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New vaccines targeting meningococci expressing serogroup B polysaccharide have been developed, with some being li-
censed in Europe. Coverage depends on the distribution of disease-associated genotypes, which may vary by age. It is well
established that a small number of hyperinvasive lineages account for most disease, and these lineages are associated with
particular antigens, including vaccine candidates. A collection of 4,048 representative meningococcal disease isolates from
18 European countries, collected over a 3-year period, were characterized by multilocus sequence typing (MLST). Age data
were available for 3,147 isolates. The proportions of hyperinvasive lineages, identified as particular clonal complexes (ccs)
by MLST, differed among age groups. Subjects <1 year of age experienced lower risk of sequence type 11 (ST-11) cc, ST-32
cc, and ST-269 cc disease and higher risk of disease due to unassigned STs, 1- to 4-year-olds experienced lower risk of
ST-11 cc and ST-32 cc disease, 5- to 14-year-olds were less likely to experience ST-11 cc and ST-269 cc disease, and >25-
year-olds were more likely to experience disease due to less common ccs and unassigned STs. Younger and older subjects
were vulnerable to a more diverse set of genotypes, indicating the more clonal nature of genotypes affecting adolescents
and young adults. Knowledge of temporal and spatial diversity and the dynamics of meningococcal populations is essential
for disease control by vaccines, as coverage is lineage specific. The nonrandom age distribution of hyperinvasive lineages
has consequences for the design and implementation of vaccines, as different variants, or perhaps targets, may be required
for different age groups.

Neisseria meningitidis, the meningococcus, is a pathogen of
global significance that causes sporadic cases and periodic

epidemics and pandemics of meningitis and septicemia. The dis-
ease is associated with high mortality rates and severe sequelae in
many patients who recover. Disease rates vary with age, with the
highest rates for children and young adults (1–3). However, the
meningococcus is usually carried asymptomatically in the naso-
pharynx of approximately 10% of the human population (4–7).
Carriage rates in the population also vary with age, being lowest
among infants and young children and rising to a peak among
adolescents and young adults (8–10).

Twelve immunochemically distinct meningococcal polysac-
charide capsules have been described (12), corresponding to me-
ningococcal serogroups, but most disease is caused by meningo-
cocci expressing serogroups A, B, C, Y, W, and X (13). Worldwide
invasive meningococcal serogroup distributions vary with region
(3, 13); serogroups A, W, and X predominate in Africa, particu-
larly in the “meningitis belt” region (14), whereas most disease in

Western Europe is associated with meningococci expressing sero-
group B and C capsules. Serogroups B and C also predominate in
North and South America and in high-income countries such as
New Zealand and Australia (3, 13, 15, 16). Serogroup Y disease has
emerged recently as a public health concern in the United States
and Canada (17, 18) and more recently in Europe (3, 11, 19, 20).
The emergence of serogroup Y-associated lineages in disease and
carriage populations underlines the dynamic nature of meningo-
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coccal epidemiology and population biology. These changes have
implications for vaccine development and implementation.

There has been a decline in meningococcal disease incidence
in Europe since 1999, decreasing from 1.9 cases per 100,000
individuals in 1999 to 0.73 cases per 100,000 individuals in
2010 (21). This decline is due in part to implementation of the
meningococcal C conjugate (MCC) vaccine in a number of
European countries. However, this cannot account for reduc-
tions in serogroup B disease incidence, which may be attribut-
able to natural fluctuations. With new protein-based substitute
serogroup B vaccines such as Bexsero (22) being licensed in
Europe, it is important to monitor changes in the meningococ-
cal population, particularly as herd immunity effects for this
type of noncapsular vaccine are largely unknown. Outer mem-
brane protein-based vaccines have been implemented previ-
ously in Europe, but that was in response to single-clone out-
breaks (23, 24). The diversity of genotypes in a setting of
endemicity represents a challenge for vaccine development and
implementation. Detailed characterization of disease and car-
riage isolates, including the age distribution of disease-associ-
ated lineages, is essential for the improvement of disease pre-
vention and control strategies.

MATERIALS AND METHODS
European meningococcal disease isolates. Bacterial samples were ob-
tained from European reference laboratories over 3 years, i.e., 2000 to
2002. A structured sampling program was undertaken to ensure a repre-
sentative sample; laboratories that received �80 disease isolates per year
submitted all isolates, and laboratories that processed �80 disease isolates
per year sent every third isolate, with the exception of the England and
Wales Meningococcal Reference Unit, which sent every tenth isolate, as
the unit received �1,000 samples per year. A total of 4,183 samples were
received and processed by the European Meningococcal MLST Centre
(EMMC) (25), and multilocus sequence typing (MLST) was completed
for 4,048 of the samples.

MLST and sequence assembly. MLST was performed as described
previously (26, 27). Separation of the labeled extension products was car-
ried out on a 3700 or 3730 capillary DNA analyzer (Applied Biosystems).
Assembly and editing of MLST sequence data generated were carried
out using STARS (http://sourceforge.net/projects/stars) and Staden soft-
ware, with Pregap 4 version 1.3 and Gap version 4.7 (28). For each isolate,
sequences for each of the seven loci were assigned allele numbers
through interrogation of the Neisseria MLST database (http://pubmlst
.org/neisseria). Allelic profiles were assigned a sequence type (ST) and a
clonal complex (cc) using the database.

Data analysis. MLST data were combined with age information col-
lected separately for the isolates by the European Meningococcal Epide-
miology Centre (EMEC)/European Union Invasive Bacterial Infections
Surveillance Network (EU-IBIS) (29) when such data were available.
Multinomial regression analyses were performed using Intercooled Stata
12.0 for Windows (StataCorp, College Station, TX). Simpson’s index of
diversity (D) was used to determine ST diversity by age group. Calculation
of discriminatory indices was performed as described previously (30). The
value of the index ranges from 0 to 1, with values nearer to 1 indicating
greater diversity. The 95% confidence intervals (CIs) for these indices
were calculated as described by Grundmann et al. (31). The evenness value
(E) is a measure of the relative abundance of the different genotypes mak-
ing up the richness, i.e., the number of genotypes in a population sample
(such as a country). The value ranges from 0 to 1, with values nearer to 1
indicating more even contributions of the genotypes to the overall sample.
According to the method described by Robinson et al. (32), the value is
calculated as the ratio of the effective number of clones (Se), in this case
STs, to the total number of clones (genotypes) (S), i.e., the richness of the

sample. Se and E increase as the numbers of isolates of each clone become
more equal.

RESULTS

Patient age data were available for 3,226 (87.1%) of the 3,705
EU-IBIS epidemiological data records that were able to be harmo-
nized with the EUMenNet data, and complete MLST data were
available for 3,147 of those records (Fig. 1). An overall �2 test
demonstrated a cc-age effect (P � 0.001) (Table 1 and Fig. 2 and
3). The age group of 15 to 24 years and the ST-41/44 cc were used
as baselines for multinomial regression analyses. The following
significant age effects were observed: (i) subjects �1 year of age
experienced lower risk of ST-11 cc disease (relative risk ratio
[RRR], 0.29 [95% CI, 0.20 to 0.43]), ST-32 cc disease (RRR, 0.50
[95% CI, 0.35 to 0.74]), and ST-269 cc disease (RRR, 0.42 [95%
CI, 0.24 to 0.73]) and higher risk of disease due to unassigned STs
(RRR, 2.25 [95% CI, 1.33 to 3.83]); (ii) subjects 1 to 4 years of age
experienced lower risk of ST-11 cc disease (RRR, 0.44 [95% CI,
0.31 to 0.60]) and ST-32 cc disease (RRR, 0.68 [95% CI, 0.49 to
0.95]); (iii) subjects 5 to 14 years of age were less likely to experi-
ence ST-11 cc disease (RRR, 0.64 [95% CI, 0.48 to 0.86]) and
ST-269 cc disease (RRR, 0.49 [95% CI, 0.31 to 0.78]); and (iv)
subjects �25 years of age were more likely to experience disease
due to other ccs (i.e., less common ccs that were grouped together
for the purposes of this analysis (see Table 1 and Fig. 2 for details)
(RRR, 1.88 [95% CI, 1.29 to 2.74]) and unassigned STs (RRR, 2.05
[95% CI, 1.20 to 3.53]). A number of countries implemented the
MCC vaccine during the time period of the study (United King-
dom in 1999, the Republic of Ireland in 2000, and the Netherlands
in 2002). To account for the possible effects of the implementation
on ST-11 cc disease risk, the regression analysis was repeated with-
out isolates from these countries (and those from 2002 from the
Netherlands). The lower risk of ST-11 cc disease remained for
subjects �1 year of age (RRR, 0.36 [95% CI, 0.24 to 0.57]) and
subjects 1 to 4 years of age (RRR, 0.49 [95% CI, 0.35 to 0.69]), with
weaker evidence for subjects 5 to 14 years of age (RRR, 0.74 [95%
CI, 0.52 to 1.05]).

There was a range of diversity of STs accounting for disease
according to age group, with the lowest diversities found in the 25-
to 44-year (D � 0.899) and 15- to 24-year (D � 0.914) age groups.
The highest diversity values were found in the �1-year (D �
0.973) and 1- to 4-year (D � 0.959) age groups. There was signif-
icantly greater diversity among subjects �5 years of age versus all
other age groups except the �45-year age group. There was also
varying evenness of STs among the different age groups. The low-
est evenness value was found in the 15- to 24-year age group (E �
0.081), and the highest value was found in the �1-year age group
(E � 0.180). This indicates that, in addition to there being lower
diversity among 15- to 24-year-olds, the distribution of genotypes
was much less even, demonstrating that disease in that age group
was dominated by particular STs and ccs. Other age groups, such
as the �1-year age group, had more even distributions of STs
associated with disease.

DISCUSSION

Several protein-based vaccines to prevent serogroup B meningo-
coccal disease are in various stages of development (33), with one,
Bexsero, recently being licensed in Europe. Molecular epidemiol-
ogy has become an essential part of this development and imple-
mentation. Much analysis of the distribution of the four antigens
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present in this vaccine has been carried out in recent years, in
collections of disease-associated serogroup B-expressing organ-
isms (34–36). Based on the meningococcal antigen typing system
(MATS) assay, there is predicted coverage of 78% of disease-asso-
ciated serogroup B-expressing meningococci in Europe (36). As
Bexsero antigen data are not available for this collection, an esti-
mate based on previous studies (34) showing strong associations
of antigen and cc would give a baseline coverage of almost 50% for
this data set regardless of serogroup (with ST-41/44 cc, ST-32 cc,
and ST-8 cc serving as proxies for NHBA-2 and P1.4, fHbp-1.1,
and NadA-3.8, respectively). Representative, well-sampled, iso-

late collections such as the EUMenNet collection provide insights
into the dynamics of the population biology of the meningococcus
and facilitate the planning and implementation of interventions,
including immunization programs. Since serogroups and other
vaccine antigens are known to be associated with ccs, the differ-
ences we observed in the distribution of ccs with age concur with,
and extend, previous work in both Europe and North and South
America. Studies have indicated a higher prevalence of non-BC
serogroups in older age groups, with serogroup B disease being
proportionally the greatest among subjects �1 year of age (15, 16,
19, 21, 37–39). The present analysis also indicated that the diver-

FIG 1 Age distribution of disease isolates in the European meningococcal disease collection.

TABLE 1 Age distribution among the most common clonal complexes in the European meningococcal disease collection

Clonal
complex

No. (%) of isolates per age group
Missing data
(no. [%] of isolates)

Total no. of
isolates�1 yr 1–4 yr 5–14 yr 15–24 yr �25 yr

ST-41/44 143 (14) 253 (25) 155 (15) 161 (16) 138 (14) 164 (16) 1,014
ST-11 49 (5) 131 (15) 132 (15) 189 (21) 183 (20) 219 (24) 903
ST-32 61 (9) 146 (21) 145 (21) 136 (19) 92 (13) 127 (18) 707
ST-8 21 (8) 78 (29) 35 (13) 35 (13) 36 (13) 68 (25) 273
ST-269 20 (8) 63 (25) 22 (9) 54 (21) 39 (15) 58 (23) 256
Othersa 88 (14) 117 (19) 48 (8) 71 (11) 114 (18) 193 (31) 631
Unassigned 46 (17) 48 (18) 31 (12) 24 (9) 43 (16) 72 (27) 264

Total 428 836 568 670 645 901 4,048
a ‘Other’ ccs include ST-213, ST-23, ST-22, ST-60, ST-35, ST-461, ST-162, ST-18, ST-174, ST-334, ST-167, ST-364, ST-254, ST-103, ST-865, ST-231, ST-750, ST-1157, ST-53, ST-5,
ST-226, ST-198, ST-212, ST-92, ST-1136, ST-178, ST-282, ST-37, ST-376, ST-1117, ST-116, ST-175, ST-4240/6688, and ST-549 ccs.
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sity of disease-causing meningococci was higher in the youngest
and oldest age groups and that ccs other than the major hyperin-
vasive lineages and unassigned STs were more associated with
older age groups.

The relatively lower prevalence of ST-11 cc and ST-269 cc
among individuals �14 years of age was consistent with findings
in Canada, where there was an association of ST-269 cc in 11- to
40-year-olds and many fewer cases among �1-year-olds (40).
Also, a study of meningococcal disease in Poland over 10 years
demonstrated a significantly higher frequency of ST-11 cc-associ-
ated disease among individuals �5 years of age (41). As with
ST-11 cc and ST-269 cc, the serogroup B-associated ST-32 cc was
less likely to affect subjects �4 years old. These findings are con-
sistent with the presence of the meningococcal disease-associated
(MDA) phage, a candidate virulence factor associated with ado-
lescent disease, in these lineages (42).

The nonrandom variation in age distributions of meningococ-
cal lineages has several consequences. It demonstrates that the
different ccs have different phenotypes in terms of disease associ-
ation and probably carriage. Genotypes that are thought to be
comparatively less invasive, along with those not assigned to a cc,
were more likely to affect the very young or relatively old (�1 or
�65 years of age), which may be due to these cohorts being vul-
nerable to higher rates of disease caused by less-invasive menin-
gococci, perhaps as a consequence of poorer immune responses.
Niche competition with commensal organisms such as Neisseria
lactamica, which has its highest rates of carriage in 1- to 2-year-
olds, may have an influence on meningococcal carriage and thus

potentially disease (43, 44). Immunologically mature individuals
such as older adolescents and young adults may more easily clear
less-virulent strains but then be more susceptible to more-virulent
strains such as ST-11 cc, which may have shorter durations of
carriage. Some of these differences may be due to behavioral fac-
tors or potential virulence factors such as the MDA phage, which
may affect the expression of certain genes. These differences in age
associations may have consequences for the design and imple-
mentation of vaccines, as different variants or perhaps targets may
be required for different age groups. Like other well-studied vac-
cine candidate antigens, such as PorA and FetA, those included in
newly developed vaccines such as Bexsero have associations with
clonal complexes (34, 35). Therefore, it is expected that they will
also have different age distributions, which may have conse-
quences for vaccine implementation.

Given the diversity of the meningococcal population, a rela-
tively small number of genotypes are associated with disease. In
Europe, five ccs (ST-41/44, ST-11, ST-32, ST-8, and ST-269 ccs)
accounted for 77% of the disease isolates. These hyperinvasive
lineages are a subset of those observed globally and represent a
minority of carried meningococci (45–47). The prevalence of par-
ticular hyperinvasive lineages in carriage changes over time, and
this is reflected in the rates of disease that they cause. For instance,
in the past decade previously rare serogroup Y-associated lineages
increased in prevalence, in both disease and carriage, in Europe (3,
11, 19, 20, 48–51). It is therefore necessary to maintain surveil-
lance to identify changes in the distribution of types, including the
emergence of new clones and possible capsule-switching events in

FIG 2 Age distribution of common clonal complexes according to their proportions in the European meningococcal disease collection.

Brehony et al.

850 cvi.asm.org Clinical and Vaccine Immunology

http://cvi.asm.org


the face of immunization campaigns. This should include moni-
toring changes in genotype distributions, in disease and carriage,
according to age group. Initiatives such as the Meningitis Research
Foundation Meningococcus Genome Library are valuable re-
sources that will allow such analyses using the latest molecular
epidemiological tools. In the absence of serogroup B conjugate
polysaccharide vaccines, the control of meningococcal disease will
rely on the implementation of protein-based vaccines, the cover-
age of which will vary as changes occur in the circulating menin-
gococcal populations over time. Any implementation of new vac-
cines, such as Bexsero, that target proteins that are derived from
particular serogroup B meningococci but may be shared by strains
belonging to other serogroups, will therefore require intensive
epidemiological surveillance.
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