors in recent years
[13-14]

. Marx proposed

PLS generalized linear regression (PLS-GLM) and

particular case of PLS logistic regression (PLS-LR)

for the binary output variable as an extension of PLS

regression
[15-16]

. In contrast to PC-LR which extracts

orthogonal PCs solely from explanatory variables,

PLS-LR creates orthogonal components by using the

existing correlations between explanatory and corre-

sponding response variable while also keeping most

of the variance of explanatory. Because it allows to

retain in model all variables with a stronger correlation

to the response variable, it is also referred to as a kind

of supervised method. PLS-GLM including PLS logis-

tic regression has been used in the field of gene expres-

sion microarray data and classification problems in the

last several years
[17-19]

.

PC-LR and PLS-LR all have been widely used in

genetic studies. An outstanding question, however, is

the relative performance among these methods.

Because of different algorithms and strategies, the per-

formance and effectiveness under different situations

of these methods may be different. Chun et al. compared

the performance of PLS linear regression and PC linear

regression
[20]
. By now, limited comparisons have been

conducted to evaluate and compare the performance of

these methods, especially in SNP sets based GWAS.

In this article, we compared PC-LR and PLS-LR for

SNP sets based association testing in GWAS. We also

included the standard LR for comparison. We first

reviewed these two methods. Then, we used the

HapMap project to simulate a set of population data.

Based on simulations, we assessed their performance

under various scenarios, considering significant level,

sample size, relative risk (RR) of disease susceptible

allele and disease loci. At last, we compared these

methods with a real GWAS data. This comparison

allows us to explore the limitation and the power of

these methods for association testing for GWAS.

Materials and methods

PC-based logistic regression (PC-LR)

Suppose that a SNP set includes p SNPs from n indi-
viduals within a gene region, where gi5 (gi1, gi2,...,gik)

T

denote genotype scores of the ith individual, each code

as 0, 1 or 2 for observed number of minor alleles in

additive mode. In our study, all genotypes were

assumed to be standardized with a mean of 0 and a stan-

dard deviation of 1. Case-control status for the subjects

is denoted by D (15affected, 05unaffected).

The basic idea of PCA is to discover linear projec-

tions of the correlated SNPs with maximum variance,

and use principal components (PCs) that are orthogo-

nal and uncorrelated to each other to represent genetic

variation in a gene region.

Let Vp6p denote the variance-covariance matrix of

the standardized SNPs set, and Ep6p5(e1,e2,...,ep)
denote p6p-dimension eigenvectors of Vp6p. The p
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eigenvalues are denoted by l~(l1,l2,:::,lp). For the

ith individual, the principal components are:

PCi1~eT
1

gi~e11gi1ze12gi2z � � �ze1pgip

PCi2~eT
2

gi~e21gi1ze22gi2z � � �ze2pgip

..

.

PCip~eT
p

gi~ep1gi1zep2gi2z � � �zeppgip

(1)

such that the h-th eigenvalue (lh) corresponds to the

h-th eigenvector (eh), and the p eigenvector elements

for each eigenvalue represent the coefficients of p
SNPs for each linear combination. Eigenvectors are

determined to maximize the variance of PCh with the

constrain that eTh eh~1 and eTh eh0~0, for h=h0. The

later constrain means that the covariance between PCh

and PCh’ is equal to 0, for h=h0.

The first PC, which is independent with the other

PCs, represents the linear combination of SNPs that

explains the largest fraction of the genetic variability

in the gene region. Similarly, PC2 explains the second

largest amount of SNP variation, and so forth

(l1wl2w:::wlp).

Given:
Xp

h~1
Var(PCh)~l1zl2z � � � lp (2)

The proportion of the overall variation in each PC

can be explained by:

lh=
Xp

h~1
lh (3)

As SNPs in the set have substantial correlation

among them, the first few PCs will account for

most of the variation in the SNPs set. Thus, only a

subset of PCs (PC1, PC2,..., PCk, k,p) in which

cumulative contribution is greater than a threshold

need to be tested for association in the multiple logistic

regression model:

logitP (D~1)~b0zb1PC1z:::zbkPCk (4)

A k-d.f. likelihood ratio test of mode (4) versus

logitP (D~1)~b0 provides an omnibus test of

whether the SNPs set, as defined by the subset k of

PCs, explains a significant proportion of the genetic

variation in trait D. The value of k can be chosen such

that the cumulative contributing proportion of the total

variability explained by the first k PCs exceeds some

threshold. In our study, different thresholds, such as

80%, 60% and 40%, were performed to denote the

PC-LR with the k PCs explaining the cumulative

contributing proportion of the total variation, respec-

tively.

PLS logistic regression (PLS-LR)

In the PLS-LR model, a set of latent uncorrelated

variables (PLS components) were defined by linear

spans of the original predictors, and then were per-

formed as covariates of the logistic regression model.

These linear spans are taken into account the relation-

ship between the original explanatory variables and

the response, and are usually obtained by nonlinear

iterative partial least squares (NIPALS) algorithm
[15]
.

PLS-LR model of D on gi 5 (gi1, gi2,...,gik) with m
PLS components can be written as

P (D~1)~
eb0zb1t1zb2t2z���bmtm

1zeb0zb1t1zb2t2z���bmtm
(5)

In model (5), th are the orthogonal PLS components

which can be expressed by original variables (gi), and

bh are partial coefficients of the m PLS components.

PLS-LR can be described by a four-step algorithm:

(1) Compute a set of PLS components;
(2) Logistic regression of the response variable on the

m retained PLS components;
(3) Formulation of the PLS-LR in terms of the original

explanatory variables;
(4) Bootstrap validation of coefficients in the final

model of PLS-LR.
The algorithm for computing a set of PLS compo-

nents follows the next steps:

(1) Computation of the first PLS component t1. To
obtain the first PLS component, we will compute
the partial regression coefficient a1j of gj in the
logistic regression of D on gj for each variable gj,
j51,2,..., p. Then, the column vector a1 made by
a1j’s are normalized by w1~a1= a1k k, and we will
define the first PLS component as t1~gw1~gw�1.

(2) Computation of the second PLS component t2. To
obtain the second PLS component, in a similar way,
we will compute the partial regression coefficient
a2j of gj in the logistic regression of D on t1and gj
for each variable gj, j51,2,...,p. The normalized w2

is estimated by a2 with w2~a2= a2k k. Then, we will
compute the residual matrix E1 in the linear
regression of gj on t1: gj~p1jt1ze1j, in which p1j
is the partial coefficient of the t1, and e1j are the
residuals in the model. e11, e12,:::, e1j are the
elements in the each column of residual matrix E1,
j51,2,..., p. The second component with t2~E1w2

is computed, and expressed in terms of g: t2~gw�2,
in which w�2~(I{w1p1)w2.
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(3) Computation of the h
th
PLS component th. Given the

PLS components t1, t2,:::, th-1 have been yielded
in the previous steps, the component th is obtained
by iterating the search for the second component,
and can be expressed by th~gw�h, where
w�h~(I{

Ph{1
i~1 w�i pi)wh.

In our study, the computation of PLS components is

simplified by setting those non-significant partial

regression coefficients ahj to 0. Thus, only variables

that are significantly associated with D will then contri-

bute to the computation of PLS components. The num-

ber m of PLS components to be retained are chosen by

observing that the component tm+1 is not significant

due to none of the coefficients am+1,j is significantly

different from 0.

If m PLS components are selected and expressed by

original variables gj, the statistical significance of each

variable gj in model (5) is done under a nonparametric

framework by using a ‘‘balanced bootstrap’’ resam-

pling method
[16]
. A large, pre-specified number of sub-

jects as the original sample were generated via

resampling with replacement. All bootstrap samples

together provided empirical estimation for the coeffi-

cients and their confidence intervals (CI). If the

100(1-a)% CI of each SNP’s standardized regression

coefficient well below or above 0, it can be considered

statistically significant.

Data simulation

Simulation studies were conducted to compare the

performance of PC-LR andPLS-LR. Their performances

were also compared with a single-locus based LR.

Phased haplotype data sets (CHB+JPT, Han Chinese

in Beijing, China and Japanese in Tokyo, Japan) were

downloaded from the HapMap web site (http://

snp.cshl.org, Phase III, release 2, on NCBI B36 assem-

bly). We selected CLPTM1-like (CLPTM1L) gene region
to generate simulating genotype data. CLPTM1L, encod-

ing cleft lip and palate transmembrane protein 1-like pro-

tein, is a 27.35 kb-long-gene located at 5p13.33. The

region including ¡ 20 kb of the CLPTM1L gene is

located at Chr5: 1,351,007..1,418,002, including 29

SNPs. In our simulations, 4 of 29 SNPs with minor allele

frequency (MAF) less than 0.01 were deleted and the left

25 SNPs were used.

Based on the HapMap phased haplotype data from the

CHB+JPT populations using HAPGEN2
[21]
, 100,000

cases and 100,000 controls were generated and combined

to form a hypothetical population under the null hypoth-

esis (H0) and alternative hypothesis (H1). From the popu-

lation, case and control samples were randomly selected

with different sample sizes N (N/2 cases and N/2 controls,

N 5 4,000, 8,000, ..., 20,000). Under H0, the relative risk

per allele was set as 1.0 to assess type I error. Under H1,

we set the different levels of relative risks (1.2, 1.4, 1.6

and 1.8 per allele) to assess the power. The SNPs in this

region were coded according to the additive genetic

model.

To investigate the performance of the three methods

on different causal SNPs with different MAF and dif-

ferent LD patterns, each of the 25 SNPs was defined

as the causal variant. To ensure that the simulations

were more realistic, although all 25 HapMap SNPs

were generated, only 10 of them, which were directly

genotyped by Affi6.0 chip, were tested by the three

methods.

From the 10 SNPs, we sampled the simulation

data and performed PC-LR, PLS-LR using the R (ver-

sion 2.15) packages plsRglm (http://cran.r-project.

org/web/packages/plsRglm/index.html), and R func-

tions of prcomp and glm. Under H0, we repeated

5,000 simulations at the significant level of 0.05.

Under H1, for each model with a given relative risk,

we repeated 1,000 simulations at four significant levels

(0.05, 0.01, 1E-5, and 1E-7). To control the overall

type I error of the single-locus LR testing in our simula-

tion, Bonferroni correction was performed to set the

significance level of the test at each locus to a/the num-

ber of SNP in the SNP set. Measurements included

empirical type I error rate and test power.

Application

To demonstrate the applicability and power of

PC-LR and PLS-LR on real data, we applied these

two methods to real GWAS data and contrast results

with those found under single-locus logistic regression

analysis.

Table 1 Empirical type I error rates of principal

component-based logistic regression (PC-LR), PLS

logistic regression (PLS-LR) and single-locus logistic

regression (LR)

Sample

size (n) LR

PC-LR

80% 60% 40% PLS-LR

4000 0.0332 0.0498 0.0498 0.0511 0.0581

8000 0.0323 0.0498 0.0475 0.0474 0.0578

12000 0.0326 0.0503 0.0497 0.0498 0.0581

16000 0.0306 0.0473 0.0469 0.0444 0.0538

20000 0.0293 0.0468 0.0438 0.0421 0.0545

Note: The type I error rates that greatly deviate from the nominal value

(0.05) are highlighted by using italics font. Data simulated based on

HapMap haplotype data by HAPGEN2. All results based on 5,000

simulations. Genetic model: additive mode.
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We mainly focused on two gene regions extracted

form a non-small cell lung cancer GWAS dataset
[6]
.

Details of participant recruitment for the study have

been described previously
[6]
. This dataset includes

5,408 subjects (2,331 individuals with lung cancer

and 3,077 controls). DNA was extracted from whole

blood and genotype by the Affymetrix 6.0 Quad chip.

A total of 570,373 SNPs passed the general quality

control
[6]
. The first intergenic region is 55 kb long

between MIPEP and TNFRSF19 in 13q12.12, which

includes 21 SNPs. We also partitioned the 21 SNPs

into 5 SNPs sets based on the haplotype blocks

defined by Haploview software
[22]
. The second region

is 275 kb long in 3q28, which includes 76 SNPs

within the region of tumor protein p63 (TP63) gene.
The 76 SNPs were classified into 16 SNP sets in

the same way. These regions were reported to be in

association with lung cancer
[6,23]

. The two regions

were then analyzed by PC-LR, PLS-LR and LR,

respectively.

Results

Empirical type I error rate

The empirical type I error rates of PC-LR, PLS-LR

and LR under different nominal levels and sample

sizes are shown in Table 1. The simulation results

indicated that the type I error rates of PC-LR and

PLS-LR were close to the nominal values (a50.05)

under different sample sizes, which showed that PC-

LR and PLS-LR performed well under null hypothesis.

In contrast , LR was conservative after using

Bonferroni correction under all different scenarios.

Empirical test power

We present the empirical power results of all meth-

ods based on CLPTM1L gene simulation. Fig. 1

shows the powers of the three methods under different

nominal levels and relative risks (RR) at the sample

size of 4,000. When the 7
th
SNP (rs6554759, MAF:

0.05) was defined as causal variant, all of these meth-

ods were less powerful when RR was less than 1.4 or at

the significance levels of 1E-5 and 1E-7. PC-LR (40%)

and PC-LR (60%) showed the lowest power, especially

at the significant levels of 0.05 and 0.01. In the follow-

ing comparisons, only the results at the significant

level of 0.05 are presented.

When the single causal allele had a high allele fre-

quency (such as the 11
th
SNP in our simulation:

rs401681, MAF: 0.32), increased statistical power

was found in all methods. LR performed the best and

PLS the worst. Both PC-LR and PLS-LR performed

worse than the single-locus LR method, although

PLS-LR and PC-LR used correlation information to

find the best linear combination. In general, it showed

that LR was more powerful than PC-LR and PLS-LR at

these two loci with a high MAF.

Fig. 2 shows the powers of three methods under dif-

ferent sample sizes at the given RR of 1.2 and 1.4. And

then, the powers under different relative risks at the

given sample size of 4,000 are shown in Fig. 3. As

expected, the powers were increased with sample size

and relative risk level for the three methods.

Furthermore, the powers of LR, PC-LR (80%) and

PLS-LR were significantly higher than those of PC-

LR (40%) and PC-LR (60%) under the different sample

sizes and relative risks (Fig. 2). When RR was less

than 1.4, PLS-LR, LR and PC-LR (80%) showed com-

parative power. At higher RR (1.6 and 1.8), LR and

PC-LR (80%) showed greater power than others

(Fig. 3).

The empirical power results of all models are shown

in the top panel of Fig. 4, at the given sample size of

4,000 and RR of 1.2, when each of the 25 SNPs was

set as the causal variant based on CLPTM1L gene. It

illustrates the relationship between the test power and

the LD structure as well as MAF.

In general, PLS-LR and PC-LR (80%) performed

similarly at most causal locus. Interestingly, the meth-

ods utilizing combinations of several SNPs performed

better than the single-locus LR method especially in

strong LD region (e.g. 12
th
to 27

th
loci), suggesting that

any type of utilization of correlation information across

several SNPs might help to increase the power. PC-LR

(40%) performed the best in strong LD locus (5
th
to 6

th
,

12
th
to 27

th
). However, if the causal SNP is in weak LD

with the genotyped SNPs or in loci with lowest MAF,

PC-LR (40%) performed the worst among all methods,

such as the 3
th
, 7

th
, 28

th
and 29

th
loci.

Application

The least p-value results in -log10 scale of PC-LR and

single-locus LR for each loci and SNPs sets of the real

GWAS data analysis are shown on the top panels in

Fig. 5 and Fig. 6. For comparison, the CIs of PLS-

LR standardized coefficients of all SNPs in the regions

are shown on the bottom panel.

For region 1, rs753955 (the 14
th
loci) from intergenic

region between MIPEP and TNFRSF19 yielded the

least p-value of 3.54E-07 for LR method. Based on

whole region analyzing unit, the least p-value of PC-

LR (3.63E-05) happened when the PCs in the model

explained 80% of the total variation. For the haplotype

blocks based SNPs sets analysis, block 4 including

rs753955 showed the least p-value (1.71E-06) of

302 Yi H et al. J Biomed Res, 2015, 29(4):298-307
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Fig. 2 The powers of principal component-based logistic regression (PC-LR), PLS logistic regression (PLS-LR) and single-locus logistic

regression (LR) under different sample sizes at the given relative risk of 1.2 and 1.4 with the 7
th
SNP (rs6554759, MAF: 0.053) on

CLPTM1L gene as the causal variant. The horizontal axis (x-axis) denotes the sample sizes and the vertical axis (y-axis) denotes the powers of PC-LR

(80%), PC-LR (60%), PC-LR (40%), PLS-LR and LR. Figure (A) and (B) depict the results obtained with the RR of 1.2 and 1.4, respectively.
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variant based on CLPTM1L gene. The top plot (A) shows the powers (y-axis) of PC-LR (80%), PC-LR (60%), PC-LR (40%), PLS-LR and LR

over the positions (x-axis) of the causal SNPs. The triangles in the plot are the locations of the genotyped SNPs. The bar-plot in the middle panel (B)

shows the MAFs of all SNPs. The pair-wise R
2
structure of the 25 SNPs is shown by the heat plot in the bottom of the figure (C), in which the gray scale

indicates the value of R
2
(15black, 05white).

Fig. 3 The powers of principal

component-based logistic regres-

sion (PC-LR), PLS logistic regres-

sion (PLS-LR) and single-locus

logistic regression (LR) under dif-

ferent relative risks at the given

sample size of 4,000 when the 7
th

SNP (rs6554759, MAF: 0.053) on

CLPTM1L gene as the causal var-

iant. The horizontal axis (x-axis) denotes

the relative risks and the vertical axis (y-

axis) denotes the powers of PC-LR (80%),

PC-LR (60%), PC-LR (40%), PLS-LR

and LR.
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PC-LR (40%). PLS-LR detected the significance of the

14th loci (rs753955) at the level of 1E-6.

For region 2, the most highly ranked SNP was

rs4488809 (the 1
st
loci) from TP63 gene, with the least

p-value of 2.61E-06 by single-locus LR. The p-value of
PC-LR(40%) for the whole region was 1.51E-04. And

the block 1 showed the least P-value (2.49E-06) of

PC-LR among 16 SNPs sets. PLS-LR found that more

locus showed the significance than other methods at the

same level, including the 1
st
, 38

th
, 38

th
, 41

th
, 57

th
, 63

th
, 67

th

and 70
th
loci.

Discussion

High multicollinearity and multiple testing are

major concerns for the analysis of GWAS
[24-25]

.

Plenty of methods have been developed to overcome

these problems
[26-28]

. In recent years, dimension reduc-

tion-based methods, such as PCA and PLS, have been

proposed to avoid the collinearity among SNPs, and

reduce positive rate caused by multiple testing. Many

studies suggested that utilizing the dimension reduc-

tion methods is effective in genetic association

study
[29-31]

. Chun et al. compared PLS regression with

PC regression in the framework of linear regression

for continuous response variables
[32]
. However, in the

case-control GWAS, the binary response variables

are often used. In this situation, a logistic regression

method in which the binary response is regressed on

the PCs is used instead of linear model, such as PC-

LR and PLS-LR.

In this study, we propose to use PC-LR and PLS-LR

as dimension reduction-based methods for the SNPs

sets based analysis of case-control GWAS. We com-

pare their performance with the single-locus analysis

through extensive simulation studies using datasets

generated from the International HapMap Project,

and we also applied these two methods to two regions

extracted form a real GWAS data on NSCLC.

In general, the simulation results demonstrate that all

methods have type I error that is close to or lower than

the nominal levels. Among all methods, PC-LR and

PLS-LR perform well in terms of type I error under null

hypothesis. In contrast, LR corrected by Bonferroni

method is more conserved in all simulation settings.

In this study, the power of PC-LR is influenced by

the MAF. When the MAF is relative rare (e.g. 0.05),

the power of PC-LR (40%) is the lowest among

all methods (Fig. 1). This may be due to the latent

variable identified by the first few PCs that may be

unrelated to outcome. It suggests that a few PCs that

explain very little proportion of the total variation will

lose power to detect genetic variants with lower MAF.
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Fig. 5 The SNP sets based analysis results of principal component-based logistic regression (PC-LR), PLS logistic regression

(PLS-LR) and single-locus logistic regression (LR) on the MIPEP-TNFRSF19 gene region from the non-small cell lung cancer

GWAS. The top plot (A) shows the p-values in -log10(p-value) scale (y-axis) of single-locus LR and SNPs sets based PC-LR over the locations (x-axis)

of 21 SNPs. The haplotype block-based SNPs sets are showed as boxes on the top. For PC-LR method, the p-values of all SNPs in the same SNPs set are

all denoted by the same p-value of the SNPs set. The bottom plot (B) shows the PLS-LR confidence intervals of standardized coefficients (y-axis) over

the locations (x-axis) of 21 SNPs. w: significant at the level of 1E-6.
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On the contrary, when the MAF of a causal allele is

high (e.g. 0.32), PC-LR (40%) is most powerful among

all PC-LR methods (Fig. 1). This may be due to the

fact that when first a few PCs in the model have

already explained the difference between cases and

controls, including more PCs will not improve the

model, but instead exhaust more degrees of freedom

and decrease the test power slightly.

Throughout the simulation study, the results sug-

gest that without knowing the truth, no method

always can identify the most associations in every

scenario. However, PC-LR and PLS-LR perform bet-

ter than LR when the causal SNP is in high LD with

genotyped ones (Fig. 4). This is because single-locus

LR only utilizes one SNP in the analysis and there is

no room to utilize the correlation among SNPs when

doing so may boost the power. On contrast, PC-LR

and PLS-LR are more powerful than LR at the

strong LD locus, such as the causal loci at one of

the 5
th
-6

th
and the 12

th
-27

th
. This demonstrates that

PC-LR and PLS-LR have the ability of ‘‘borrowing’’

information to increase the statistical power based on

LD. Therefore, we recommend the use of dimension

reduction techniques, such as PC-LR or PLS-LR, in

case-control GWAS. When the causal SNP is in poor

LD with others and the cumulative contributing pro-

portion of the total variability is 40%, the power of

PC-LR decreased dramatically. Therefore, it is

recommended by our results that a plenty of higher

cumulative contributing proportion (such as 80%)

can be used especially in a complex LD structure

for PC-LR.

There are several limitations about our studies. Firstly,

only one causal SNP is considered in the present simula-

tion. Secondly, we find that PC-LR and PLS-LR have

comparable power and they both outperform LR, espe-

cially in a small effective size (RR51.2) and strong LD

structure. However, PLS-LR is significantly slower than

the other methods due to the bootstrap step. That may

hamper the use of PLS-LR in real GWAS. Thirdly, more

complicated situations, such as gene-gene interaction,

goodness of fit and accuracy of parameter estimation of

PLS, are not included in the study. Further investigations

are needed to address these issues.
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[13] Rosipal R, Krämer N. Overview and Recent Advances in

Partial Least Squares. In: : Saunders C, Grobelnik M,

Gunn S, Shawe-Taylor J, Editors. Subspace, Latent
Structure and Feature Selection, New York: Springer

Berlin Heidelberg, 2006:34-51.

[14] Chun H, Keles S. Sparse partial least squares regression

for simultaneous dimension reduction and variable

selection[J]. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 2010,72(1):3-25.

[15] Marx BD. Iteratively Reweighted Partial Least Squares

Estimation for Generalized Linear Regression[J].

Technometrics, 1996,38(4):374-381.
[16] Bastien P, Vinzi VE, Tenenhaus M. PLS generalised lin-

ear regression[J]. Computational Statistics & Data
Analysis, 2005,48(1):17-46.

[17] Boulesteix AL, Strimmer K. Partial least squares: a versa-

tile tool for the analysis of high-dimensional genomic

data[J]. Brief Bioinform, 2007,8(1):32-44.
[18] Fort G, Lambert-Lacroix S. Classification using partial

least squares with penalized logistic regression[J]. Bio-
informatics, 2005,21(7):1104-1111.

[19] Nygard S, Borgan �, Lingjærde O, Størvold H. Partial

least squares Cox regression for genome-wide data[J].

Lifetime Data Analysis, 2008,14(2):179-195.
[20] Chun H, Ballard DH, Cho J, et al. Identification of asso-

ciation between disease and multiple markers via sparse

partial least-squares regression[J]. Genetic Epidemiology,
2011,35(6):479-486.

[21] SuZ,Marchini J, Donnelly P.HAPGEN2: simulation ofmul-

tiple disease SNPs[J]. Bioinformatics, 2011,27(16):2304-
2305.

[22] Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis

and visualization of LD and haplotype maps[J].

Bioinformatics, 2005,21(2):263-265.
[23] Miki D, Kubo M, Takahashi A, et al. Variation in TP63

is associated with lung adenocarcinoma susceptibility in

Japanese and Korean populations[J]. Nat Genet ,
2010,42(10):893-896.

[24] Hayes B. Overview of Statistical Methods for Genome-

Wide Association Studies (GWAS)[J]. Methods Mol
Biol, 2013,1019:149-169.

[25] Watanabe RM. Statistical issues in gene association

studies[J]. Methods Mol Biol, 2011,700:17-36.
[26] He Q, Lin DY. A variable selection method for genome-

wide association studies[J]. Bioinformatics, 2011,27(1):
1-8.

[27] Fridley BL, Biernacka JM. Gene set analysis of SNP data:

benefits, challenges, and future directions[J]. Eur J Hum
Genet, 2011,19(8):837-843.

[28] Wang X, Morris NJ, Schaid DJ, et al. Power of Single- vs.

Multi-Marker Tests of Association[J]. Genetic Epide-
miology, 2012,36(5):480-487.

[29] Wang T, Ho G, Ye K, et al. A partial least-square

approach for modeling gene-gene and gene-environment

interactions when multiple markers are genotyped[J].

Genet Epidemiol, 2009,33(1):6-15.
[30] Chen X, Wang L, Hu B, et al. Pathway-based analysis for

genome-wide association studies using supervised princi-

pal components[J]. Genet Epidemiol, 2010,34(7):716-724.
[31] Mei H, Chen W, Dellinger A, He J, Wang M, Yau C, et al.

Principal-component-based multivariate regression for

genetic association studies of metabolic syndrome

components[J]. BMC Genet, 2010,11:100.
[32] Chun H, Ballard DH, Cho J, et al. Identification of asso-

ciation between disease and multiple markers via sparse

partial least-squares regression[J]. Genet Epidemiol, 2011;
35(6):479-486.

Dimension reduction-based logistic regression models for case-control GWAS 307


