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to be a major pathophysiological factor in the development of 
diabetic complications, the associated mechanisms are not fully 
understood yet. Several major pathways are involved in the de-
velopment and progression of diabetic complications. These in-
clude polyol pathway31), mitogen-activated protein kinases35), po-
ly-ADP ribose polymerase28), cyclooxygenase-233), and advanced 
glycation end-products40).

Advanced glycation end-products (AGE) are produced through 
non-enzymatic addition of carbohydrates to proteins. It makes 
cells more subject to damage and premature aging5). Accelerated 
formation and accumulation of AGE has been suggested to play 
a pivotal role in various metabolic disorders including diabe-
tes45), obesity12), metabolic syndromes32).

It is now well established that mitochondrial glycation is im-

INTRODUCTION

Diabetes mellitus (DM) has become a major health problem 
affecting the global population. It has been anticipated that dia-
betic population will increase by 42% in the developed coun-
tries and by 170% in the developing countries by 203015).

Patients with DM suffer various complications, such as vascu-
lopathy, retinopathy, nephropathy, and peripheral neuropathy. 
Mounting evidences have indicated that DM is also implicated 
in the brain pathological changes, named as the diabetic enceph-
alopathy, which is a complication of DM in the central nervous 
system (CNS). It is characterized by cognitive deficits and neu-
ropathology19,25,43).

Although prolonged exposure to hyperglycemia is considered 
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portantly implicated in the pathological changes associated with 
diabetic complications and aging34). The mitochondria are the 
major intracellular site responsible for the reactive oxygen spe-
cies (ROS) production39,46). Excess ROS production under oxi-
dative stress can cause deterioration of functional and structural 
integrity of the mitochondria, which leads to depletion of cellu-
lar ATP, release of mitochondrial cytochrome C, and finally cell 
death21). Therefore, mitochondria should be considered as the 
first target site for studying harmful effects in AGE-mediated 
neurotoxicity.

Sildenafil is a specific inhibitor of phosphodiesterase type 5 
(PDE-5), it exerts its pharmacological effects by suppressing the 
breakdown of cGMP13). At first, it attracted investigator’s atten-
tion for the possible antihypertensive and antianginal drug38). Lat-
er, it evolved into a new-line oral treatment for erectile dysfunc-
tion16). It has been acknowledged as an effective treatment for 
pulmonary arterial hypertension13).

The potential application of sildenafil in many experimental 
models of diseases has been indicated in addition to erectile dys-
function and pulmonary hypertension. Pretreatment of silde-
nafil attenuated ischemia-reperfusion renal injury in rats10). It 
also attenuated lung and kidney injury due to overproduction 
of oxidant activity in a rat model of sepsis7). Together with these 
observations several evidences suggested that the therapeutic 
action of sildenafil may be mediated partly through antioxidant 
mechanisms14,17,27).

The present study was undertaken to determine whether silde-
nafil has beneficial effect on neuronal cells challenged with 
AGE-induced oxidative stress to preserve the mitochondrial func-
tional integrity.

MATERIALS AND METHODS

Cell culture
HT-22 cells (Salk Institute, San Diego, CA, USA) were rou-

tinely grown in 75 cm2 culture flasks with Dulbecco’s Modified 
Eagle’s Medium (DMEM) supplemented with fetal bovine se-
rum (10%), penicillin G (150 IU/mL) and streptomycin (50 μg/
mL). When reaching confluency, cells were trypsinized using 
0.05% trypsin/0.53 mM EDTA solution and reseeded at one-
fifth the initial density. For the experiments cells were seeded 
into the appropriate culture dishes, such as 24 to 96-well plates 
or on collagen-coated cover glasses in 6-well plates depending 
on the respective experiments.

Preparation of AGE-BSA
Glycer-AGE was prepared as previously described9). Endo-

toxin-free bovine serum albumin (BSA, 10 mg/mL) was incubat-
ed with 100 mM D-glyceraldehyde in phosphate buffer (0.2 M, 
pH 7.4). The reaction mixture was filtered through microporous 
membrane filter (0.22 μm pore size) and then incubated for 7 
days in the dark at 37°C. Low molecular reactants and unincor-
porated D-glyceraldehyde were removed by dialysis against 0.1 

M phosphate buffer overnight at 4°C. BSA incubated at the same 
conditions in phosphate buffer without D-glyceraldehyde was 
used as BSA control. Every AGE preparation was tested for en-
dotoxin by the limulus amebocytelysate assay, and stored at 4°C.

Assay of mitochondrial MTT reduction ability
After exposure to experimental protocols, the cells were in-

cubated with 50 μL of 5 mg/mL 3-(4,5-dimethyl-2-thiazyl)-2,5- 
diphenyl-2H-tetrazolium bromide (MTT) at 37°C for 4 hr. The 
absorbance value proportional to the formation of formazan 
from MTT was determined at 540 nm using automatic multiwell 
spectrophotometer26). MTT reduction values were expressed as 
percentage of the BSA-control cells. 

Measurement of ATP content
ATP levels were measured in cells with a luciferin-luciferase 

assay23). After exposure to experimental procedures, cells were 
solubilized with 500 μL of 0.5% Triton X-100 and acidified with 
100 μL of 0.6 M perchloric acid and placed on ice. Cell suspen-
sion was then diluted with 10 mM potassium glutamate buffer 
containing 4 mM MgSO4 (pH 7.4), and 100 μL of 20 mg/mL lu-
ciferin-luciferase was added to 10 μL of diluted sample. Light 
emission was recorded at 20 sec with a luminometer (MicroLu-
mat LB96P, Berthold, Germany). Protein content was determined 
on a portion of the cell sample using Biorad protein assay kit.

Analysis of ROS production
Intracellular production of reactive oxygen species (ROS) was 

determined using DCFH-DA. Cells were preincubated with 10 
μM DCFH-DA for 1 hr at 37°C, and then exposed to experi-
mental procedures for various durations. DCF fluorescence was 
analysed using FACSort Flow Cytometer (Becton-Dickinson 
Bioscience, San Jose, CA, USA).

Measurement of mitochondrial membrane potential
Mitochondrial transmembrane potential was measured with 

DiOC6(3). Reduction in DiOC6(3) staining indicates reduction 
of the mitochondrial transmembrane potential. Cells were load-
ed with DiOC6(3) at a final concentration of 50 nM for 20 min 
at 37°C in the dark. Cells were washed and resuspended in PBS. 
The fluorescence intensity was analyzed with a FACsort Becton 
Dickinson Flow Cytometer (Beckton-Dickinson Bioscience, 
San Jose, CA, USA).

Detection of mitochondrial permeability transition
To determine the formation of mitochondrial permeability 

transition (MPT) pore, a double staining method with fluorescent 
dyes, calcein/AM and TMRM was used as described by Lemas-
ters et al.21).

Analysis of cytochrome C release
The amount of cytochrome C released from the mitochondri-

al intermembrane space into the cytosol was determined by a 
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western blot analysis. After washing with ice-cold phosphate-
buffered saline, cells were resuspended in permeabilization buf-
fer containing 75 mM NaCl, 1 mM NaH2PO4, 8 mM Na2PO4, 
250 mM sucrose, 1 mM phenylmethylsulfonyl fluoride, addi-
tional protease inhibitors, and 0.05% digitonin. Following cen-
trifugation at 15000 rpm at 4°C for 10 min, the supernatant was 
separated from the pellet consisting of mitochondria and cellu-
lar debris. Equal amounts of protein were loaded on a 15% acryl-
amide gel and separated by SDS-PAGE. Nitrocellulose paper 
was then blocked with 0.5% nonfat dry milk, probed with 0.5 
μg/mL polyclonal anti-cytochrome C antibodies (1 : 200, Santa 
Cruz Biotechnology, Dalas, TX, USA), then with secondary an-
tibodies (rabbit) diluted 1 : 5000. Immunoblots were developed 
with ECL-plus reagents from Amersham according to the manu-
facturer’s instructions.

Determination of caspase-3 activities
A quantitative enzymatic activity assay was carried out accord-

ing to instructions of the R&D (Minneapolis, MN, USA) colo-
rimetric assay kit manufacturer.

Analysis of apoptosis
Apoptosis was analyzed by staining with Hoechst-33258. For 

fluorescence microscopy, cells were grown on cover glasses. Af-
ter exposure to experimental procedures, cells were fixed by 4% 
paraformaldehyde and loaded for 30 min at 37°C with 5 μM 
Hoechst-33258 in HBSS. After washout, cover glasses were mount-
ed on the slide glasses with PBS : Glycerol=1 : 1 solution. Apop-
totic cells with condensed or fragmented nuclei were examined 
using a fluorescence microscopy.

Real-time reverse-transcriptase polymerase chain reaction
Total RNA was prepared using Trizol reagent (Invitrogen, 

Carlsbad, CA, USA). RNA concentration was determined by 
spectrometry. Quantitative real-time PCR was performed with 
SYBR Green Mastermix (Invitrogen, Carlsbad, CA, USA) and 
15 pmol primers for mouse HO-1, and β-actin. Reactions were 
performed in triplicate and specificity was monitored using 
melting curve analysis after cycling. Primers used were 5’-GGT 
GATGGCTTCCTTGTACC-3’ (forward) and 5’-AGTGAG 
GCCCATACCAGAAG-3’ (reverse) for HO-1, and 5’-AGAG 
GGAAATCGTGCGTGAC-3’ (forward) and 5’-CAATAGT 
GATGACCTGGCCGT-3’ (reverse) for β-actin.

Analysis of HO-1 protein
Western blot analysis was performed to determine the HO-1 

protein. Total intracellular protein was isolated by 5 times re-
peated freeze-thaw lysis in a buffer containing KCl (600 mM), 
Tris-Cl (20 mM), glycerol (20%), Pefabloc (0.4 mg/mL), leu-
peptin (10 μg/mL), pepstatin (10 μg/mL), aprotinin (5 μg/mL), 
and pH 7.8. Protein content was measured by Bradford assay 
(Bio-Rad Laboratory, Hercules, CA, USA). 

Protein samples (40 μg) were electrophoresed on sodium do-

decyl sulfate-polyacrylamide (10% gel) and transferred to im-
mobile polyvinylidene difluoride membranes (Millipore, Bed-
ford, MA, USA). The membranes were then blocked with 5% 
skim milk in Tris-buffered saline containing 0.5% Tween-20 
(TBST) for 1 hr at room temperature. Then the membranes were 
incubated with primary antibodies for HO-1 (StressGen Biotech-
nology, CA, USA) and β-actin (Gentest). The membranes were 
washed three times with TBST, and incubated with goat anti-
mouse IgG-horseradish peroxidase with a 1 : 5000 dilution in 
TBST for 2 hr at room temperature. The membranes were washed 
three times for 10 min with TBS-T again and immunolabeling 
was visualized using enhanced chemiluminescent HRP substrate 
(ECL) detection method.

Transfection with HO-1 siRNA
Transient transfection with siRNA and scrambled siRNA against 

human HO-1 (Santa Cruz Biotechnology, Dalas, TX, USA) were 
performed using the Superfect® transfection reagent (Qiagen, 
Hilden, Germany).

Data analysis 
The data were presented as the means±standard error. Statis-

tical analyses between two groups were performed by unpaired 
Student’s t-test. Differences among groups were tested by one-
way analysis of variance (ANOVA) followed by the Tukey’s test. The 
p value less than 0.05 was accepted to be statistically significant.

RESULTS

Effect of sildenafil on AGE-induced mitochondrial 
dysfunction

In order to determine AGE-induced changes of mitochon-
drial functional integrity and the effect of sildenafil, MTT re-
duction ability was examined. There was a time-dependent de-
crease in the MTT reduction ability in AGE-treated cells. The 
effect of AGE was dose dependent in the range from 25 to 400 
μg/mL (data not shown). Unless otherwise indicated in this study, 
we treated the cells with 200 μg/mL AGE for 48 hr. 

The effect of anti-RAGE antibody was examined to evaluate 
whether the effect of AGE is ascribed to the interaction with its 
receptor, RAGE. In cells pretreated with anti-RAGE antibody (1 
μg/mL) before exposure to AGE, AGE failed to inhibit MTT re-
duction ability suggesting that interaction with RAGE is crucial 
for the cellular actions of AGE (Fig. 1A).

In the presence of sildenafil (as sildenafil citrate, 20 μM), the 
AGE-induced decrease of MTT reduction ability was signifi-
cantly attenuated. In the presence of an inactive cell-permeable 
cGMP analogue Rp-8-Br-cGMP the protective effect of sildenafil 
was significantly diminished, suggesting that sildenafil exerts its 
protective effect via a mechanism dependent on cGMP and/or 
cGMP-dependent protein kinases (PKG) (Fig. 1B).

As ATP is generated primarily by mitochondria through oxi-
dative phosphorylation, intracellular ATP level is another indi-
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cator of intact mitochondrial function. There was a time-depen-
dent decrease in intracellular ATP content in AGE-treated cells. 
In 3 days, intracellular ATP concentration in AGE-treated cells 
decreased to lower than 25% of its control value. However, in 
cells pretreated with of anti-RAGE antibody AGE failed to in-
hibit ATP production (Fig. 2A). Sildenafil significantly reversed 
the AGE-induced inhibition of ATP generation. In the presence 
of Rp-8-Br-cGMP the protective effect of sildenafil was signifi-
cantly diminished (Fig. 2B).

Effect on ROS production
Oxidative stress has been implicated in the AGE-induced neu-

rotoxicity.
Thus to examine whether the protective effect of sildenafil 

against AGE-induced mitochondrial damage is associated with 
its effect on oxidative stress, we assessed the changes in ROS 
generation in AGE-treated cells in the presence and absence of 
sildenafil. After 30 min incubation with AGE, there was a remark-
able increase in ROS formation, which was significantly sup-
pressed in the presence of Rp-8-Br-cGMP (Fig. 3).

Changes in mitochondrial membrane potential
Disruption of the inner mitochondrial membrane potential 

associated with formation of permeability transition pore is a 

Fig. 1. Effect of sildenafil on MTT reduction ability in AGE-treated cells. A : 
Cells were incubated for indicated time periods in control media with 
BSA (open circle), in the presence of AGE alone (200 μg/mL, solid circle), 
or AGE with anti-RAGE antibody (1 μg/mL, solid square). B : MTT reduc-
tion was measured after 48 hr incubation in media containing combina-
tions of AGE, Vehicle (Veh), sildenafil citrate (SC, 20 μM), Rp-8-Br-cGMP 
(RBcGMP, 20 μM). Data were represented as the mean±SEM of 5 exper-
iments. *p<0.01 vs. control, †p<0.01 vs. Veh, ‡p<0.01 vs. SC.
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major event to initiate mitochondria-dependent apoptotic sig-
naling21). Therefore, it was examined whether AGE-induced 
mitochondrial dysfunction is associated with the disruption of 

mitochondrial membrane potential. Fig. 4A, B represents flow 
cytometric analysis of DiOC6(3)-stained cells. In these graphs 
left shift of cell population from strong (designated as M2) to weak 
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Fig. 5. Effect of sildenafil on mitochondrial permeability transition in AGE-treated cells. A and B : Confocal microscopic images showing cells with in-
tact mitochondria and cells with mitochondrial permeability transition. Intact mitochondria accumulate TMR and are discriminated as punctuated 
bright red spots, whereas mitochondria undergoing MPT get deprived of TMR, became permeable to calcein, and as a consequence, loose their visi-
ble contour. Arrows indicate cells undergoing MPT. C : Confocal microscopic analysis was performed after 48 hr incubation in media containing com-
binations of AGE, vehicle (Veh), sildenafil citrate (SC, 20 μM), Rp-8-Br-cGMP (RBcGMP, 20 μM). Data were represented as the mean±SEM of 6 experi-
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Fig. 4. Effect of AGE and sildenafil on mitochondrial membrane potential. Flow cytometric analysis of DIOC6(3)-loaded cell. A : Control. B : AGE-treated. 
C : Flow cytometric analysis was performed after 48 hr incubation in media containing combinations of AGE, vehicle (Veh), sildenafil citrate (SC, 20 μM), 
Rp-8-Br-cGMP (RBcGMP, 20 μM). Data were represented as the mean±SEM of 6 experiments. *p<0.01 vs. control, †p<0.01 vs. Veh, ‡p<0.01 vs. SC. 
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(designated to M1) DiOC6(3) fluorescence region indicates de-
polarization of inner mitochondrial membrane potential. The 
results showed that AGE depolarized the inner mitochondrial 
membrane potential. Sildenafil significantly reversed the AGE-
induced disruption of the mitochondrial membrane potential. 
In the presence of Rp-8-Br-cGMP the effect of sildenafil was sig-
nificantly diminished (Fig. 4C).

AGE-induced MPT and its protection by sildenafil
In confocal micrographs represented in Fig. 5A, B, intact mi-

tochondria accumulated TMR and were discriminated as punc-
tuated bright red spots, whereas injured mitochondria under-
going MPT got deprived of TMR, became permeable to calcein, 
and as a consequence, loose their visible contour. After 48 hr 
incubation with AGE, there was a remarkable increase in cells 
with MPT, and sildenafil significantly suppressed it. In the pres-
ence of Rp-8-Br-cGMP the effect of sildenafil was significantly 
attenuated (Fig. 5C).

Cytochrome C release, caspase activation, and apoptosis
Cytochrome C was detected by western blot analysis of the 

cytosolic fraction from cells treated with AGE for various time 
periods. In AGE-treated cells cytosolic release of cytochrome C 
increased significantly in a time-dependent manner, and silde-
nafil suppressed it (Fig. 6). 

Activation of caspase cascades is critical for the execution phase 
of apoptosis. Caspase-9 is activated by cytochrome C released 
from mitochondria and thus crucial for the execution of the mi-
tochondria-dependent apoptosis, which in turn activates cas-
pase-3. In AGE-treated cells, 4.1 fold increase in caspase-3 ac-
tivity was observed (Fig. 7A). In micrographs of cells stained with 
Hoechst-33258 represented in Fig. 7B, C, apoptotic cells are char-
acterized by nuclear condensation and fragmentation. In paral-

lel with caspase-3 activation there was a significant increase in 
apoptotic cell number (6.1±1.2% to 37.2±7.1% of total cell popu-
lation). Sildenafil significantly suppressed both the AGE-in-
duced caspasse-3 activation and apoptosis (Fig. 7D).

Increased HO-1 expression by sildenafil
Several investigators reported that sildenafil increased heme 

oxygenase-1 (HO-1) expression and it might play a role in the ac-
tion of sildenafil1-3,18,22). Hence, we examined whether sildenafil 
has any influence the HO-1 expression. qRT-PCR and Western 
blot analyses revealed that sildenafil significantly increased ex-
pression of both the HO-1 mRNA (Fig. 8A) and protein (Fig. 8B, C).

Effects of HO-1 related molecules
In order to evaluate whether the effect of sildenafil resulted 

from the promoted expression of HO-1, effects of HO-1 related 
molecules were examined. Cobalt protophorphyrin (CoPP), an 
inducer of HO-1 inducer24), and bilirubin, the metabolic prod-
uct of HO-124), restored the AGE-induced decrease in MTT re-
duction ability. On the contrary zinc protoporphyrin IX (ZnPP 
IX), a HO-1 inhibitor24) significantly diminished the effect of 
sildenafil (Fig. 9A). Similar results were observed in the experi-
ments to examine the effects on the AGE-induced MPT (Fig. 9B). 
Overall, these results strongly indicate that sildenafil-induced 
protective effects are closely related with the increased expres-
sion of the HO-1.

Effect of HO-1 siRNA transfection
In order to confirm further the role of HO-1, we used cells trans-

fected with siRNA. In cells transfected with the HO-1 siRNA 
the basal expression of the HO-1 protein was significantly di-
minished. In these cells, CoPP and sildenafil had no influence 
on the HO-1 expression (Fig. 10A). Likewise, in siRNA-trans-

Fig. 6. Effect of sildenafil on cytochrome C release in AGE-treated cells. A : Western blot analysis was performed for cytosolic released cytochrome C 
after incubation for indicated time periods in control media with BSA, in the presence of AGE (200 μg/mL, closed circle), or AGE with sildenafil (SC, 20 μM). 
B : Western blot analysis was performed after 48 hr incubation in media containing combinations of AGE, vehicle (Veh), sildenafil citrate (SC, 20 μM), 
Rp-8-Br-cGMP (RBcGMP, 20 μM). Data were represented as the mean±SEM of 6 experiments. *p<0.01 vs. control, †p<0.01 vs. Veh, ‡p<0.01 vs. SC.
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fected cells, sildenafil failed to restore the AGE-induced changes 
in MTT reduction ability and MPT induction (Fig. 10B, C). These 
results further support our hypothesis that promoted expres-
sion of HO-1 is closely related with the sildenafil-induced pro-
tection mechanism.

DISCUSSION

AGE has been known to play an important role in the patho-

genesis of neurodegenerative disorders including diabetic en-
cephalopathy, aging changes, and Alzheimer disease (AD)11,40). 
AGE were detected in the cytosol of neurons in the hippocampus 
and para-hippocampal gyrus of human AD brains44). Moreover, 
AGE disrupted the blood-brain barrier in brain microvascular 
endothelium under diabetic conditions42), further confirming 
us the critical role of AGE in diabetic encephalopathy.

Diabetic encephalopathy is characterized by cognitive defi-
cits and neuropathology19,25,43). Neuropathology is associated 
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with multiple lesions including reduced ATP synthesis and al-
tered mitochondrial structure and function4,40). Deterioration 
of mitochondrial membrane potential, induction of MPT and 
subsequent release of cytochrome C through this MPT pore21) 
are known to be initial events. Released cytochrome C activates 
caspase cascades, which are critical for the execution phase of 
apoptosis.

The present study provided evidence that AGE deteriorates 
mitochondrial functional integrity in HT-22 neuronal cells. AGE 
inhibited MTT reduction (Fig. 1) and cellular ATP production 
(Fig. 2), and stimulated intracellular ROS production (Fig. 3) in 
the HT-22 neuronal cells. It also caused deterioration of mito-
chondrial membrane potential (Fig. 4), and substantial cyto-
chrome C release from the mitochondria to the cytosol (Fig. 6) 
and activation of caspase 3 which was accompanied by apopto-
sis (Fig. 7). Double fluorescence imaging studies with TMRM 

and calcein/AM demonstrated the release of cytochrome C is a 
consequence of MPT. These findings suggest that mitochondri-
al dysfunction may be a crucial event to cause AGE-induced 
neuropathy in the HT-22 neuronal cells.

RAGE, AGE-R3 (galectin-3), and maybe other AGE-binding 
proteins mediate the AGE-induced cellular effects. Among them, 
RAGE is the best characterized AGE receptor which is respon-
sible for most of the detrimental effects of AGE41). In cells pre-
treated with anti-RAGE antibody, AGE did not affect the MTT 
reduction ability and cellular ATP generation suggesting that 
AGE-RAGE interaction is crucial for the cellular actions of 
AGE (Fig. 1A, 2A).

Apart from its efficacy in erectile dysfunction and pulmonary 
hypertension, the potential application of sildenafil in many ex-
perimental models of diseases has been indicated. In terms of 
the brain, several lines of studies have suggested that sildenafil 
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might provide beneficial effects to prevent the brain dysfunc-
tion and pathological changes associated with aging and AD. 
Sildenafil prevented the decline of cognitive performance, and 
in addition, the increase in Aβ levels of AD mice37). It reverted the 
shifting of amyloid precursor protein processing toward Aβ42 
production and the increase of the Aβ42 : Aβ40 ratio in physio-
logical mouse model of aging suggesting that PDE-5 inhibitor 
might be beneficial to treat the age-related brain pathologies36).

The present study provided clear evidence that sildenafil pro-
vide beneficial effect to protect mitochondria from AGE-induced 
injuries. It helped mitochondria to preserve the ability to reduce 
MTT (Fig. 1) and produce ATP (Fig. 2) in these cells. Further-
more, it prevented cascades of event which lead to apoptotic cell 
death, deterioration of mitochondrial membrane potential (Fig. 
4), induction of MPT (Fig. 5), cytochrome C release (Fig. 6), and 
activation of caspase 3 which was accompanied by apoptosis (Fig. 
7) in AGE-treated cells. These results strongly suggests that silde-
nafil provides a beneficial effect to protect the mitochondria 
against AGE-induced irreversible damages.

Enhancement of the HO-1 pathway has been proven to be a 
potential tool to protect neurons from oxidative injuries8). HO-1 
produces carbon monoxide (CO) and bilirubin as products of 
heme metabolism. Bilirubin acts as a strong antioxidant29,30). As 
generation of ROS has been known to play a crucial role in varied 
forms of diabetic encephalopathies, increased bilirubin produc-
tion could provide helpful effects to decrease oxidative injuries.

In the present study, it was strongly suggested that HO-1 is in-
volved in sildenafil-induced prevention of AGE-induced mito-
chondrial dysfunction. In qRT-PCR and Western blot analyses, 
it was demonstrated that sildenafil promoted the HO-1 expres-
sion (Fig. 8). CoPP, a HO-1 inducer24) and bilirubin, the metabol-
ic product of HO-124) showed a similar protective effects. On the 
contrary, in cells treated with ZnPP IX, a HO-1 inhibitor24), the 
effect of sildenafil was significantly attenuated (Fig. 9). Transfec-
tion with small interfering RNA confirm further confirmed the 
involvement of HO-1 in the action mechanism of sildenafil (Fig. 10).

The findings in this study provides us with valuable informa-
tions for understanding the pharmacological efficacy of silde-
nafil which may expand the area of its therapeutic use beyond 
for the treatment of erectile dysfunction and pulmonary hyper-
tension. Sildenafil is one of the most frequently prescribed drug 
for the men with erectile dysfunction associated with DM. It 
has been proven safe even for prolonged treatment. Further-
more, it is worthwhile to note several recent reports which de-
scribed the beneficial effect of continuous daily sildenafil treat-
ment to promote endothelial function6,20). 

CONCLUSION

Therefore, if PDE-5 inhibitors, such as sildenafil, could provide 
beneficial effects to ameliorate AD- or DM-associated pathogenic 
processes they could be considered as a potential therapeutic 
agents for AD-, DM-, and aging-associated brain dysfunction 

and encephalopathies.
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