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Noncoding ribonucleic acids (ncRNAs) are involved in various functions in the formation and progression of different tumors.
However, the association between N6-methyladenosine-related ncRNAs (m6A-related ncRNAs) and gastric cancer (GC)
prognosis remains elusive. As such, this research was aimed at identifying m6A-related ncRNAs (lncRNAs and miRNAs) in
GC and developing prognostic models of relevant m6A-related ncRNAs and identifying potential biomarkers regulated by
m6A. In this study, the m6A2Target database, Starbase database, and The Cancer Genome Atlas (TCGA) were used to screen
m6A-related ncRNAs. And then, we performed integrated bioinformatics analyses to determine prognosis-associated ncRNAs
and to develop the m6A-related ncRNA prognostic signature (m6A-NPS) for GC patients. Finally, five m6A-related ncRNAs
(including lnc-ARHGAP12, lnc-HYPM-1, lnc-WDR7-11, LINC02266, and lnc-PRIM2-7) were identified to establish m6A-
NPS. The predictive power of m6A-NPS was better in the receiver operating characteristic (ROC) curve analysis of the training
set (area under the curve (AUC), >0.6). The m6A-NPS could be utilized to classify patients into high- and low-risk cohorts,
and the Kaplan-Meier analysis indicated that participants in the high-risk cohort had a poorer prognosis. The entire TCGA
dataset substantiated the predictive value of m6A-NPS. Significant differences in TCGA molecular GC subtypes were observed
between high- and low-risk cohorts. The ROC curve analysis indicated that m6A-NPS had better predictive power than other
clinical characteristics of GC prognosis. Uni- and multivariate regression analyses indicated m6A-NPS as an independent
prognostic factor. Furthermore, the m6A status between the low-risk cohort and high-risk cohort was significantly different.
Differential genes between them were enriched in multiple tumor-associated signaling pathways. In summary, five m6A-related
ncRNA signatures that could forecast the overall survival of patients with GC were identified.

1. Introduction

The current global statistic reveals that gastric cancer (GC) is
the third leading contributor of cancer-related mortality, with
an incidence that widely varied across regions, i.e., >70% in
developing countries, mainly in East Asia [1]. In China, GC is
identified as the second-highest risk factor of cancer-related
mortality, ranking second among common malignancies in

men and third in women [2]. GC is influenced by variousmajor
risk factors, such as poor dietary habits, active smoking, and
Helicobacter pylori infection. Due to genetic heterogeneity
and early screening difficulties [3, 4], the prognosis of
patients with GC remains unsatisfactory, especially in China
[5]. Therefore, effective biomarkers should be identified to
better assess tumor progression, predict the overall survival
(OS), and improve treatment outcomes.
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As one of the most common chemical modifications of
eukaryotic messenger ribonucleic (mRNA), N6-
methyladenosine (m6A) can affect various essential biologi-
cal processes by regulating the expression of target genes [6,
7]. m6A-regulated proteins consist of “writers” (WTAP,
METTL3, and METTL14), “erasers” (ALKBH5 and FTO),
and “readers” (IGF2BPs and YTHDFs) [8–10]. Existing evi-
dence has demonstrated that m6A modifications contribute
to a vital function in regulating the maturation, translation,
and degradation of precursor mRNAs. Several studies have
shown that m6A regulator dysregulation is associated with
apoptosis, proliferation, self-renewal, developmental defects,
and malignant tumor progression [11–15].

Noncoding RNAs (ncRNAs) are transcripts with no
potential for protein coding and include small ncRNAs
(sncRNAs, 18–200nt) as well as long ncRNAs (lncRNAs,
>200nt). Various ncRNAs types include microRNAs (miR-
NAs), ribosomal RNAs (rRNAs), small nucleolar RNAs
(snoRNAs), transfer RNAs (tRNAs), and long noncoding
RNAs (lncRNAs). The majority of ncRNAs participate in
different cellular processes including apoptosis, prolifera-
tion, cell cycle, epithelial-mesenchymal transition, and
autophagy [16]. Among these ncRNAs, miRNAs and
lncRNAs are known to regulate gene expression by modify-
ing the underlying transcriptional mechanism or through
their fine regulation at different levels, such as transcription,
translation, and protein function. In GC, aberrant expres-
sion of ncRNAs is strongly linked to tumor progression,
radioresistance, chemoresistance, and sensitivity to target
therapy or immunotherapy [17–21]. Among them, the aber-
rant expression of miRNAs has been well investigated in gas-
tric cancer. For example, Deng et al. found that high
expression of oncogenic miR-215 in GC tissues might be a
promising biomarker for GC diagnosis [22]. Zheng et al.
reported that miR-148a is considered to be one of the impor-
tant tumor suppressors in GC and linked to lymph node
metastasis and TNM staging [23]. A plethora of evidence
also suggested that aberrant expression of lncRNAs serve
as tumor suppressors or carcinogens in the development of
GC. Recently, several lncRNAs are aberrantly expressed in
GC and tightly linked to prognosis; for example, HOTAIR
was reported as an oncogenic lncRNA that can promote pro-
liferation and invasion by multiple mechanisms and its high
expression significantly linked to poor prognosis of GC
patients [19, 24, 25]. lncRNA-PVT1 was reported that its
overexpression in GC tissues can promote cell proliferation
by regulating the expression of FOXM1, p15, and p16 and
significantly associated with poor overall survival [26].

Recently, accumulating evidence suggests that m6A
modification plays a key role for regulating a range of bio-
processes, including ncRNA processing and their biological
function in tumorigenesis [27, 28]. Some ncRNAs involved
in different types of cancer were simultaneously shown to
acquire dynamic m6A modifications in their structures, such
as XIST, MALAT1, and HOTAIR [29]. Recently, Zhang
et al. reported that ALKBH5 (an eraser enzyme) can pro-
mote GC invasion and metastasis by demethylating the
lncRNA NEAT1 [30]. Another study has indicated that the
m6A demethylase ALKBH5 could inhibit the lncRNA

PVT1 degradation, and its overexpression facilitated the
proliferation of osteosarcoma cells in vitro and in vivo [31].
Chen et al. revealed that METTL14 suppressed colorectal
carcinogenesis via regulating m6A-dependent primary
miR-375 processing [32]. A similar phenomenon showed
that METTL14 could inhibit colorectal cancer progression
by downregulating the oncogenic lncRNA XIST [33]. The
lncRNA GAS5 has been reported to inhibit colorectal cancer
progression by regulating the Yes-associated protein phos-
phorylation and degradation and to be negatively modulated
by the m6A reader YTHDF3 [34]. However, the potential
prognostic value of m6A-associated ncRNAs in GC and
the function of ncRNAs associated with m6A regulators in
GC remains unknown. Therefore, it is of utmost importance
to investigate biomarkers that can be used as potential ther-
apeutic targets from the perspective of the mechanisms of
m6A modifications.

At present, methods for repurposing microarray data for
ncRNA expression analysis have been well-established [35,
36]. Hence, this research was aimed at identifying m6A-
related ncRNAs (lncRNAs and miRNAs) in GC and devel-
oping prognostic models of relevant m6A-related ncRNAs
and identifying potential biomarkers regulated by m6A.

2. Materials and Methods

2.1. Data Collection. Transcriptome data of GC patient sam-
ples were obtained from The Cancer Genome Atlas (TCGA).
Stomach cancer dataset and the matching clinical survival
information were downloaded. Based on the clinical data,
transcriptome samples with complete survival information
were obtained. Finally, an aggregate of 347 samples was
screened for prognostic gene expression profiles and prog-
nostic model development. Furthermore, 21 m6A-related
genes include “writers” (ZC3H13, VIRMA (KIAA1429),
WTAP, RBM15, RBM15B, METTL3, METTL14, and
METTL16), “erasers” (ALKBH5 and FTO), and “readers”
(IGF2BP1, IGF2BP2, IGF2BP3, RBMX, HNRNPC,
HNRNPA2B1, YTHDC1, YTHDC2, YTHDF1, YTHDF2,
and YTHDF3) [37].

2.2. Acquisition of m6A-Related ncRNAs. m6A-related
ncRNAs were identified utilizing the Pearson correlation
analysis (with the ∣PearsonR ∣ >0:3 and p < 0:01) in the
TCGA dataset. m6A2Target database (http://m6a2target
.canceromics.org/) was employed to screen m6A-related
ncRNAs and mRNAs, sequentially. Then, the Starbase
database (http://starbase.sysu.edu.cn/index.php) was uti-
lized to screen m6A-related mRNA-interacting ncRNAs.
Finally, these datasets were merged to obtain candidate
m6A-related ncRNAs, which were analyzed in the subse-
quent analysis.

2.3. Development of Weighted Gene Coexpression Networks.
The expression matrices of 347 samples were categorized
randomly into the training and testing sets (including train-
ing set (n = 243) and testing set (n = 104)). A coexpression
network was created for the ncRNA expression matrix using
the R package “WGCNA.” A total of six relevant modules
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were obtained, brown and blue were selected as key modules
according to the patients’ survival status, and a total of 910
ncRNAs were obtained as candidate genes.

2.4. Establishing a Prognostic Model Based on m6A-Related
ncRNAs. In the TCGA-GC training set, the univariate Cox
regression analysis was executed on candidate genes to
detect prognosis-related genes, with p < 0:001 as the screen-
ing threshold. Then, the least absolute shrinkage and selec-
tion operator (LASSO) Cox regression analysis was utilized
to further assess prognostic genes. Therefore, prognostic
gene signatures were developed according to the LASSO
Cox regression model coefficients (β-values) multiplied by
ncRNA expression levels. The signature risk score of each
sample was computed as follows: Risk score = βncRNA1 ∗
ncRNA1 + βncRNA2 ∗ ncRNA2 +⋯+βncRNAn ∗ ncRNAn
expressions. Then, the risk score was computed for each par-
ticipant in the training set, and the samples were categorized
as high- or low-risk cohorts. Time-dependent receiver oper-
ating characteristic (ROC) curves were utilized to determine
the model’s predictive power for the 1-, 3-, and 5-year sur-
vivals. The model’s prognostic ability was evaluated utilizing
the Kaplan-Meier log-rank tests. The efficacy of the model is

corroborated utilizing the testing set and the entire TCGA
dataset to analyze its survival and ROC curves.

2.5. Performance Assessment of m6A-NPS. T-test analysis
was performed for the comparison of risk score differences
according to clinical characteristics. ROC curves were
employed to compare the predictive ability of the risk score
model with other clinical features to determine the GC prog-
nosis. The uni- and multivariate Cox regression analyses
were carried out to validate the model independence.

2.6. Functional Enrichment Analyses. The expression profile
of 21 m6A-related genes in low- and high-risk cohorts was
analyzed. Moreover, differentially expressed genes (DEGs)
were detected between low- and high-risk cohorts utilizing
the R package “Deseq2” with the criterion of log2 ðfold
changeÞ ∣ >1:5 and p < 0:05), and then, DEGs were entered
into the “Metascape” website (https://metascape.org/gp/
index.html) for functional enrichment analysis [38].

3. Results

3.1. Identification of m6A-Related ncRNAs in GC. Figure 1(a)
illustrates the workflow analysis of this study. First, 2884

21m6A-Related genes

TCGA dataset m6A2T Target database

Starbase databasePearson correlation analysis
(cor>0.3 or <–0.3,p<0.01)

m6A-ncRNA

WGCNATCGA training dataset

Univariate cox regression (p<0.01)

LASSO cox regression(p<0.01)

Model assesment and validation

TCGA 
testing cohort

Whole 
TCGA cohort

Clinical feature 
analysis

Differential expression
 and enrichment analysis

Correlation analysis of 
risk score and m6A-status

(a)

Eraser
Reader
Writer

Gene class0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

ALKBH5
FTO
ZC3H13
KIAA1429
RBM15
RBM158
METTL14
METTL16
METTL3
WTAP
RBMX
HNRNPA2B1
HNRNPC
IGF2BP1
IGF2BP2
IGF2BP3
YTHDC1
YTHDC2
YTHDF1
YTHDF2
YTHDF3

Geneclass

LINC00657

LINC00630

LINC00680

EBLN3

RP11-121C2.2

RP11-159G9.5

MAPKAPK5-AS1

SAPTA13

ZNF674-AS1

CTC-444N24.11

CROCCP2

DKFZP434I0714

RP11-352M15.2

LINC00909

MIR4292

JPX LL0XNC01-237H1.2

AC093323.3

TRAM2-AS1

RP11-332H14.2

IQCH-AS1

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

(b)

Figure 1: (a) The workflow analysis of this study. (b) Heatmap of the correlations between m6A-related genes and 21 prognostic m6A-
related ncRNAs. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.
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ncRNAs significantly linked to m6A-related genes were
obtained from the TCGA dataset. The relationship between
m6A-related genes and ncRNAs is shown in Figure 1(b).
An aggregate of 107 m6A-related ncRNAs was obtained
using the m6A2Target database and 260 m6A-related
ncRNAs using the Starbase database. By merging these data-
sets, 3168 m6A-related ncRNAs were finally obtained
(Figure 2). The gene expression was normalized for subse-
quent analysis. The expression matrix was divided into train-
ing and testing sets (243 and 104, respectively), and the
training set was then subjected to subsequent analysis.
Second, the model construction was performed using the
training dataset. The coexpression network was developed
utilizing the R package “(WGCNA)” for the ncRNA-related
gene expression matrix and adopting 5 as the most suitable
soft threshold power (Figures 3(a) and 3(b)); a total of six
relevant modules were obtained. The brown and blue models
were selected as key modules (Figure 3(c)). These two mod-
ules contain a total of 910 genes (Figure 3(d), p < 0:01).

3.2. Prognostic Analysis of Candidate m6A-Related ncRNAs.
Next, the univariate Cox regression analysis was employed
to select prognosis-associated genes from 910 m6A-related
ncRNAs. A total of 39 candidate genes were included for fur-
ther analysis. The forest plot showed that RP11-497E19.1,
RP11-472N13.3, AL121578.2, CTD-2008L17.2, RP11-
397A16.3, RP11-14A22.4, and XXbac-BPG5C20.7 are risk
factors with hazard ratios of >1 (p < 0:001) in patients with
GC (Figure 4(a)). The Kaplan-Meier survival curves demon-
strated that high expressions of RP11-497E19.1, RP11-
472N13.3, AL121578.2, CTD-2008L17.2, RP11-397A16.3,
RP11-14A22.4, and XXbac-BPG5C20.7 were linked to the
poor OS in the TCGA dataset (Figure 4(b)).

3.3. Establishing the Prognostic Risk Model Premised on
m6A-Related ncRNAs. The LASSO Cox analysis was exe-
cuted premised on the 39 candidate m6A-related prognostic
ncRNAs to establish the m6A-related ncRNA prognostic
signature (m6A-NPS) (Figures 5(a) and 5(b)). The following
five genes were identified: RP11-472N13.3, AL121578.2,
RP11-397A16.3, RP11-142A22.4, and XXbac-BPG55C20.7.
Moreover, a risk score was computed according to the coef-
ficient for each ncRNA in all participants in the training set
(Figures 5(c) and 5(d)). And Figure 5(e) illustrates the heat-
map of risk model associated gene expression with the corre-
sponding clinical information. Conversely, participants in
the training group were categorized into high- and low-risk
subcategories premised on the median risk scores. The
Kaplan-Meier survival curve analysis revealed that clinical
survival was worse in the high-risk cohort of GC patients
(Figure 6(a), p < 0:0001). The survival status and risk score
distribution in the TCGA training datasets indicated that
the proportion of patients who died was considerably
greater in those with high scores as opposed to those with
low scores (Figures 6(b) and 6(c)). Then, ROC curves indi-
cated that m6A-related ncRNAs hold a potential ability for
predicting the OS in the training set (1-year area under the
ROC curve ðAUCÞ = 0:677, 3-year AUC = 0:713, and 5-year
OS = 0:751; Figure 6(d)).

3.4. Validation of m6A-Related ncRNA Models in Testing
Dataset and the Whole TCGA Cohorts. To verify the prog-
nostic ability of the five m6A-related ncRNA-based models,
the same formula was used in the testing cohort, each
patient’s risk scores were computed, and patients were cate-
gorized into the high- and low-risk cohorts premised on the
median risk score. Unfortunately, no statistically significant
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Figure 2: Venn diagram of m6A-related ncRNAs.
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difference in survival was observed in the testing dataset
between the low- and high-risk cohorts (p = 7:105e − 01,
Supplementary Materials Figure S1a-d). This may be a result
of the low number of patients in this cohort. Thus, the same
formula was utilized to generate the risk score for patients in
the entire TCGA group, as it was used for TCGA training
and testing datasets.

Participants in the high-risk subcategory exhibited a poorer
survival rate as opposed to those in the low-risk subgroup
(Figure 7(a), p < 0:001). The survival status and risk score dis-

tribution in the entire TCGA datasets were consistent with that
in the training set, implying that the proportion of patients who
died was considerably greater in those with high scores
contrasted with those with low scores (Figures 7(b) and 7(c)).
Similarly, the time-dependent ROC curve analysis indicated
that the model had an auspicious ability to forecast the OS
for patients in the entire TCGA cohorts (1-year AUC = 0:634,
3-year AUC = 0:641, and 5-year OS = 0:628; Figure 7(d)).
These findings depicted that this model may be utilized to
forecast the oncologic prognosis of GC patients.
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Figure 3: Development of coexpression network of the ncRNA expression matrix in the training set. (a) Analysis of the scale-free fit index
and mean connectivity for various soft-thresholding powers. (b) The cluster dendrogram of genes. (c) Distribution of average gene
significance and errors in the modules associated with survival status. (d) Module–trait relationships. Each cell consists of the
corresponding correlation and p value, which are color-coded correlated according to the color legend.
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3.5. Prognostic Ability Assessment of m6A-Related ncRNA
Model. First, risk score differences in clinical characteristics
were analyzed, and the results showed significant differences
only in TCGA molecular subtypes [39] (Figure 8(a), p <
0:001). TCGA molecular subtypes are a type of tumor
classification based on molecular data and have been
proven to be more clinically influential in predicting the
treatment and patient prognosis as compared to the tradi-
tional histopathological classification [40]. Therefore, our
results depicted that the score model was closely linked
to clinical prognosis. Then, the clinical predictive power
of the risk score was assessed. The ROC curve was used
to characterize the predictive power of different clinical
characteristics for the prognosis, and the results revealed
that the risk score model had a better predictive ability
for prognosis of patients with GC (Figure 8(b), AUC >
0:6). Finally, the risk score model independence was
validated using the uni- and multivariate Cox regression
analyses. The results implied that the model was a signifi-
cant and independent prognostic factor (Figures 9(a) and
9(b); p < 0:001 and p = 0:002, respectively).

3.6. Functional Enrichment Analysis. The expression analysis
and difference test for 21 m6A-related genes were performed
between low- and high-risk cohorts. The results revealed sta-
tistically significant differences in the expression of FTO,
HNRNPA2B1, HNRNPC, IGF2BP1, METTL3, RBM15,
RBMX, WTAP, and YTHDF1, of which only FTO and
IGF2BP1 were considerably highly expressed in the high-

risk cohort (Figure 10). These results may implicate a com-
plex regulation mechanism of m6A regulators in the score
model. Therefore, to investigate the possible pathways and
biological processes in molecular heterogeneity between
low- and high-risk cohorts, in the TCGA training set, 2301
DEGs were identified: 107 upregulated and 2194 downregu-
lated genes. Then, pathway analysis of the DEGs was exe-
cuted utilizing the Metascape. The results depicted that
these DEGs were enriched in the following pathways: neuro-
active ligand-receptor interaction, formation of the cornified
envelope, IGF transport and uptake by IGFBPs, and chylo-
micron remodeling (Figures 11(a)–11(e)).

4. Discussion

In the field of epigenetics, reversible processes of m6A mod-
ifications are generally accepted to control and determine
cell growth and differentiation [41, 42]. Currently, the regu-
latory role of m6A methylation in tumors has been attract-
ing more attention, and in-depth genomic studies have
shown that m6A modifications are closely correlated with
tumorigenesis and progression [11, 27, 43]. However, the
role of GC-related m6A methylation regulation based on
ncRNAs is not yet fully known. We strongly believe that
m6A modifications of ncRNAs play an essential role in the
GC progression. Hence, potential prognostic biomarkers
and therapeutic targets for GC should be identified.

In the recent decades, the progress in uncovering the
genetic characteristics of various diseases has been
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Figure 4: (a) Univariate Cox analysis for the expression of m6A-related prognostic ncRNAs. (b) Kaplan-Meier curve results of m6A-related
prognostic ncRNAs (p < 0:001).
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accelerated by the high-speed development of high-
throughput sequencing and bioinformatics [44]. The TCGA
database, a publicly available cancer genome database,
provides comprehensive cancer data, including ncRNA
expression data and clinical follow-up information.
Currently, TCGA data are widely used in researches
related to diagnosis and prognosis of cancers [45, 46].
The present study was conducted using gene expression
profile data and clinical information of GC which were
extracted from the TCGA database. In this study, 347
GC samples were analyzed to uncover the prognostic
value of m6A-related ncRNAs. And we performed a mul-
tistep analysis for identifying the significant prognostic
m6A-related ncRNAs in GC.

WGCNA (weighted gene coexpression network analy-
sis), an algorithm designed to characterize the gene-
phenotype relationship of a given sample, avoids potential
bias and subjective decisions by the unsupervised hierar-
chical clustering approach chosen [47]. Therefore, in this
study, we applied WGCNA to analyze the m6A-related
ncRNA expression dataset for the determination of net-
works and genes that are tightly associated with GC prog-
nosis. Then, the univariate Cox regression was employed
to determine genes with prognostic significance. The
LASSO regression algorithm was used for precision and
efficiency reduction dimensions of the variable selection
and prognostic risk models. Finally, a novel m6A-NPS
based on five ncRNAs was developed to forecast the OS
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Figure 6: (a) Kaplan-Meier curves indicated that the high-risk groups had worse overall survival than the low-risk groups in TCGA training
dataset. (b and c) The distributions of risk scores and survival status of GC patients in TCGA training dataset. (d) Receiver operating
characteristic (ROC) curves of m6A-NPS for predicting the 1-/3-/5-year survival in TCGA training dataset.
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of GC. Premised on the risk score, GC patients could be
stratified into high- and low-risk subcategories, and the
prognosis of the high-risk cohort patients was considerably
poor in comparison to those in the low-risk cohort.
Enrichment analysis illustrated that DEGs between the
two groups regulated multiple neoplasm-related signaling
pathways. Comparing the differences in clinical character-
istics between low- and high-risk subcategories, significant
differences in TCGA subtypes were detected between low-
and high-risk subcategories, suggesting a close intrinsic
association between TCGA molecular types and clinical

prognosis. The univariate and multivariate Cox regression
analyses demonstrated that m6A-NPS was an independent
risk factor for the GC patients’ prognosis. The ROC curve
analysis suggested that m6A-NPS had better predictive
power than other clinical parameters.

Taken together, the above results suggested that our
prognostic signature based on five ncRNAs associated with
m6A can be a powerful prognosticator for GC patients.

Recently, a series of studies have been focused on m6A-
related lncRNA signatures to predict the clinical outcomes
for gastric cancer patients. For instance, Wang et al. used
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Figure 7: (a) Kaplan-Meier curves showed significant difference in overall survival between high and low risk groups in the whole TCGA
dataset. (b and c) The distributions of risk scores and survival status of GC patients in the whole TCGA dataset. (d) Receiver operating
characteristic (ROC) curves of m6A-NPS for predicting the 1-/3-/5-year survival in whole TCGA dataset.
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TCGA database to establish an m6A-related lncRNA pair
signature consisting of 25 unique lncRNAs for forecasting
GC patients’ OS [48]. In addition, using the TCGA dataset
and the LASSO Cox regression model, Huang et al. estab-
lished and identified a 14-m6A-related lncRNA prognostic
signature with significant value in predicting the OS for
GC patients [49]. 11-m6A-related lncRNA signature was
established by Wang et al., which could independently pre-
dict the clinical outcomes of GC [50]. Up to date, there are

no m6A-related miRNA signatures to be established to fore-
cast prognosis for GC. Although the above-mentioned
studies developed lncRNA signatures individually, the prog-
nostic assessment ability of each study was different. More-
over, the ROC values of their proposed models were higher
than those proposed in our study. However, there were some
differences between our proposed prognostic models and
these prognostic signatures. First, the perspective of our
study included miRNAs and lncRNAs, not only screened
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Figure 9: Univariate (a) and multivariate (b) Cox regression analyses of clinical characteristics and the risk score model based on TCGA.
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lncRNAs. Second, in consideration of the value of future
clinical applicability, the number of ncRNAs in the risk
model should be as small as possible, but the number of
lncRNAs they previously established was much higher than
the number in our 5-ncRNA signature.

In this study, 39 m6A-related prognostic ncRNAs were
identified in 347 patients with GC. Finally, five of them were
determined to develop m6A-NPS. As far as we know, this
study first established the role of m6A-NPS in GC, namely,
RP11-472N13.3, AL121578.2, RP11-397A16.3, RP11-
142A22.4, and XXbac-BPG55C20.7, also known as lnc-
ARHGAP12, lnc-HYPM-1, lnc-WDR7-11, LINC02266,
and lnc-PRIM2-7, respectively. Five ncRNAs are all classi-
fied as lincRNAs and have not been preliminarily investi-
gated to date because only a few reports have evaluated the
interaction of ncRNAs with m6A-related genes. However,
our findings might still help identify prognostic ncRNAs
that can be potentially targeted by m6A regulators, thus

offering understandings of their probable functions in gas-
tric carcinogenesis and progression.

Despite the robust prognostic signature of five-ncRNA
established in this study. We must acknowledge that this
research has several limitations. First, our results were
obtained and validated using the TCGA dataset. Since no
applicable external dataset was available for validation, inter-
nal data validation was merely performed. Therefore, an
independent GC cohort with larger sample size should be
utilized to further confirm our prognostic ncRNA signature.
Second, further cell line and animal functional experiments
are required, and the intrinsic mechanisms of prognostic
ncRNAs as well as their mutual interactions to m6A-
related genes should be further investigated.

Finally, whether the combination of 5-ncRNA prognos-
tic signature with other clinical features could potentially
improve the predictive power remains an important ques-
tion for our future studies.

NS. NS. NS. NS. NS.
RBM15 RBM15B RBMX WTAP YTHDC1 YTHDC2 YTHDF1 YTHDF2 YTHDF3

12

13

14

11.0

11.5

12.0

12.5

13.0

11

12

13

9

10

11

12

11.0

11.5

12.0

12.5

13.0

11.0

11.5

12.0

12.5

13.0

12.5

13.0

13.5

14.0

14.5

11

12

13

NS. NS. NS. NS. NS.
ALKBH5 FTO HNRNPA2B1 HNRNPC IGF2BP1 IGF2BP2 IGF2BP3 KIAA1429 METTL14

High Low High Low High Low High Low High Low High Low High Low High Low High Low

NS.
ZC3H13

High Low High Low High Low High Low High Low High Low High Low High Low High Low High Low

12

13

14

15

NS.
METTL16

High Low

METTL3

High Low

10

11

10.5

11.0

11.5

12.0

9

10

11

11.0

11.5

12.0

12.5

13.0

5.0

7.5

10.0

12.5

7

9

11

13

5

10

15

13.5

14.0

14.5

15.0

14.5

15.0

15.5

16.0

16.5

11

12

11.0

11.5

12.0

12.5

13.0

13.5

9

10

11

Gene

Ex
pr

es
sio

n

Risk

High

Low

⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎⁎ ⁎⁎

⁎⁎ ⁎⁎ ⁎ ⁎⁎⁎

Figure 10: The expression profile of m6A-related genes between low- and high-risk subgroups.
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5. Conclusions

In this study, we performed integrated bioinformatics analy-
ses to determine prognosis-associated ncRNAs and identi-
fied five m6A-related ncRNA signatures to forecast the OS
in GC patients.
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