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1  |  INTRODUC TION

Brain-state-dependent stimulation (BSDS) during slow-wave sleep 
(SWS) is a non-invasive method to increase or disrupt slow-wave ac-
tivity (SWA) of SWS (Fehér et al., 2021). The method enjoys growing 

scientific interest due to the health-promoting role of SWS across 
many domains, such as memory, clearance of metabolic waste or 
mental health (Léger et al., 2018). Particularly, BSDS is discussed as a 
preventative and therapeutic tool to counteract cognitive decline in 
aging (Wunderlin et al., 2020).
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Summary
Brain-state-dependent stimulation during slow-wave sleep is a promising tool for 
the treatment of psychiatric and neurodegenerative diseases. A widely used slow-
wave prediction algorithm required for brain-state-dependent stimulation is based 
on a specific amplitude threshold in the electroencephalogram. However, due to 
decreased slow-wave amplitudes in aging and psychiatric conditions, this approach 
might miss many slow-waves because they do not fulfill the amplitude criterion. Here, 
we compared slow-wave peaks predicted via an amplitude-based versus a multidi-
mensional approach using a topographical template of slow-wave peaks in 21 young 
and 21 older healthy adults. We validate predictions against the gold-standard of of-
fline detected peaks. Multidimensionally predicted peaks resemble the gold-standard 
regarding spatiotemporal dynamics but exhibit lower peak amplitudes. Amplitude-
based prediction, by contrast, is less sensitive, less precise and – especially in the 
older group – predicts peaks that differ from the gold-standard regarding spatiotem-
poral dynamics. Our results suggest that amplitude-based slow-wave peak prediction 
might not always be the ideal choice. This is particularly the case in populations with 
reduced slow-wave amplitudes, like older adults or psychiatric patients. We recom-
mend the use of multidimensional prediction, especially in studies targeted at popula-
tions other than young and healthy individuals.

K E Y W O R D S
acoustic stimulation, aging, amplitude, slow-wave prediction, slow-wave sleep, topographic 
maps

[Corrections added on 11 and 21 April 
2022, after first online publication: 
Three instances of the unit "ms μV-1" 
was corrected to "ms × μV" under the 
Microstate Analysis subsection. The 
Ruch et al. reference was updated. CSAL 
funding statement has been added.]  

www.wileyonlinelibrary.com/journal/jsr
mailto:﻿
https://orcid.org/0000-0001-8782-2821
https://orcid.org/0000-0002-1472-4638
https://orcid.org/0000-0002-3073-1002
https://orcid.org/0000-0001-9809-0275
https://orcid.org/0000-0003-3043-2106
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:marina.wunderlin@upd.unibe.ch


2 of 12  |     WUNDERLIN et al.

Brain-state-dependent stimulation relies on algorithms that 
monitor brain activity via electroencephalogram (EEG) measure-
ments, detect a specific phase of the oscillatory waveform, most 
commonly the slow-wave (SW) peak, and apply acoustic stimuli fol-
lowing either a fixed time-interval or when certain criteria inherent 
to the signal are met (Ngo et al., 2013). A widely used method to 
detect SW-peaks is to wait for the EEG signal at a frontal location 
to undercut an amplitude threshold with the expectation that a suf-
ficiently strong signal valley is followed by a signal peak (Ngo et al., 
2013; Figure 1). By continuously hitting SW-peaks, BSDS can be 
used to increase the amplitude of endogenous SWs as well as induc-
ing new trains of SWs.

Slow-waves serve a key role in the overnight consolidation of 
memory traces (Rasch & Born, 2013). One goal of BSDS is to pro-
mote memory consolidation by creating more windows of opportu-
nity for consolidation through entrainment of SWs. Several studies 
show that overnight memory consolidation is increased in a BSDS 
versus a sham-controlled condition (Wunderlin et al., 2021), al-
though this effect is not consistently found (Schneider et al., 2020). 
So far, most experiments were conducted in young adults and 
only few in older adults. However, due to natural and pathological 
memory decline in aging, older individuals could arguably profit 
the most from an intervention boosting SWs and memory perfor-
mance. In a recent meta-analysis, we found a more robust effect of 
BSDS on memory consolidation in a subgroup model focusing on 
young individuals compared with a model including all age groups 
(Wunderlin et al., 2021). We argue that some specifics of older 
adults’ sleep physiology may render it more difficult to successfully 
apply BSDS. Schneider et al. (2020) found that BSDS entrained SWs 
in both younger and older groups, but the magnitude of the effect 

was drastically impeded in the older group. Furthermore, overnight 
memory consolidation was only increased in the younger, but not in 
the older group. A different BSDS study found an increase in over-
night memory consolidation in healthy elderlies (Papalambros et al., 
2017). A potential reason for the discrepancy in memory effects 
could be due to the arbitrary amplitude thresholds in SW-prediction 
algorithms (Wunderlin et al., 2021). While Papalambros et al. (2017) 
used an amplitude threshold of −40 µV, Schneider et al. (2020) used 
a threshold of −70 µV (adapted in some cases). SW-amplitudes are 
reduced in older compared with younger adults (Colrain et al., 2010). 
Consequently, an amplitude-dependent SW-prediction algorithm 
might miss many SWs in older individuals, missing critical windows 
of opportunity for BSDS, resulting in insufficient stimulation for ef-
fects on memory consolidation to unfold.

Canonically, SW-peaks are represented by a topographic state 
that shows frontal dominance (Dang-Vu et al., 2008; Züst et al., 
2019). This topographical representation is preserved in aging ir-
respective of decreased amplitudes (Muehlroth & Werkle-Bergner, 
2019). Therefore, a prediction approach focusing on the topographic 
representation of a SW-peak, rather than amplitude thresholds, 
might be more adequate, especially in populations with decreased 
amplitudes, such as in aging or psychiatric patients.

Here, we compare the performance of two distinct algorithms in 
21 young versus 21 old individuals: (1) a one-dimensional algorithm im-
posing amplitude thresholds in a frontal channel (Ngo et al., 2013); and 
(2) a multidimensional, largely amplitude-independent algorithm based 
on the correlation of the ongoing signal with a topographical template 
representing a canonical SW-peak (topographic targeting of slow oscil-
lations; Ruch et al., 2021). We analyse the number of predictions and 
spatiotemporal dynamics of the predicted peaks and compare them 

F I G U R E  1 Types of slow-wave (SW)-peak prediction/detection algorithms. Left panel: The amplitude-based online prediction algorithm is 
based on the detection of specific negative thresholds (grey) corresponding to a valley of a SW. The two thresholds used here are indicated 
(conservative: −80 µV; liberal: −40 µV). Whenever the signal in one frontal electrode (Fz) passed the threshold, a prediction was scored and 
a peak was marked after a pre-calibrated post-prediction delay (green). The threshold is perpetually set to the lowest point in the most 
recent 2 s of data if this point is lower than the chosen default threshold. Centre panel: The template-based online prediction algorithm is 
based on detecting amplitude-independent signal increases and magnitude-independent increases in the correlation of the ongoing signal 
with a canonical template map (“Template”) of a SW-peak. The map “Template” is a visualization of the actual template used. The higher 
the correlation, the closer the signal is to a SW-peak. Additionally, the most recent 500 ms of data need to exceed a minimum range (grey 
highlights) for predictions to be allowed. Indicated are two of the three minimum ranges used here (conservative: 40 µV; liberal: 20 µV). 
Whenever both the correlation towards the canonical template as well as overall signal amplitude were increasing in more than 75% of the 
most recent 120 ms of data, a prediction was scored and a peak was marked after a pre-calibrated post-prediction delay (green). Right panel: 
Offline detection of SW-peaks using a well-established algorithm (Mölle et al., 2009). First, consecutive positive-to-negative zero-crossings 
are detected in SW-filtered data. The lowest and highest samples within those zero-crossings are marked, and a peak-sample is determined 
to be a SW-peak if the interval between zero-crossings is within 0.9 and 2 s, and if the amplitude between the lowest and highest sample is 
greater than 66% of the average amplitudes of all candidate waves
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with a well-established offline detection algorithm (Mölle et al., 2009). 
Our goal is to reliably detect SW-peaks with a method that generalizes 
to settings outside of young and healthy individuals.

2  |  METHODS

2.1  |  Sample

The data consist of whole-night polysomnographic measurements 
of 21  healthy younger adults (mean age: 22.3 years, 6  male) and 
21 healthy older adults (mean age: 69.1 years, 3 male). All partici-
pants underwent a screening and adaptation night to ensure the ab-
sence of sleep pathologies such as apnea or restless legs syndrome. 
None of the participants exhibited subjective or objective sleep 
abnormalities. The data constitute baseline recordings (no interven-
tions) of ongoing studies at the University Hospital of Psychiatry and 
Psychotherapy (UPD), Bern. EEG was recorded using a 128-channel 
MicroCel Geodesic Sensor net (400 series Geodesic EEG SystemTM) 
from Electrical Geodesics (EGI). The data were recorded at 500 Hz 
referenced to Cz. Polysomnographic scoring of sleep stages accord-
ing to the American Academy of Sleep Medicine (AASM; Iber, 2007) 
was performed by an experienced and certified rater.

2.2  |  SW-peak prediction algorithms

Two types of online SW-peak prediction algorithms were compared. 
One is based on detecting a specific negative amplitude in the online 
EEG signal in one frontal electrode, Fz (amplitude-based algorithm, 
A), and the other is based on the correlation of the online signal in 
all 128 electrodes with a canonical topographic representation of a 
SW-peak (template-based algorithm, T). Both algorithms were im-
plemented in MATLAB (version R2019a, The MathWorks, Natick, 
Massachusetts, USA) and were run on pre-recorded data lightly 
pre-processed using the PREP-pipeline (Bigdely-Shamlo et al., 2015) 
implemented in the EEGLAB environment (v2019.1; Delorme & 
Makeig, 2004) for MATLAB. The main purpose of applying the PREP 
pipeline before running the algorithms was bad channel control, 
mimicking supervision and quality assurance by an experimenter 
while still maintaining realistic conditions of an online setting includ-
ing sporadic artefacts, for example due to movement. Both online al-
gorithms used a set of internal artefact gates to prevent predictions 
if the streamed signal exceeded artefact-like amplitudes or signal-
jumps. After each prediction, a refractory period of 800 ms was ap-
plied to prevent further predictions. See Supplementary Material 
(Section 1) for a more detailed description of these implementations.

2.2.1  |  Amplitude-based algorithm

The amplitude-based (A) algorithm was implemented according to 
previous descriptions (Harrington et al., 2021; Ngo et al., 2013). This 

is one of the most widely used BSDS algorithms, and has remained 
conceptually largely unchanged since its original documentation 
(Ngo et al., 2013). The SW-passband filtered (0.25–4 Hz) EEG signal 
at electrode Fz, referenced to pooled mastoids, was streamed into a 
5-s buffer. If the most recent data sample was below a continuously 
updating detection threshold, the occurrence of a SW-peak was pre-
dicted (Figure 1). Every 2 s, the 5-s buffer was scanned for its mini-
mum value. If this minimum was smaller than a default threshold, the 
detection threshold was updated to this new minimum value. The 
algorithm was run using previously reported default thresholds of 
−80 µV (conservative; Harrington et al., 2021; Ngo et al., 2013) and 
−40 µV (liberal; Garcia-Molina et al., 2018; Papalambros et al., 2017), 
in the following sections referred to as “A-80” and “A-40”. After a pre-
diction, a per-subject fixed delay was applied before scoring a peak 
prediction (see Section 2.2.4 ‘Peak prediction’ for a detailed descrip-
tion of how this delay was determined).

2.2.2  |  Template-based algorithm

The template-based (T) algorithm is an adaptation of a novel algo-
rithm described elsewhere in more detail (Ruch et al., 2021; https://
zenodo.org/recor​d/5661989). The broadly filtered (0.25–45  Hz) 
EEG signal of all 128 channels, referenced to the global average, 
was streamed into a 2-s buffer. During each iteration of the algo-
rithm loop, the most recent data of the buffer were analysed in 
three parts, all of which needed to be Boolean “true” for a SW-peak 
prediction (Figure 1): (1) analysis for rising voltage in frontal chan-
nels within the most recent 120 ms of data; (2) analysis for topo-
graphic correlation with a canonical template map of a SW-peak 
within the most recent 120 ms of data; and (3) analysis of minimum 
range within the most recent 500 ms of data. For part 1, the signals 
of four frontal channels (F3, F4, AF1, AF2) were averaged, then the 
sign of the approximate derivative was calculated, then averaged 
again. This resulted in an amplitude-independent measure of how 
many consecutive samples within the most recent 120 ms were ris-
ing or falling, respectively, ranging from −1 (all samples were fall-
ing) to 1 (all samples were rising). If this value was larger than 0.75, 
part 1 of the signal analysis was set to “true”. For part 2, the same 
procedure was applied to the Pearson correlation of the channels 
in the empirical data with the channels in the canonical template at 
each sample, returning one Pearson r-value per sample. Of these 
120 consecutive r-values, the average of the sign of the approxi-
mate derivative was calculated. Analogously to part 1, this yields 
a magnitude-free measure of how many consecutive correlation r-
values were rising or falling (−1 to 1). If this value was larger than 
0.75, the algorithm assumed the signal was developing towards a 
SW-peak and part 2 of the signal analysis was set to “true”. The ca-
nonical template was provided by the original creators of this algo-
rithm (Ruch et al., 2021), and is based on the post hoc detection of 
SWs in 39 datasets of SWS. Part 3 of the signal analysis was set to 
“true” if the range of the data was equal or above a pre-determined 
threshold (minimum range criterion). As the other two parts of 

https://zenodo.org/record/5661989
https://zenodo.org/record/5661989
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signal analysis are completely amplitude-independent, part 3 was 
needed to reduce spurious predictions in very-low-amplitude data. 
We used three values for the minimum range criterion based on 
observations of algorithm performance in pilot data: 40  µV (con-
servative), 30 µV (intermediate) and 20 µV (liberal), referred to as 
“T40”, “T30” and “T20” in the following sections.

2.2.3  |  Offline detection algorithm and 
visual detection

While the A- and T-based algorithms are used to predict the occur-
rence of a SW-peak while data are being live-streamed, we needed 
an offline gold-standard to test their performance against. For this 
purpose, we implemented a widely used offline detection algo-
rithm for SWs (Mölle et al., 2009; Staresina et al., 2015) described 
in the Supplementary Material (Section 2) and referred to as “of-
fline” henceforth. In short, all consecutive positive-to-negative zero-
crossings that are 0.9–2 s apart were marked as SWs if the absolute 
valley amplitude, as well as valley-to-peak amplitude range was above 
two-thirds of the average absolute valley amplitude and the average 
amplitude range, respectively (Figure 1). Furthermore, five files per 
age group (~25%) were manually scored for SW-peaks by a trained 
and experienced rater to validate the offline detection approach. 
The validation showed that SW-peaks of the offline algorithm and 
manually marked SW-peaks are morphologically and topographically 
almost indistinguishable, but manually scored peaks tended to exhibit 
a higher amplitude (see Supplementary Material, Section 3).

2.2.4  |  Peak prediction

To align stimulations in real-world settings with SW-peaks, a post-
prediction delay is applied. This delay is highly dependent on the 
software, hardware and individual SW-frequency. Usually, after gen-
eral system-calibrations, a baseline-night is used to calibrate the sys-
tem for every participant. Here, we assume that these calibrations 
are achieved with the best possible accuracy for each individual. 
This allows us to analyse the spatiotemporal properties of predicted 
SW-peaks while controlling for circumstantial factors (like system 
delays or individual variability in SW-frequency) that do not pertain 
to the algorithms conceptually. See Section 4 of the Supplementary 
Material for the peak alignment procedure.

2.3  |  Statistical analysis

All analyses were performed in R (version 4.1.1, R Core Team, 
2021) and MATLAB (version R2019a, The MathWorks, Natick, 
Massachusetts, USA) using the toolboxes FieldTrip (Oostenveld 
et al., 2010), EEGLAB (Delorme & Makeig, 2004), Ragu (Koenig et al., 
2011), CircStat (Berens, 2009) and Cocor (Diedenhofen & Musch, 
2015). After SW-peak prediction/detection was completed, the data 

were preprocessed (see Supplementary Material Section 5). All anal-
yses focus on sleep stages N2 and N3 only. Markers for the differ-
ent peaks as detected by A-based, T-based and offline approaches 
were written into the same full-spectrum EEG-file, which was subse-
quently preprocessed and analysed using unified settings.

The number of peaks and peak amplitudes were compared using 
an analysis of variance (ANOVA). The grand mean event-related 
potentials (ERPs) were calculated for each algorithm type and each 
age group. For that purpose, the data were epoched around the 
peak predictions/detections between −1.5 s and 3.5 s. No baseline 
correction was applied to avoid biasing the signal based on existent 
or non-existent SWA prior to the event. For the phase analysis, the 
data were filtered between 0.25 and 2  Hz before instantaneous 
phases of peak predictions (i.e. angle of Hilbert-transform) and 
their resultant vectors were calculated. A multivariate approach 
using randomization statistics to analyse the topographic repre-
sentation of ERPs was used. We performed a topographical outlier 
analysis, calculated a topographic analysis of variance (TANOVA) 
as well as a microstate analysis (Koenig et al., 2014). Microstate 
analyses allow for an investigation of how the voltage distribution 
across electrodes develops over time in the ERPs, and how specific 
temporal sections of the ERP might be represented by similar un-
derlying neuronal sources (Koenig et al., 2014; see Supplementary 
Material Section 6 for more details).

3  |  RESULTS

All participants were normal sleepers (see Table 1 for polysomno-
graphic and subjective sleep data). Compared with the young group, 
the older group exhibited a lower sleep efficiency, spent less time 
asleep, especially in stages N2, N3 and rapid eye movement (REM), 
and spent relatively more time in stage N1 (all p < 0.001).

3.1  |  Number of predicted peaks

An outlier analysis was performed using the toolbox Ragu (Koenig 
et al., 2011) revealing one outlier in the old age group, which was re-
moved from all analyses (see red highlight in Figure 5). The final sample 
contained 41 participants (nold = 20; nyoung = 21). The mean number of 
peaks during sleep stages N2/N3 differed between algorithm types. 
In both age groups, all algorithm types except for A-80 predicted sig-
nificantly more peaks compared with the offline algorithm (Figure 2).

The template-based prediction generally predicted more 
peaks than the amplitude-based prediction, which was seen in 
both age groups but was more pronounced in the younger group. 
Table 2 shows the mean number of predicted/detected peaks during 
N2/N3 as well as the mean peak amplitudes for all algorithm types 
and age groups. The mean number of predicted peaks for A-based 
algorithms was 1006 for the older group and 2686 for the younger 
group. T-based algorithms predicted 2453 peaks in the older 
group and 5594 peaks in the younger group. Offline determination 
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detected 1236 peaks in the older group and 2189 peaks in the 
younger group. An ANOVA implementing a Greenhouse–Geisser 
correction revealed significant main effects of age (F1,39 =  82.5, 
p  <  0.001) and algorithm types (F1.59,61.99 =  218.8, p  <  0.001) as 
well as a significant interaction (F1.59,61.99 =  40.3, p  <  0.001). 
Bonferroni-corrected pairwise comparisons showed that all com-
parisons were significant (p < 0.02), with the exception of A versus 
offline in the older group (p = 0.063).

The Greenhouse–Geisser-corrected ANOVA for the mean 
peak amplitudes (Aold  =  10.4  µV, Ayoung  =  8.94  µV, Told  =  9.76  µV, 

Tyoung = 12.5 µV, OFFLINEold = 25.5 µV, OFFLINEyoung = 37.7 µV) re-
vealed significant main effects of age (F1,39 = 10.5, p = 0.002) and 
algorithm types (F1.64,63.79 = 344, p < 0.001), as well as a significant 
interaction (F1.64,63.79 =  28.2, p  <  0.001). All Bonferroni-corrected 
pairwise comparisons were significant (p  <  0.009), except for Aold 
versus Ayoung (p = 0.402) and Aold versus Told (p = 0.527).

TA B L E  1 Sleep parameters

Young 
adults

Older 
adults t-value p-value

TSTa 432 (28.4) 325 (60.7) −7.32 < 0.001*

SEb 85% (5.5) 67% (10.8) −6.98 < 0.001*

WASOc 46.2 (24.3) 142 (51) 7.80 < 0.001*

N1d 44.9 (23) 85.4 (39.1) 4.06 < 0.001*

N2d 200 (40.5) 151 (35.4) −4.20 < 0.001*

N3d 95.5 (32.3) 36.8 (22.7) −6.80 < 0.001*

REMe 92.3 (24.3) 52.3 (15.2) −6.38 < 0.001*

Subj. sleep 
qualityf

3.57 (1.43) 3.67 (1.91) 0.18 0.85

Note: The mean values and standard deviations of relevant sleep 
parameters are displayed per age group.
a Total sleep time (TST).
b Sleep efficiency (SE) describes the percentage of sleep relative to the 
time spent in bed.
c Wake time after sleep onset (WASO).
d The times spent in each sleep stage (N1–N3) are displayed in minutes.
e REM, rapid eye movement.
f Subjective sleep quality was rated on an eight-point Likert scale, 
where 1 indicated very good and 8 very bad sleep quality. The t- and 
p-values for the analysis of group differences are displayed.

F I G U R E  2 Histogram of mean predicted/detected peaks per 
age group and algorithm type. A-40 and T20 represent the liberal 
criterion, A-80 and T40 the conservative criterion of the amplitude 
(A)- and template (T)-based algorithm approaches, respectively. 
T30 represents an intermediate criterion of the template algorithm. 
The two offline detection approaches were either based on a 
widely used slow wave (SW)-detection approach ("Offline"; Mölle 
et al., 2009) or manually scored peaks by a trained rater (“Manual”; 
a subset of five datasets per age group [~25%])

TA B L E  2 Number and amplitudes of predicted/detected peaks

Algorithm approach

Number of peaks Amplitudes of peaks

Young adults Older adults Young adults Older adults

A-40 3776 (843) 1608 (682) 6.97 µV (4.13) 7.47 µV (4.37)

A-80 1597 (541) 404 (275) 10.9 µV (7.26) 13.4 µV (6.96)

T20 6884 (1393) 3276 (939) 11.1 µV (2.9) 8.43 µV (2.89)

T30 5602 (1434) 2436 (943) 12.5 µV (3.21) 9.73 µV (3.16)

T40 4298 (1326) 1651 (787) 14.0 µV (3.82) 11.1 µV (3.7)

OFFLINE 2189 (675) 1236 (538) 37.7 µV (7.36) 25.5 µV (7.18)

Manual (subset n = 5) 3223 (1281) 1242 (732) 40.7 µV (9.04) 28.5 µV (9.04)

Note: The number of predicted/detected peaks during sleep stages N2/N3 and their respective peak amplitudes are displayed per algorithm type and 
age group. A-40 and A-80 represent the amplitude-based algorithm types with detection thresholds of −40 µV (liberal) and −80 µV (conservative), 
respectively. T20, T30 and T40 represent template-based algorithm types with a minimal range criterion of 20 µV (liberal), 30 µV (intermediate) and 
40 µV (conservative). The offline detection algorithm (OFFLINE) is based on a widely used SW-detection approach (Mölle et al., 2009). In the last 
column the number and amplitude of manually scored peaks by a trained rater are displayed. Manual ratings were performed for a subset of five files 
per age group (~25%).
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3.2  |  ERPs, phase and topographies of 
predicted peaks

Because the number and amplitude of predicted peaks does not 
allow for an evaluation of the quality of SO-peaks, the ERPs as well 
as peak topographies were analysed. Figure 3 displays ERPs and 
peak topographies for the A-, T- and offline approaches. The rose 
plots display phase variance within the SW (0.25–2 Hz) filtered sig-
nal for predicted/detected peaks, with 0 radians representing a peak 
and ± π radians representing a valley. All algorithm types showed 
a preferred phase (resultant vector, red line, Figure 3) – close to 
0° (A = −1.6521°; T = −0.0027°; offline = 0.0031°). This indicates 
that prediction delay calibration was successful, and the peaks are 
comparable across algorithm types in relation to their phase (see 
Supplemental Material Section 4 for information on peak align-
ment). The resultant vector length is an indicator for the variability 
of the observed phase distribution, with longer vectors indicating 
less phase variability. A Wilcoxon signed-rank test revealed that the 
vector length for A-based predictions (vlen = 0.32) was significantly 
shorter than the vector length for T-based predictions (vlen = 0.39; 
p  =  0.002). This result indicates that A-based predictions are less 
phase-precise than T-based predictions. Both vector lengths were 
significantly shorter than the resultant vector length for offline de-
tected peaks (vlen = 0.93, p < 0.001).

In order to investigate whether individual rank orders for the 
peak counts, peak amplitudes and resultant vector lengths correlate 
across methods, we performed a rank order analysis. Spearman's 
rank correlation coefficients between each online algorithm, thresh-
old levels collapsed, and the offline prediction algorithm were calcu-
lated (Table 3). Overall, there was a high rank order similarity across 
algorithms for peak counts, i.e. all algorithms agreed which individu-
als exhibited high versus low numbers of peaks. For peak amplitudes, 
only T-based prediction and offline detection exhibited significant 
rank order similarity. Phase resultant vector lengths, a measure for 

phase-precision, exhibited the least amount of similarity. Only T-
based prediction and offline detection reached significant similarity, 
but the correlation was rather low (Table 3).

The ERPs for offline detections showed a distinct negative deflec-
tion before the peak (t = 0) and a following positive deflection, with 
higher amplitudes found in younger adults compared with older adults. 
The peak topographical maps show a distinct frontal localization. The 
negative to positive deflection of the signal can also be observed for 
the A- and T-based approaches. Notably, for A-based prediction, ERP 
morphology and peak topography diverge compared with both T- and 
offline approaches. T- and offline, on the other hand, exhibit similar 
spatiotemporal dynamics except for differences in amplitude.

To analyse the differences in peak topographies across algo-
rithm types and age groups, a topographic analysis of variance 
(TANOVA) was calculated at t = 0 (on-peak) using randomization 
statistics. The two factors age (young versus old) and algorithm 
type (A-40 versus A-80 versus T20 versus T30 versus T40 versus 
OFFLINE) were used. To specifically test for differences of the 
topographical distribution of predicted peaks independent of sig-
nal amplitude, we normalized the data with respect to its global 
field power (GFP). Figure 4a displays normalized topographies per 
algorithm approach and age group. There was a significant main 
effect for both the factors age (p = 0.003) and algorithm type (p 
< 0.001) at t = 0, but no interaction. Figure 4b displays the map 
similarities among the conditions at t = 0 using multidimensional 
scaling (MDS). In this state-space approach (Habermann et al., 
2018), each point represents a condition's mean topographic map, 
with the distance between points indicating topographic sim-
ilarity. The maps can be considered relatively similar if two con-
ditions are close together, and different if they are further apart. 
The topographies of T-based predictions cluster around the offline 
detection approach (especially for younger participants), while A-
based predictions are further away. To quantify the differences 
in topographies between the algorithm types and the offline 

F I G U R E  3 Event-related potentials (ERPs), peak topographies and phase variance. t = 0 on the x-axis represents the timing of the mean 
peak predictions/detections. Blue lines show the mean signal for younger adults, and red lines display the mean signal for older adults. 
Different line types represent different implementations of the respective algorithm types (A-based: solid = −80 µV, dotted = −40 µV 
threshold; T-based: solid = 40 µV, dashed = 30 µV, dotted = 20 µV minimum range). The peak topographic maps are displayed per age group 
and algorithm type. Rose plots show that the preferred phase of the peaks (resultant vector plotted in red) was about 0° for all algorithm 
types (collapsed across thresholds and age groups), confirming that all of the algorithms predicted/detected true peaks of the wave form
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approach, we calculated correlation coefficients for each of the 
128 channel's amplitudes at t = 0 between the offline approach 
and all implementations of the online algorithms. Both amplitude-
based algorithms displayed lower mean correlations (rA-40.old = 0.83 
[R2

A-40.old = 0.75], rA-80.old = 0.85 [R2
A-80.old = 0.74], rA-40.young = 

0.76 [R2
A-40.young = 0.66], rA-80.young = 0.78 [R2

A-80.young = 0.66]) with 
the offline approach than the template-based algorithms (rT20.old 
= 0.99 [R2

T20.old = 0.99], rT30.old = 0.99 [R2
T30.old = 0.99], rT40.old = 

0.99 [R2
T40.old = 0.98], rT20.young = 0.98 [R2

T20.young = 0.98], rT30.young 
= 0.99 [R2

T30.young = 0.98], rT40.young = 0.99 [R2
T40.young = 0.98]). We 

compared the correlations collapsed over age groups and algorithm 
threshold levels using the R package Cocor (Diedenhofen & Musch, 
2015). This analysis showed a significant difference between A-
based (r = 0.83) and T-based (r = 0.99) algorithm types (Pearson 
and Filon's z = −3.4127, p < 0.001, Zou's 95% CI: [−0.30 −0.09]). 
The correlations remained different when analysing the age groups 
separately (young: rA = 0.78 versus rT = 0.99, Pearson and Filon's z 
= 2.5131, p = 0.01, Zou's 95% CI: [−0.4637 −0.0893]; old: rA = 0.87 
versus rT = 0.99, Pearson and Filon's z = −2.3212, p < 0.001, Zou's 
95% CI: [−0.2888 −0.0482]). Hence, T-based algorithms predicted 
peaks that are highly correlated with the peaks found with the of-
fline gold-standard, whereas A-based algorithms predicted peaks 
that are significantly less correlated with the offline gold-standard.

These analyses indicated that the topographic representation 
of the predicted peaks might be different between amplitude- and 
template-based approaches, and might not represent the same 
physiological state. To further investigate this, peak topographies 
were plotted individually for each subject and each algorithm type. 
The offline detection approach showed consistent topographies for 
all participants with differences only seen in individual amplitudes 
but not in the overall pattern of the surface distribution (Figure 5). 
Template-based predictions displayed some level of variance, but 
overall showed a distinct SW-topography in every subject – albeit 
with lower overall GFP owing to the fact that predictions showed 
higher phase variance compared with offline detection (see rose 
plots in Figure 3). Critically, amplitude-based predictions showed a 
large variance in peak topographies, in some cases exhibiting almost 
the inverse (a negative frontal signal deflection) of the expected pos-
itive frontal signal deflection (Figure 5).

3.3  |  Microstate analysis

To investigate the temporal evolution of the topographic signal 
around peak predictions/detections, a microstate analysis was per-
formed. For this analysis, we collapsed all threshold levels within the 
A- and T-based approaches. The number of microstates in the data 
was determined using cross-validation with 45 runs testing a range 
of 4 to 10  microstates. This procedure determined that the data 
were best explained with eight microstates (Figure 6). Two of these 
states represent “valley” states (blues in Figure 6) and three repre-
sent “peak” states (red/yellow/orange in Figure 6) corresponding to 
peaks and valleys in the ERP (Figure 3). The remaining three micro-
states resemble transitional states predominantly found as the signal 
drifts away from clear peak/valley states (greys in Figure 6). For all 
algorithm types, a peak state was present at t = 0 (states 3 and 4 in 
Figure 6). The peak state was identical for most approaches (state 3, 
red), i.e. a topography resembling a SW-peak as found in the litera-
ture (Dang-Vu et al., 2008; Züst et al., 2019), our own TANOVA (see 
previous section), and manually detected peaks (see Supplemental 
Material). Only A-based prediction in the old age group did not pro-
duce this state, but rather a more centrally located and less focused 
peak (state 4, see yellow arrow in Figure 6). This suggests that for old 
individuals, the amplitude-based prediction finds a peak state with 
statistically different signal sources compared with T-based predic-
tion and offline determination. Permutation tests (5000 permuta-
tions) were calculated to compare the area under the curve (AUC) 
of peak and valley states between algorithm types and age groups.

For peak states, AUC for state 3 (canonical peak, red in Figure 6) 
is significantly different across both algorithm types and age groups 
(both p  <  0.001), with no interaction (p  =  0.544). Pair-wise com-
parisons of AUC between algorithm types indicated that AUC was 
larger in offline- (4404  ms × µV  ) versus T-  (2505 ms × μV) and 
A- (527 ms × μV) approaches (all p < 0.001). In accordance with the 
literature (Muehlroth & Werkle-Bergner, 2019), the younger age 
group exhibited larger AUC for state 3 (red, canonical peak) than the 
older age group (2227 versus 1306 ms × μV, p < 0.001). Conversely, 
for state 4 (yellow, non-canonical peak found only for A-based pre-
diction in older age group) there was a significant effect of algorithm 
type (p = 0.047), but not age group (p = 0.196), with a significant in-
teraction term (p < 0.001), indicating that the isolated occurrence of 
this state for A-based prediction in the old age group is remarkable.

There was a dissociation of valley states among age groups. 
Older adults exhibit a valley state that is more frontally local-
ized (state 2 in Figure 6) compared with younger adults (state 1 in 
Figure 6) across all algorithm types (see Supplementary Materials 
Section 6 for an analysis of valley states across algorithm types in a 
split group model).

Regarding the temporal structuring of states, an oscillatory 
back-and-forth between peak and valley states is apparent for both 
T-based prediction and offline determination, starting with a peak 
at −1000  ms, oscillating twice and ending with a valley at about 
+800 ms. No such oscillation is apparent for A-based predictions, 
where the pre-prediction window consists of a single valley state, 

TA B L E  3 Rank correlation coefficients (Spearman's ρ) of selected 
peak metrics across algorithms

Peak 
counts

Peak 
amplitude

Phase resultant 
vector length

Corr(A,T) 0.94*** 0.25 0.27†

Corr(A, offline) 0.75*** 0.10 0.11

Corr(T, offline) 0.78*** 0.78*** 0.37*

Note: FDR-corrected critical p = 0.028.
Abbreviations: A, amplitude-based approach, collapsed across 
thresholds and age groups; T, template-based approach, collapsed 
across thresholds and age groups; offline, gold-standard for detecting 
peaks post hoc, collapsed across age groups.
*p = 0.017, ***p < 0.001, †p = 0.086.
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briefly transitioning into a low-powered peak at about 0  ms, then 
quickly decaying into a transitional state (young age group) or an 
even more centrally localized peak state (older age group) before 
tapering off. The temporal GFP-mass centre of the respective valley 
states was significantly different across algorithm types in both age 
groups (young: p = 0.012; old: p < 0.001). Pair-wise comparisons in 
the younger age group indicated that mass centre was significantly 
earlier for A (−882 ms) versus offline (−399 ms, p = 0.025), and A 
versus T (−507 ms, p = 0.030). Analogously, in the older age group, 
mass centre was significantly earlier for A (−903 ms) versus offline 
(−271 ms), and A versus T (−319 ms) (both p < 0.001). There was no 
difference in mass centre for T versus Offline in either age group 
(both p > 0.19). Taken together, these results indicate that, especially 

in the older group, amplitude-based prediction does not find peaks 
that correspond to the expected morphology and topography of 
SWs (Dang-Vu et al., 2008; Züst et al., 2019).

4  |  DISCUSSION

A currently widely used SW-detection algorithm is dependent on 
a hard amplitude threshold (Ngo et al., 2013). We show that this 
one-dimensional approach may not be optimal: its predictions pro-
duced states that are different from what was determined through 
manually validated, automatized offline SW-detection (Mölle et al., 
2009). This was especially true for older participants. In contrast to 

F I G U R E  4 Normalized topographical maps and how they differ. (a) The displayed topographies per age group and algorithm type were 
normalized with respect to their global field power (GFP). Below each topography, the mean explained variance (R2) for the channel-by-
channel correlation between the A- and T-algorithm types and the offline approach is displayed. (b) Multidimensional scaling (MDS) for 
topographic differences shows the mean topographic maps of each algorithm type and age group. The axes represent the principal virtual 
topographic features explaining most of the variance between algorithm types. The distance between two data points indicates how similar 
or dissimilar the respective maps are. The different algorithm types are represented by X (template-based), O (amplitude-based) and squares 
(offline gold-standard). Older adults are displayed in red, and younger adults in blue. The maps of template-based predictions are highly 
similar to the gold-standard, as is visible by the close clustering of these data points, while amplitude-based predictions result in relatively 
dissimilar maps. For template-based predictions, similarity numerically scales with liberality of thresholds, indicating the smaller the 
remaining amplitude-restriction, the more similar the maps become to the gold-standard
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the A-based prediction, T-based prediction was highly similar to the 
offline gold-standard, irrespective of age group. We recommend 
the usage of this largely amplitude-independent, multidimensional 
approach based on a topographical template (Ruch et al., 2021), 
especially when amplitudes are decreased, such as in aging and psy-
chiatric conditions.

While the two online-SW-prediction approaches are technically 
different, conceptually they have the same goal: detecting SW-
peaks. All peaks – irrespective of how they were predicted – should 
elicit activation of a common set of neuronal sources. We tested this 
assumption using a topographic ANOVA and a microstate analysis. 
Each microstate is considered to reflect predominant and distinct 
activation of contributing sources and therefore distinct underlying 
processes (Koenig et al., 2014). Based on the temporal evolution of 
the signal, our analyses suggest that A-predicted peaks might be 
different from T- and offline-based approaches. This was particu-
larly the case in older adults, where peaks exhibited a less frontally 
and more centrally shifted localization compared with the other ap-
proaches. However, the frontal dominance of SWs has been shown 
to be preserved in aging (Muehlroth & Werkle-Bergner, 2019). We 
conclude that A-based prediction might not be ideal for finding SW-
peaks in older adults.

Considering the number of predictions, we found that the T-
based approaches predicted more but lower-amplitude peaks than 
the offline approach in both age groups. This may reflect that the of-
fline detection approach is also amplitude-dependent – albeit not by 
using a hard threshold. Only the upper 33% of detected waves in any 
individual are scored as valid peaks, while the lower 66% of detected 

waves are sorted out. Because SWs are specifically decreasing in 
amplitude with age (Colrain et al., 2010), the gold-standard – just 
like the A-based algorithms – might sort out many valid, lower-
amplitude SWs in older participants. The same is true for manual 
scoring according to AASM standards, which also employs a fixed 
and fundamentally arbitrary threshold. Our results illustrate that, for 
the purpose of detecting SWA in populations with decreased SW-
amplitudes – like aging or psychiatric populations – amplitude crite-
ria might be detrimental.

4.1  |  Recommendations for algorithm usage

The A-based algorithm is more economical as it works with a small 
number of electrodes. This might be particularly important in the ap-
plication of easy to use mobile devices, which is an emerging interest 
in the field of BSDS. Furthermore, its computational requirements 
are lower and it is well tested in the literature (Harrington et al., 
2021; Ngo et al., 2013; Schneider et al., 2020). However, its eco-
nomic advantage also renders the approach more prone to artefacts 
and false-positive predictions. One potential reason for the discrep-
ancy between A- and T-based approaches might owe to differences 
in their generalizability. We found large differences in the algo-
rithms’ performance in individual subjects, with high inter-individual 
differences seen in A-based prediction. Notably, in some individu-
als, A-based prediction topographies did not resemble the canonical 
SW-pattern (Figure 5), suggesting off-target predictions. An analysis 
of phase-precision confirmed that there was a more focused phase 

F I G U R E  5 Variance of peak topographies in individual maps. Topographic maps of the predicted/detected peaks are displayed for each 
of the 42 study participants. The topographies are plotted for the two amplitude-based prediction approaches (A-40 [liberal] and A-80 
[conservative]), two of the three template-based prediction approaches (T20 [liberal] and T40 [conservative]) and for the offline detection 
approach. The five marked topographies (second to last column, red highlights) represent the outlier who was excluded from all analyses
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distribution for T-based versus A-based prediction. Overall, A-based 
algorithms can be a good and preferred tool if one is interested in 
group-level effects in healthy younger individuals with high SWAs, 
where individual divergence is less of a concern. Also, it is the better 
algorithm when limited to low electrode numbers.

The T-based algorithm is more complex, both computationally 
and regarding its practical implementation (see Supplementary 
Material Section 7 for the computational profiling of both predic-
tion algorithms). The T-based algorithm should be applied with a 
sufficiently high-density EEG system. If the goal of a study is to 
stimulate as many SW-peaks as possible, T-based prediction has 
the advantage over A-based prediction due to higher detection 
counts (Figure 2). If one is worried about off-target stimulations, 
T-based prediction is advantageous as it is more temporally precise 
(see phase diagrams in Figure 3) and reliable (see individual pre-
dicted peak topographies in Figure 5 and rank correlation analysis 
in Table 3). One-dimensional A-based prediction is more suscepti-
ble to off-target effects compared with a multidimensional T-based 
approach, which is more robust against artefactual or false-positive 

signals in one channel. The topographical correlation between the 
streamed signal and the template will be increasing towards a peak 
even in the presence of bad channels. Furthermore, the T-based 
predicted peaks better resemble the gold-standard regarding spa-
tiotemporal dynamics, especially in older adults (see microstates 
analysis in Figure 6). Taken together, T-based approaches provide 
significant benefits when one is interested in single-subject level 
effects and in populations with reduced SWAs (e.g. older individu-
als or psychiatric patients).

4.2  |  Limitations

The goal of the current report was to analyse what the different 
algorithm types claim to be SW-peaks. Our analyses are limited to 
the comparison of unstimulated SO peaks as predicted via A- and T-
based algorithms. Therefore, we cannot make any statements about 
how physiological responses after peak-locked stimulus delivery 
might be affected by the difference in predictive performance of the 

F I G U R E  6 Microstate analysis. The top row displays eight identified microstates representing different predominant topographical 
maps with distinct underlying neuronal sources reflecting continuous periods within the event-related potentials (ERPs). Two microstates 
represent valley states (blues) and three represent peak states (red/yellow/orange) and transitional states (greys), respectively. The six 
diagrams below the microstate maps depict the microstate time-courses for each algorithm approach and age group. The black curves 
illustrate total global field power (GFP) of the data, while the coloured areas represent GFP explained by the corresponding microstates. 
While the peak states (t = 0) were identical for T- and offline approaches in both groups, the peak state in the amplitude-based approach 
differed for older adults (yellow arrow). In both T-based and offline approaches, the states oscillate between peak and valley states, while 
for A-based prediction there is only a singular transition from valley to peak state. Compared with T-based and offline approaches, the valley 
states in the A-based approach are lengthier in the pre-prediction window for both age groups, and the post-prediction window shows a 
transition into an unclear state directly following the peak in the young group and a transition into a different peak state instead of a valley 
state in the older group. Additionally, younger and older adults exhibit different predominant valley states irrespective of algorithm type 
(young: light blue, state 1, relatively more centrally localized; older: dark blue, state 2, relatively more frontally localized)
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tested algorithms. This is an important question that needs to be ad-
dressed in future research.

Both A- and T-based algorithms were run on previously recorded 
data simulating real-time streaming. The algorithms might per-
form differently in real world settings. Furthermore, sleep acoustic 
stimulation studies usually require a trained experimenter to man-
ually stop the algorithm when arousals or changes in sleep stages 
are indicated. As an alternative to manual supervision, some SW-
prediction algorithms automatically detect sleep stages and pause 
the stimulation whenever participants are in non-desired sleep 
stages (Santostasi et al., 2016). Our analyses focused on sleep stages 
N2 and N3, and we therefore cannot comment on off-target stim-
ulations. However, we recommend that some form of sleep stage 
control is implemented, be that a vigilant experimenter or a robust 
automatized staging algorithm.

Our analyses are limited to the comparison of two online SW-
prediction algorithm approaches. While there are other algorithms 
that are used in acoustic stimulation studies, for example phase-
locked loop (Santostasi et al., 2016) or sine fitting approaches (Cox 
et al., 2014), we intended to specifically address the limitations of 
amplitude thresholds in SW-prediction approaches. While compar-
isons to other SW-prediction approaches would be interesting, it is 
beyond the scope of this report.

Lastly, our findings are limited to theoretical assumptions about 
the underlying neurophysiology of the differently predicted peaks. 
Future research should implement similar protocols in animal mod-
els, use intracranial recordings in epileptic patients, or perform 
EEG-functional magnetic resonance imaging recordings in healthy 
participants.

4.3  |  Conclusion and future directions

Our results suggest that – although being more complex in its prac-
tical and programmatical implementation – T-based prediction is 
more valid, reliable and sensitive than A-based prediction. Arguably, 
this is because a multidimensional T-based approach incorporates as 
much information as possible into SW-peak prediction instead of re-
lying on a hard threshold on one dimension of the data. Importantly, 
A-based prediction might not be ideal when detecting SWs in older 
adults as it finds peak states that differ from canonical SW-peaks. 
T-based prediction is better suited for older adults’ sleep physiology: 
relatively decreased amplitudes notwithstanding, detected peaks 
exhibit qualitative aspects of canonical SW-peaks like the expected 
spatiotemporal representation, suggesting identical signal genera-
tors in the brain. On top of superior validity and reliability, T-based 
prediction is more sensitive than A-based prediction. With more 
predicted SW-peaks, more windows of opportunity arise for acous-
tic stimulation to aim at. This might not only prove relevant for thera-
peutic applications in cognitively impaired older adults (Rauchs et al., 
2008; Westerberg et al., 2012), but also in other patient groups ex-
hibiting reduced SW-amplitudes, for example when using SW-peak 
prediction in studies mimicking the effect of sleep deprivation in 

major depression (Wolf et al., 2016). A multidimensional- and largely 
amplitude-independent SW-prediction approach might do justice 
to the more complex sleep physiology found outside of young and 
healthy sleepers.
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