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Abstract
Background: Farnesyl protein transferase inhibitors (FTIs) were originally developed to inhibit
oncogenic ras, however it is now clear that there are several other potential targets for this drug
class. The FTI tipifarnib (ZARNESTRA™, R115777) has recently demonstrated clinical responses
in adults with refractory and relapsed acute leukemias. This study was conducted to identify genetic
markers and pathways that are regulated by tipifarnib in acute myeloid leukemia (AML).

Methods: Tipifarnib-mediated gene expression changes in 3 AML cell lines and bone marrow
samples from two patients with AML were analyzed on a cDNA microarray containing
approximately 7000 human genes. Pathways associated with these expression changes were
identified using the Ingenuity Pathway Analysis tool.

Results: The expression analysis identified a common set of genes that were regulated by tipifarnib
in three leukemic cell lines and in leukemic blast cells isolated from two patients who had been
treated with tipifarnib. Association of modulated genes with biological functional groups identified
several pathways affected by tipifarnib including cell signaling, cytoskeletal organization, immunity,
and apoptosis. Gene expression changes were verified in a subset of genes using real time RT-PCR.
Additionally, regulation of apoptotic genes was found to correlate with increased Annexin V
staining in the THP-1 cell line but not in the HL-60 cell line.

Conclusions: The genetic networks derived from these studies illuminate some of the biological
pathways affected by FTI treatment while providing a proof of principle for identifying candidate
genes that might be used as surrogate biomarkers of drug activity.

Background
The investigative agent tipifarnib is a member of a new
class of drugs that were designed to function as a non-pep-
tidomimetic competitive farnesyltransferase inhibitor
(FTI). The principal behind this drug class is that protein

farnesylation is required for many cell-signaling processes
and that dysregulation of cell signaling is thought to be
instrumental in driving cell proliferation in several malig-
nancies. The hypothesis that gave rise to this exciting class
of drugs is that the inhibition of this enzyme would
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reduce the uncontrolled cell signaling and provide some
control over cell division and malignant cell proliferation.

In hematological cancers, tipifarnib has shown significant
inhibition of the proliferation of a variety of human
tumor cell lines both in vitro and in vivo [1-3]. A recent
phase I clinical trial of tipifarnib demonstrated a 32%
response rate in patients with refractory or relapsed acute
myeloid leukemia [4]. Furthermore, tipifarnib activity has
also been seen in early clinical trials for patients with mye-
lodysplastic syndrome (MDS) [5,6], multiple myeloma
(MM) [7], and chronic myeloid leukemia (CML) [8].

Mechanism of action (MOA) and biomarker studies with
tipifarnib have focused on the oncogenic Ras protein.
However, it has since been shown that inhibition of Ras
farnesylation does not account for all of the compound's
actions. For example, FTIs do not require the presence of
mutant Ras protein to produce anti-tumor effects [4]. Sev-
eral other proteins have been implicated as downstream
targets that mediate the anti-tumorigenic effects of FTIs.
The regulation of RhoB, a small GTPase that acts down-
stream of Ras and is involved in many cellular processes
including cytoskeletal regulation and apoptosis, has been
proposed as a mechanism of FTI-mediated anti-tumoro-
genesis [9]. Additional proteins involved in cytoskeletal
organization are also known to be farnesylated including
the centromere proteins, CENP-E and CENP-F, protein
tyrosine phosphatase, and lamins A and B. Thus, one pos-
sible mode of action of FTI's may be due to their inhibit-
ing effects on cellular reorganization and mitosis. In
addition to possibly inhibiting cellular reorganization
and mitotic pathways, it is also known that FTIs indirectly
modulate several important signaling molecules includ-
ing TGFβRII [10], MAPK/ERK [11], PI3K/AKT2 [12], Fas
(CD95) and VEGF [13]. The regulation of these effectors
can lead to the modulation of signaling pathways involv-
ing cell growth and proliferation, and apoptosis. Thus,
FTIs may have complex inhibitory effects on a number of
cellular events.

Where there are multiple candidate pharmacologic
biomarkers as is the case with tipifarnib, a comprehensive,
parallel study of all candidates is required. Here we
describe the application of DNA microarray technology to
the measurement of the steady-state mRNA level of thou-
sands of genes simultaneously. This comprehensive exper-
imental approach allows for the simultaneous analysis of
candidate biomarkers as well as the generation of novel
hypothesis on MOA and previously uncharacterized
biomarkers. Biomarkers that enable the monitoring of
drug response have the potential to facilitate clinical eval-
uation of the compound's safety and efficacy in humans.
In the present paper we describe the use of global gene
expression monitoring to identify genes and gene path-

ways that are modulated in acute myeloid leukemia
(AML) following treatment with tipifarnib. Several genes
involved in FTI biology were identified as being modu-
lated following treatment with tipifarnib in addition to
pathways involved with cytoskeletal organization, cell sig-
naling, immunity, and apoptosis. This genome-wide
approach of gene expression analysis has provided insight
into genes that can be used as surrogate biomarkers for FTI
drug activity as well as identifying putative pathways that
are involved in the drug's anti-leukemic mechanism of
action. This is the first successful report of the application
of genomics to this novel class of drugs.

Methods
Cell culture
The AML cell lines AML-193, HL-60, THP-1, and U-937
were obtained from the American Type Culture Collection
(Manassas, VA). Cells were grown in RPMI supplemented
with 20% FBS. AML-193 was also supplemented with
GM-CSF (10 ng/ml; PeproTech Inc., Rocky Hill, NJ), insu-
lin (0.005 mg/ml; Sigma-Aldrich, St. Louis, MO), and
transferrin (0.005 mg/ml; Sigma-Aldrich, St. Louis, MO).
Cell numbers were counted in a hemocytometer and cell
viability was determined by trypan blue dye exclusion
assay. Tipifarnib was dissolved in 0.1% DMSO. The IC50
was defined as the dose at which the number of viable
cells in the treated sample was 50% of that in the control.
This was determined after 7 days of drug treatment. Cyto-
toxicity assays were performed in duplicate. Control cul-
tures were grown in medium containing vehicle (0.1%
DMSO) only. Cells were analyzed for apoptosis by treat-
ing with vehicle or tipifarnib (100 nM and 1 µM) over a 5-
day time course. Cells were stained with Annexin V and
propidium iodide daily according to the manufacturers
protocol (Roche Applied Science, Indianapolis, IN) and
analyzed by FACS.

Bone marrow processing
Bone marrow samples were collected from consenting
patients both before and during treatment with tipifarnib
[4], diluted with PBS and centrifuged with Ficoll-diatri-
zoate (1.077 g/ml). White blood cells were washed twice
with PBS, resuspended in FBS with 10% DMSO and
immediately frozen at -80°C. Some characteristics of the
two patient samples used in the present study are shown
in Table 1.

Ras mutational status
Analysis of activating mutations in N-ras, K-ras, and H-ras
codons was determined by PCR and RFLP analysis as pre-
viously described [1].

Microarray analysis
Total RNA was isolated using the Qiagen RNeasy kit (Qia-
gen, Valencia, CA) and treated with DNase1 (DNase1 kit,
Page 2 of 12
(page number not for citation purposes)



BMC Cancer 2004, 4:56 http://www.biomedcentral.com/1471-2407/4/56
Qiagen, Valencia, CA) to remove any residual genomic
DNA. Probe preparation was performed as previously
described [14]. Linear amplification was performed on
total RNA to obtain at least 15 µg of amplified RNA. Cell
line mRNA and patient sample mRNA underwent one and
two rounds of linear amplification respectively. Microar-
rays were generated and probes hybridized as described
[15]. Samples were hybridized to arrays that contained
7452 cDNAs from the IMAGE consortium (Integrated
Molecular Analysis of Genome and their Expression: Res-
Gen™, Invitrogen Life Technologies, Carlsbad, CA) and
Incyte libraries (Incyte, Palo Alto, CA). The intensity level
of each microarray was scaled so that the 75th percentile of
the expression levels was equal across micro-arrays. To
control for chip errors, replicate clones on each chip that
displayed a coefficient of variance (CV) greater than 50%
of the mean were excluded from the analysis. Since back-
ground intensity was a maximum of 30 relative fluores-
cent units (RFU) for all experiments, a threshold of 30
RFU was assigned to all clones exhibiting an expression
level lower than this. The microarray data were then nor-
malized by quantile normalization and logarithmically
transformed before further analysis.

Statistical analysis
Analysis of variance (ANOVA) and t-tests were used to
investigate the effect of drug treatment and time and their
interactions for each gene. Multiple hypotheses testing
was controlled by applying the false discovery rate (FDR)
algorithm [16]. All statistical analyses were performed in
S-Plus 6.1 (Insightful Corporation). Ratio matrices were
generated based on pair-wise analysis of treated versus
control samples. Hierarchical clustering was performed
using a correlation metric and complete linkage
(OmniViz Pro™, OmniViz, Maynard, MA).

Pathway analysis
A total of 1198 genes that had a false discovery rate (FDR)
< 0.1 (p < 0.05) in at least one cell line were used for the
pathway analysis. Gene refseq accession numbers were
imported into the Ingenuity Pathway Analysis software
(Ingenuity Systems). 898 of these genes were mapped to
the Ingenuity database. Seventy-two of these genes were
also affected in patient samples (p < 0.05, FDR < 0.3) and

were, therefore considered to be significantly regulated by
tipifarnib. The identified genes were mapped to genetic
networks available in the Ingenuity database and were
then ranked by score. The score is the probability that a
collection of genes equal to or greater than the number in
a network could be achieved by chance alone. A score of 3
indicates that there is a 1/1000 chance that the focus genes
are in a network due to random chance. Therefore, scores
of 3 or higher have a 99.9% confidence of not being gen-
erated by random chance alone. This score was used as the
cut-off for identifying gene networks significantly affected
by tipifarnib.

Real Time RT-PCR
The genes and primers used for RT-PCR are listed in Table
2. Due to the limited amount total RNA from the patient
samples, RNA that had been through one round of linear
amplification was used. The Roche Molecular LightCycler
(Roche Applied Science, Indianapolis, IN) with Syber
Green I system detection was used for real time PCR. PCR
thermocycling consisted of denaturation at 95°C for 45
seconds, followed by 30 cycles at 62°C for 10 seconds,
and 72°C for 12 seconds. Samples were run in triplicate
with both test primer sets and the control gene eukaryotic
elongation factor 1 alpha (EEF1A1). This gene was used to
control for differences in the amount of target material
since initial microarray experiments found that expression
of the EEF1A1 gene did not vary significantly between
drug-treated and control cells. A standard curve was also
run in each PCR reaction. Fold changes were calculated by
normalizing the test crossing thresholds (Ct) with the
EEF1A1 amplified control Ct.

Results and Discussion
Response of AML-like cell lines to tipifarnib
Tipifarnib inhibited the growth of 4 human AML cell lines
in a dose-dependent manner. The IC50 of these cell lines
when treated with tipifarnib ranged from 19 to 134 nM
(Table 3). The mutation status of the ras oncogenes in the
AML cell lines are also shown. These data indicate that the
four AML-like cell lines are sensitive to tipifarnib treat-
ment at concentrations well below the micromolar con-
centrations that is achievable in the bone marrow of
leukemia patients [4]. However, there was no correlation

Table 1: Characteristics of patient AML samples.

Patient Dose (mg) Age/sex Diagnosis Stage Antigen 
expression

ras status

B 100 59 M M5, de novo AML Relapse CD34+, CD33+ WT
A 300 75 M M4, de novo AML New CD34+, CD33+ WT

WT = wild-type
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between the type of ras mutation and sensitivity to the
drug. These data are consistent with the activity of tipi-
farnib in vivo and allowed for further characterization of
gene expression changes in these cells after treatment with
pharmacologically relevant drug concentrations.

Identification of genes differentially expressed in 
tipifarnib-treated AML cells
We next asked what genes are modulated following treat-
ment of AML cells with tipifarnib and if there are differ-
ences between the affected gene networks in cell lines
compared to primary cells from patients. To this end we
first selected the three most sensitive cell lines and treated
them with tipifarnib or vehicle alone over a 6-day time
course. A standard concentration of 100 nM tipifarnib was
chosen to ensure exposure within the pharmacologically
active range of the compound (Fig 1). Samples for RNA
analysis were harvested daily from duplicate cell cultures.
Message RNA was isolated, amplified and hybridized to
the cDNA microarrays containing approximately 7000
genes. Based on scatter plot analysis the microarray data
was found to be highly reproducible between duplicate
samples (Fig 2). A one-way ANOVA was employed to
identify genes that were significantly changed over the 6-
day time course compared to time-matched controls. A
total of 1198 genes were significantly regulated (p < 0.05
with a false discovery rate of less than 10%) in at least one

of the cell lines over the time course (Supplementary Fig-
ure A [see Additional file 1]). We also had access to bone
marrow samples from two newly diagnosed AML patients
enrolled in a phase I trial for tipifarnib [4]. The gene
expression profiles in pre-treated leukemia cells were
compared to those during drug treatment at days 8, 15
and 22. 1016 genes were significantly changed (p < 0.05,
FDR < 0.3) during farnesyltransferase inhibition in vivo
(Supplementary Figure B [see Additional file 1]). A total of
180 genes were common between the cell line and patient
data sets, 141 of these had known functions (see Addi-
tional file 2). Real time RT-PCR showed good agreement
with the microarray data (r2 = 0.87; Fig 3).

There are several known targets of FTIs including ras,
RhoB, centromere proteins, lamins, PI3K/AKT, and TGF-
βRII [3,10]. While the majority of these genes were present
on our expression array (except the lamins) we only found
k-ras to be significantly regulated. However, while not
significant, up-regulation of TGFβRII was confirmed by
RT-PCR (Fig 3). The absence of strong regulation of TGF-
βRII in the current data set may be due to the different FTI
and/or the different culture conditions that were
employed compared to previous reports [10]. Interest-
ingly, k-ras was significantly down-regulated in our sys-
tem. While k-ras is a target of FTIs it has been shown to
undergo alternative geranylgeranylation when

Table 2: Primer sequences used for RT-PCR.

Gene Forward Sequence Reverse Sequence

RAC1 CACGATCGAGAAACTGAAGGA AGCAGGCATTTTCTCTTCCTC
TIMP1 TACTTCCACAGGTCCCACAAC GTTTGCAGGGGATGGATAAAC
TGFβR II CAGCGTTTCAAAAAGTGAAGC CTAGACTGGGGTCCAGGTAGG
βGLOGIN GCAACCTCAGACAGACACCAT ACCTTAGGGTTGCCCATAACA
PI3K TGAGCAAGAGGCTTTGGAGTA TTCCTATGCAATCGGTCTTTG
ERK3 GAGCCAGTAGAGGATGGGAAG GATGAGGAATTTGAGGGGAAG
VIMENTIN ATCGATGTGGATGTTTCCAAG TGTCTCCGGTACTCAGTGGAC
FTP ATCCCTTAGCATCAGCTCCTC CGTTCTTTTGGCATTAGTTGG
ADIPSIN CCTGCATCTGGTTGGTCTTTA AGCCTCCTGAGTAGCTGGAAC
EEF1A1 GATGCATTGTTATCATTAACC CATGCAAGTTTGCTGAGCTG

Table 3: Anti-proliferative effects of tipifarnib for AML cell lines.

Cell line IC50 (nM)† ras status

AML-193 134 H-ras(12), N-ras(13)
HL-60 24 H-ras(12)
THP-1 19 K-ras(13) N-ras(12, 61)
U-937 44 Wild-type

† The IC50 was calculated from two independent experiments. The mean value is shown.
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farnesylation is inhibited and may therefore not be an
important anti-tumorgenic target post-translationally;
however, it maybe a relevant target at the transcriptional
level [17]. Repression of k-ras transcription has also been
shown recently in a mouse model designed to identify
genes that are related to the transformation-selective
apoptotic program triggered by FTIs [18]. K-ras may there-
fore warrant further investigation as a candidate transcrip-
tional target of FTIs.

Identification of genetic networks affected by tipifarnib
To further refine the list of FTI-affected genes we next
investigated which of these genes are known to interact
biologically. To this end we carried out pathway analysis

on the above 180 genes using the Ingenuity Pathway Anal-
ysis (IPA) tool. Seventy-nine (72 unique) of these 180
genes mapped to genetic networks as defined by the IPA
tool. These networks describe functional relationships
between gene products based on known interactions in
the literature. The tool then associates these networks with
known biological pathways. Five networks were found to
be highly significant in that they had more of the identi-
fied genes present than would be expected by chance
(Table 3). These networks were associated with the cell
cycle, apoptosis, proliferation, chemotaxis, and immunity
pathways. The study by Kamasani et al also found cell
cycle pathways were repressed and immunity and cell
adhesion pathways were activated by FTI treatment [18].

Growth profiles of AML cell lines treated with tipifarnibFigure 1
Growth profiles of AML cell lines treated with tipifarnib. Duplicate cultures were inoculated into 6-well plates at an initial con-
centration of 1 × 105cells/ml. Tipifarnib was supplemented at a concentration of 100 nM in 0.1% DMSO. Duplicate control cul-
tures were grown in medium containing 0.1% DMSO only. Duplicate cultures were harvested daily for a total of six days. Error 
bars are standard deviations.
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The 79 genes were then analyzed by two-way hierarchical
clustering to compare the expression profiles of the AML
samples (Fig 4). A number of observations could be made
using this visual approach. First, although there were
some outliers, the majority of duplicate samples clustered
close together again demonstrating the reproducibility of
the results. Similarly, a number of replicate clones of the
same gene clustered next to each other thereby improving
the confidence of the microarray data. As expected,
samples from the same cell line or patient clustered
together. However, samples from late in the time courses
have very different expression profiles possibly reflecting

greater differences in the transcriptional activity between
control and treated cells at this late stage of drug treat-
ment. Interestingly, the cluster analysis showed that the
HL-60 profile was most similar to the patient samples
indicating it has a more similar response to tipifarnib
compared to the patient cells than THP-1 and U-937. This
similarity cannot be associated with FAB sub-type since
HL-60 was isolated from a patient with M2 AML and the
patients examined in this study were M4 and M5 sub-
types. Therefore, it is suggested that the different expres-
sion profiles seen are due to other genetic differences that

Scatter plot analysis of microarray dataFigure 2
Scatter plot analysis of microarray data. Duplicate THP-1 and HL-60 cell line cultures were harvested, processed independ-
ently, and hybridized to the cDNA array. Duplicate samples from patients A and B were also analyzed for reproducibility. The 
lines on the scatter plots indicate the 1.5-fold and 1.7-fold boundaries used for selecting genes with differential expression in 
cell line samples and patient samples, respectively. Less than 5% of genes were outside these fold-change thresholds. Linear 
regression was performed and correlation coefficients are shown. Axes show the fluorescence intensity associated with each 
gene (log10).
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impact the specific down-stream effects of FTI inhibition.
This may be important when considering appropriate
models for FTI investigations.

While the cell lines portrayed higher heterogeneity in
expression changes compared with the patient samples,
the hierarchical clustering did reveal a common set of up-
and down-regulated genes. A set of 23 genes was found to
be down-regulated in the cell line and patient samples
(Fig. 4). The major network associated with these genes
contained several involved in proliferation including CSK,
FGFR3, KRAS2, PPARG, RET, and USF1. Alternatively, 29

genes were commonly up-regulated and network analysis
of these revealed activation of apoptotic- and immune-
related genes, including CASP6, CD48, FGR, IGF2R,
PECAM1, and TNFRSF5. It will be of interest to investigate
these genes further to see if they are transcriptional targets
of FTIs and if their regulation is additive or synergistic to
FTI efficacy.

Due to the stringency of our gene selection process it is
likely that many genes that are indeed regulated by FTIs,
were not identified. For instance, as noted above, of the
targets known to be affected by FTIs we identified only k-

Real time RT-PCR validation of microarray dataFigure 3
Real time RT-PCR validation of microarray data. Nine genes were randomly selected for real time RT-PCR. Two of these 
genes (adipsin and vimentin) were identified as being significantly regulated in both the cell lines and in de novo AML patients. 
The "fold-change" (Log2) of the RNA transcripts was calculated in the patient who responded to tipifarnib (patient A) by using 
the treated (day 15) versus the matched baseline sample for both PCR and microarray data. Linear regression analysis was per-
formed and the coefficient of variation was calculated. Italicized genes were identified as being significantly regulated by tipi-
farnib in both AML cell lines and patient samples. Error bars are standard deviations.
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ras at the transcriptional level. However, the use of path-
way analysis tools allows for the identification of net-
works of genes that are known to interact with each other.
This procedure therefore provides additional confidence
in the selected genes as well as clues to other genes that
may also be regulated but not identified as being signifi-
cant by the microarray analysis. For example, the network
of up-regulated genes (Fig 5A) includes the lamin B gene,
which is indeed a direct target of FTIs. Also, the PIK3R2
gene, which regulates AKT and is a known target of FTIs
[3], can be found in the down-regulated network of genes
(Fig. 5B). This illustrates that the pathway analyses cor-
rectly identifies genes that have previously been demon-
strated to be either direct or indirect targets of

farnesyltransferase inhibition and provides a greater con-
text for screening candidate genes modulated by FTIs.

Investigation of apoptosis
Since a number of apoptotic genes were identified as
being affected by tipifarnib we performed experiments in
THP-1 and HL-60 cell lines to verify if they were indeed
undergoing apoptosis. Previous reports have shown that
two other FTIs can induce apoptosis in myeloid leukemia
cell lines [11] and that tipifarnib causes apoptosis in other
malignancies including multiple myeloma [19], and
melanoma [1]. Annexin V staining demonstrated a signif-
icant increase in FTI-mediated apoptosis in THP-1 for
both 100 nM (p = 0.027) and 1 uM (p = 0.032)

Hierarchical clustering of genes regulated after tipifarnib treatmentFigure 4
Hierarchical clustering of genes regulated after tipifarnib treatment. A fold-change ratio was calculated using the treated sample 
and its matched untreated sample. Duplicate samples are indicated with suffices "a" and "b". Number suffices indicate day of 
treatment. The color bar indicates the fold-change (log2). Red is up-regulated, blue is down-regulated. White indicates no 
change. Cluster A and B were associated with genes that were largely down- and up-regulated across all samples, respectively.
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concentrations of tipifarnib (Fig 6). A maximum of 23%
apoptotic cells were demonstrated at day 5 (Fig. 6). No
difference in the level of apoptosis was seen between 100
nM and 1 µM of tipifarnib. While apoptosis was activated
in the HL-60 cell line this was found to be non-specific
since control cells also exhibited this phenomenon during
cell culture (data not shown). The lack of FTI-specific
apoptosis in HL-60 is consistent with a recent report that
also failed to demonstrate tipifarnib-mediated apoptosis
in primary AML blasts [20]. However, in that report apop-
tosis was measured only two days after treatment where

here we found a marked increase in apoptosis at days 3–
5. Therefore, our data indicate that tipifarnib can cause
apoptosis in AML but may not be detectable at early time
points or in AML with certain genetic backgrounds.

Conclusions
Tipifarnib is one of three FTIs that are currently in clinical
trials for treating a variety of cancers [21] and it is showing
promise in hematological malignancies [3-8]. While FTIs
were originally designed to inhibit the function of the ras
oncogene it has been recently demonstrated that there is

Networks of genes commonly regulated after tipifarnib treatmentFigure 5
Networks of genes commonly regulated after tipifarnib treatment. (A) Twenty-three genes that were down-regulated in 
patient leukemic cells and AML cell lines were analyzed by the Ingenuity Pathway Analysis tool. The shown major network that 
was found to be significantly down-regulated by tipifarnib was associated with proliferation (p = 10-10). (B) Twenty-nine genes 
that were up-regulated were also analyzed for associated networks that were significantly affected by tipifarnib. The shown 
network was significantly associated with apoptosis (p = 10-10) and immunity (p = 10-7). Shaded genes are the genes identified 
by microarray analysis and others are those associated with the regulated genes based on the pathway analysis. The meaning of 
the node shapes is also indicated. Asterisks indicate genes that were identified multiple times.
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no correlation between patient response and ras muta-
tional status [4]. Additionally, it is clear that other targets
of FTIs exist that provide equally important anti-cancer
properties. We have reported the use of microarray analy-
sis of both primary human AML cells and AML cell lines
following treatment with tipifarnib in order to identify
genes and gene pathways that are modulated by this FTI.
In particular, genes involved in signaling pathways, down-
stream cytoskeletal pathways, and apoptotic events were
described. Pharmacodynamic markers that are currently
used in the clinic, such as lamin A and HDJ2 [22], are
direct markers of farnesyltransferase inhibition while the
majority of genes identified in this work are likely

downstream transcriptional targets. Both of these current
candidate markers were not present on our microarrays so
we did not report on their expression changes. Further
analysis will be required to elucidate whether the expres-
sion changes seen in our work are due to direct or indirect
effects of FTIs. Also, while the currently used clinical
biomarkers do not correlate with patient response to FTIs
the genes identified here may be candidates for patient
stratification [3]. We are therefore in the process of exam-
ining bone marrow specimens from larger phase 2 clinical
trials with the aim of validating the panel of pharmacody-
namic gene expression markers we have identified here.
Such pharmacogenomic analysis will be very important in

Detection of tipifarnib-mediated apoptosis in AML cellsFigure 6
Detection of tipifarnib-mediated apoptosis in AML cells. (A) Annexin V staining shows that a decrease in cellular proliferation 
correlates with an increase in apoptosis in the THP1 cell line following treatment with tipifarnib. (B) Apoptosis assay of con-
trol and treated cells at day 5. Annexin V stains both apoptotic and necrotic cells, propidium iodide stains necrotic cells only.
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further elucidating the action of FTIs while providing a
platform for identifying patients who could potentially
respond to tipifarnib therapy.
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