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Recent studies have increasingly shown that the chemical modi-
fication of mRNA plays an important role in the regulation of
gene expression. N7-methylguanosine (m7G) is a type of posi-
tively-charged mRNA modification that plays an essential role
for efficient gene expression and cell viability. However, the
research on m7G has received little attention to date. Bioinfor-
matics tools canbe applied as auxiliarymethods to identifym7G
sites in transcriptomes. In this study, we develop a novel inter-
pretablemachine learning-based approach termedXG-m7G for
the differentiation of m7G sites using the XGBoost algorithm
and six different types of sequence-encoding schemes. Both
10-fold and jackknife cross-validation tests indicate that XG-
m7G outperforms iRNA-m7G. Moreover, using the powerful
SHAP algorithm, this new framework also provides desirable
interpretations of the model performance and highlights the
most important features for identifying m7G sites. XG-m7G
is anticipated to serve as a useful tool and guide for researchers
in their future studies of mRNA modification sites.

INTRODUCTION
Precise regulation of gene expression is vital for the growth and devel-
opment of organisms in both physiological and pathological pro-
cesses.1 Post-translational modification of mRNA was recently found
to regulate gene expression. For instance, N7-methylguanosine (m7G)
is one of the most important mRNAmodifications that can be formed
during mRNA capping.2,3 Subsequent experiments have proven that
m7G is indispensable for several types of gene processing, including
RNA splicing, polyadenylation, and mRNA stability.4–8 With the
development of new experimental technology, such as next-genera-
tion sequencing (NGS) and immunoprecipitation sequencing
(MeRIP-seq), research data on mRNA translation has rapidly
increased.9 To date, MODOMICS is a database of RNAmodifications
that covers more than 160 types of modified ribonucleotides,10 and
these data provide an opportunity to build bioinformatics tools that
can identify m7G sites. Using the support vector machine (SVM) clas-
sifier, Chen et al.8 proposed the first m7G prediction model, iRNA-
m7G, by fusing three kinds of features. iRNA-m7G achieved a sensi-
tivity (Sn) of 89.07%, a specificity (Sp) of 90.69%, and aMatthew’s cor-
relation coefficient (MCC) of 0.8 on the jackknife test. In light of the
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importance of m7G function, we think that it is necessary to further
enhance the model performance on m7G sites identification.

Herein, we propose a novel predictor for identifying m7G sites,
termed XG-m7G, which applies the extreme gradient boosting
(XGBoost) algorithm as the classifier. XG-m7G utilized six types of
feature encoders, including binary encoding, composition of k-spaced
nucleic acid pairs (CKSNAP), enhanced nucleic acid composition
(ENAC), nucleotide chemical property (NCP), nucleotide density
(ND), and the series correlation pseudo-dinucleotide composition
(SCPseDNC), as its inputs. XGBoost is applied as a classification al-
gorithm to train the model and test its performance. Then, the unified
framework SHAP (Shapley additive explanations) is used to interpret
predictions,39 rank the feature importance, identify which features are
most important, and further select the optimal feature sets. Our
benchmarking experiments show that XG-m7G achieved an MCC
of 0.825 and 0.839 on 10-fold cross-validation and jackknife tests,
respectively, both of which are superior to that of an existing unique
model iRNA-m7G.
RESULTS
In this study, we proposed a novel model, XG-m7G, for identifying
m7G sites efficiently and accurately fromRNA sequences. The perfor-
mance of XG-m7G was compared with the latest m7G sitesidentifica-
tion model iRNA-m7G by using both 10-fold cross-validation and
jackknife tests. These results indicate that our model outperformed
The Author(s).
://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Parameter Settings of XGBoost, KNN, SVM, LR, and RF

XGBoost KNN SVM LR RF

n_estimators = 1,000, max_depth = 3,
learning_rate = 0.2, gamma = 0.001

k_neighbors = 4 kernel = “rbf”, C = 10, gamma = 0.02 penalty = “l1”, C = 10, solver = “liblinear” n_estimators = 10

www.moleculartherapy.org
iRNA-m7G in terms of several major metrics, including Sn, Sp, accu-
racy (Acc), MCC, and area under the receiver operating characteristic
(ROC) curve (AUC). Then, we explored the most important features
based on a model interpretation method, that is, SHAP, and verified
their contribution for identifying m7G sites. In addition, we con-
structed a web server, which allows interested users to both use our
model to identify m7G sites and train their specific models based
on their own datasets expediently.
DISCUSSION
XGBoost Outperforms State-of-the-Art Algorithms in m7G Site

Prediction

To find the best-performing classification algorithm, four state-of-
the-art classifiers, i.e., k-nearest neighbor (KNN),11 SVM,12 logistic
regression (LR),13 and random forest (RF),14 were used to predict
m7G sites alongside XGBoost. For each classifier, the important pa-
rameters were searched and selected according to the prediction re-
sults on 10-fold cross-validation. More specifically, we optimized
the neighbors k of KNN; kernel function, C, and gamma of SVM; pen-
alty and solver for LR; and n_estimators of RF. For XGBoost, there
were four parameters that need to be considered, which were n_esti-
mators˛ [10, 100, 1,000], max_depth˛ [3, 5, 7], learning_rate˛ [0.1,
Figure 1. Average Results of Five Classification Algorithms after 10-Fold Cros
0.2, 0.3], and gamma˛ [0.001, 0.01, 0.1]. The final parameter settings
of the machine learning algorithms are provided in Table 1.

To minimize the potential effect of randomness on the experi-
mental results, we conducted the 10-fold cross-validation on the
five different classifiers by running 100 rounds. Subsequently, the
average value of each evaluation metric was calculated and
compared. As shown in Figure 1, XGBoost displayed the best per-
formance according to Sp, Acc, MCC, and AUC; however, for the
Sn, XGBoost was lower than KNN by about 1.44%. For clarity, we
have also listed the win-draw-loss results in Table 2. For each al-
gorithm (KNN, SVM, LR, and RF), “win” means the number of
times XGBoost outperformed it, “draw” represents an equivalent
performance between the two, and “loss” represents XGBoost being
worse. Moreover, the significance of the difference in the predic-
tion results was analyzed by using a Student’s t test. As shown
in Table 2, all p values were far less than 0.01, indicating that there
was a statistically significant difference between XGBoost and the
other four algorithms.

In addition, for each classifier, the largest AUC achieved in the 100
rounds of 10-fold cross-validation was recorded, and its correspond-
ing ROC curve is shown in Figure 2. Again, XGBoost outperformed
s Validation Running for 100 Rounds
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Table 2. “Win-Draw-Loss” Results for XGBoost Compared with Other Classifiers

Classifier KNN SVM LR RF

Sn 3-0-97 96-0-4 100-0-0 100-0-0

p value 5.6103E�34 6.6038E�32 4.0955E�59 1.3241E�80

Sp 100-0-0 100-0-0 100-0-0 100-0-0

p value 3.5946E�95 2.2062E�40 6.5396E�71 7.9065E�58

Acc 100-0-0 100-0-0 100-0-0 100-0-0

p value 8.8436E�72 2.1478E�47 5.2734E�79 4.2097E�84

MCC 100-0-0 100-0-0 100-0-0 100-0-0

p value 8.4909E�71 6.9919E�79 4.2602E�84 2.9426E�47

AUC 100-0-0 100-0-0 100-0-0 100-0-0

p value 1.6011E�131 1.5336E�70 6.9470E�89 1.3920E�112
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the other four algorithms on m7G site prediction, and it achieved the
highest AUC of 0.965.

The Effect of Feature Encoding on Model Prediction

In this study, six different feature-encoding schemes were used to
generate the feature vectors. The performance of each type of feature
is listed in Table S1. Afterward, we used the SHAP algorithm to char-
acterize feature importance and assess feature behavior in our sam-
ples. For convenience, we named all features as follows: binary-1,
binary-2, ., binary-164; CKSNAP-165, CKSNAP-166, .,
CKSNAP-212, .; and SCPseDNC-537, SCPseDNC-538, .,
SCPseDNC-672. According to Equation 15, SHAP values were calcu-
lated and the top 20 features for all samples are plotted in Figure 3.
364 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
In Figure 3A, each row represents a feature, and each point is the
SHAP value of an instance. Redder sample points indicate that the
value of the feature is larger, and bluer sample points indicate that
the value of the feature is smaller; the abscissae represent the SHAP
values. For clarity, the area in which feature NCP-466 is located has
been magnified in Figure 3B. If the SHAP value is positive, this means
that the feature drives the predictions toward m7G sites and has a
positive effect; if negative, the feature drives the predictions toward
non-m7G sites and has a negative effect. We observed that when
features such as NCP-432 and NCP-438 take high SHAP values,
the model is driven toward positive m7G prediction. Conversely,
when these features take low SHAP values, the model is driven
toward non-m7G prediction. We also observed that the features
Figure 2. ROC Curves of the Five Classification

Algorithms



Figure 3. Top 20 Features Sorted by SHAP
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SCPseDNC-546, SCPseDNC-543, SCPseDNC-567, and SCPseDNC-
579 only promote the prediction of non-m7G sites, while other fea-
tures, such as SCPseDNC-541, SCPseDNC-538, SCPseDNC-599,
and SCPseDNC-549, only promote the prediction of m7G sites by
the model.

In order to further explore the contribution of the top 20 features
sorted by SHAP to the model performance, we retrained the
model without these features and evaluated the performance of
the resulting model on jackknife tests. Figure 4 shows the com-
parison with and without these top 20 features. We also found
that selecting a different number of features would influence the
model performance. Therefore, to further improve our model per-
formance, we took the mean value of the absolute values of SHAP
for each feature to rank the importance of features. Afterward, we
designed and implemented a series of experiments. The feature
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 365
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Figure 4. Comparison of Models Trained Using Different Dimensional Features
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ranking results were exported and are listed in the Table S2. In
addition to the k-fold cross-validation test, the jackknife test is
also frequently used as a cross-validation method in statistical
prediction.15 For a given benchmark dataset, the jackknife test
can always yield a unique outcome.15 Next, we kept the top 50,
100, 150, 200, 250, 300, 350, 400, 450, 500, 550, and 600 features
according to the sorting to find the best feature combination by
performing jackknife tests. All of the performance results are
listed in Table S3. We found that the model achieved the overall
best performance when the feature dimension was reduced to 150.
To illustrate the effectiveness of feature selection, we provided the
performance comparison results of the models trained using the
original features and the optimal features on jackknife tests in Ta-
ble S4 and Figure 4. The results also showed that the model
trained using the selected optimal features by SHAP clearly
achieved an improve predictive performance compared with the
model trained using all of the original features.

In addition, we also conducted the same feature ranking and se-
lection processes using the F-score and minimum redundancy-
maximum relevance (mRMR), which has been extensively adopted
to reduce the feature dimension in the fields of bioinformatics
and computational biology.16,17 Figure 5 provides the performance
comparison of these three feature selection technologies. As can
be seen, the SHAP curve was above the F-score curve and the
mRMR curve. More specifically, after sorting by the F-score, the
combination of the top 400 features reached the best Acc of
366 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
91.36%. In comparison, after the ranking by mRMR, the combi-
nation of the top 600 features reached the best Acc of 90.35%.
These results indicate the effectiveness of SHAP for identifying
m7G sites.

Comparison with iRNA-m7G

To the best of our knowledge, iRNA-m7G is the only model es-
tablished for searching m7G sites in RNA sequences. Therefore,
we compared the performance of XG-m7G with iRNA-m7G by
a 10-fold cross-validation test. Table 3 lists the performance com-
parison of XG-m7G and iRNA-m7G in terms of Sn, Sp, Acc,
MCC, and AUC values. Clearly, our proposed XG-m7G method
achieved a better performance than iRNA-m7G in terms of four
evaluation metrics. Specifically, XG-m7G achieved an improve-
ment of 2.82% and 1.41% for Sn and Acc, respectively. The
MCC and AUC of XG-m7G were 0.025 and 0.026, respectively,
higher than those of iRNA-m7G. Consequently, a jackknife test
was also applied to estimate the performance of XG-m7G. XG-
m7G obtained Sn of 92.17%, Sp of 91.77%, Acc of 91.97%,
MCC of 0.839, and AUC of 0.972, demonstrating its superior per-
formance to iRNA-m7G. Altogether, these results confirm that
our proposed model XG-m7G outperforms iRNA-m7G in identi-
fying m7G sites.

Implementation of the XG-m7G Web Server

We developed a web server for XG-m7G to perform convenient
prediction and analyses of distinctive m7G sites, which is freely



Figure 5. Comparison of SHAP, F-score, andmRMR

Dimensionality Reduction Methods on Jackknife

Tests
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available at http://flagship.erc.monash.edu/XG-m7G/. The XG-
m7G server was implemented using PHP, HTML, CSS, Java-
Script, and Python running Apache2 and configured in the
Linux environment on an eight-core server machine with 32
gigabytes (GB) of memory and three hard disks with a total
of 1.25 terabytes (TB) of memory. The server requires users to
paste the sequences or upload a text file in the FASTA format
as the input. Figure 6A illustrates an instance of the prediction
steps. As shown, the prediction results are output in probability
ranking and they are capable of being viewed in ascending or
descending order. Furthermore, we designed a practical function
“train model” to allow users to train their own models with their
training data as shown in Figure 6B. The computational time
needed for the testing task is determined by the number and to-
tal length of sequences provided. For 100 sequences with 41 nt
residues each, the training task will be accomplished in a few
seconds. We hope that this function can provide a theoretical
and useful reference for interested researchers.
MATERIALS AND METHODS
Overall Framework

The overall framework of XG-m7G is illustrated in Figure 7. As
shown, there were five major steps in the development of XG-
m7G. First, we collected benchmark datasets for m7G sites. Sec-
ond, these sequences were transformed into numeric vectors by
several feature-encoding methods. Third, we analyzed and inter-
preted the feature effect with SHAP on XGBoost, and then the
most important features were selected and identified. Fourth, we
evaluated the model performance and, lastly, we developed a
web server for XG-m7G.
Molecular Therap
Benchmark Datasets

In this study, the benchmark datasets for
training and evaluating our XG-m7G model
were collected from Chen et al.8 Chen et al.
obtained 801 m7G site-containing sequences
by mapping the 801 base-resolution m7G
sites in human HeLa and HepG2 cells that
had been detected by Zhang et al.9 These
sequences, with the m7G sites in the center
of the sequences, were extracted to 41 bp,
with 20 bp upstream and 20 bp down-
stream. CD-HIT18 was then used to remove
redundant sequences19 using a threshold of
80%, after which 741 positive samples con-
taining m7G sites were retained. The nega-
tive samples were first collected from those
41-bp-long sequences with the intermediate
guanosine that have not been detected as
m7G sites (namely non-m7G site) by the MeRIP-seq method.
In order to further avoid the potential problem of low Sn
caused by the unbalanced data, 741 such sequences
containing non-m7G sites with the sequence similarity of less
than 80% were selected to constitute the final negative sample
dataset.

Feature Extraction

One of the critical steps is to encode each RNA fragment as a
numerical vector. In this study, six types of feature encoding
schemes were applied to establish the predictor, including binary
encoding, CKSNAP, ENAC, NCP, ND, and SCPseDNC. These
encoding schemes have been extensively used for identification
of pseudouridine sites,20 prediction of citrullination sites,21 and
prediction of m6A sites22,23 with demonstrated performance. It
is noteworthy that all features used in this study are available
and can be calculated using BioSeq-Analysis2.024 and iLearn.25

A detailed description of these feature-encoding schemes is pro-
vided in the following sections.

Binary Encoding

In the binary feature encoding scheme, each nucleotide is repre-
sented by a four-dimensional binary vector, e.g., A is coded as (1,
0, 0, 0), C is coded as (0, 1, 0, 0), G is coded as (0, 0, 1, 0), and U
is coded as (0, 0, 0, 1). Therefore, each sample has a total of 164 bi-
nary features.

CKSNAP

The CKSNAP encoding scheme represents the frequencies of
nucleotide pairs separated by k residues. The CKSNAP feature con-
tains 16 values corresponding to pairs of nucleic acids: {AA, AC,
y: Nucleic Acids Vol. 22 December 2020 367
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Table 3. Predictive Performance Comparison of XG-m7G with iRNA-m7G by 10-Fold Cross-Validation and Jackknife Test

Cross-Validation Test Methods Sn (%) Sp (%) Acc (%) MCC AUC

10-Fold
iRNA-m7G 88.66 90.96 89.81 0.800 0.946

XG-m7G 91.48 90.96 91.22 0.825 0.972

Jackknife
iRNA-m7G 89.07 90.69 89.88 0.800 –

XG-m7G 92.17 91.77 91.97 0.839 0.972
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AG, ..., UG, UU}. Taking k = 1 as an example, CKSNAP can be given
as follows:

V =
NA�A
NTotal

;
NA�C
NTotal

;
NA�G
NTotal

;.;
NU�U
NTotal

� �
; (1)

where * represents any nucleotide of A, C, G, and U, NX�Y represents
the number of nucleic acid pairs X*Y that occur in the sequence, and
NTotal represents the total number of one-spaced nucleic acid pairs in
the sequence. In this study, k = 0, 1, and 2, and the corresponding
dimension of CKSNAP features was 48.
ENAC

ENAC encoding calculates the nucleic acid composition based on
a fixed-length window, which continuously slides from the 50 to
30 terminus of each nucleotide sequence.25 This method is usually
applied to encode nucleotide sequences of equal length. ENAC
can be calculated as follows:

V =
NA;win1

S
;
NC;win1

S
;
NG;win1

S
;
NU ;win1

S
;
NA;win2

S
;.;

NG;winL�S+ 1

S
;
NU ;winL�S+ 1

S

� �
;

(2)

where S represents the size of the sliding window, Nt;winr repre-
sents the number of nucleic acids t in the sliding window
r, t ˛ A; C; G; Uf g, and r = 1; 2; .; L� S+ 1. In this study,
the size of the sliding window was 2, and the corresponding
feature dimension was 160.
NCP and ND

Each nucleotide of A, C, G, and U has a different chemical structure
and chemical binding feature. The NCP encoding scheme incorpo-
rates the chemical properties of these four types of nucleotides into
the representation. The nucleotides can be classified into three
different groups26 as follows:

Ni =
�
xi; yi; zi

�
; (3)

where

xi =

�
1; if Ni˛ A;Gf g
0; if Ni˛ C;Uf g ; yi =

�
1; if Ni˛ A;Cf g
0; if Ni˛ G;Uf g ;

zi =

�
1; if Ni˛ A;Uf g
0; if Ni˛ C;Gf g :

(4)
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Based on these three chemical properties, the nucleotide A is mapped
to the numeric vector ð1; 1; 1Þ, C is mapped to ð0; 1; 0Þ, G is mapped
to ð1; 0; 0Þ, and U is mapped to ð0; 0; 1Þ.

ND is also termed accumulated nucleotide frequency (ANF),25 which
integrates the nucleotide frequency information and the distribution
of each nucleotide in the RNA sequence. The density di of any nucle-
otide Nj at the position i in an RNA sequence can be given by the
following formula:

di =
1

kSi k
Xl

j= 1

f Nj

� �
; f Nj

� �
=

�
1 if Nj is the nucleotide concerned
0 otherwise

;

(5)

where kSi k is the length of the sliding substring concerned, while l is
the corresponding locator’s sequence position.

The NCP and ND encodings are often used together to take into ac-
count both chemical property and long-range sequence order infor-
mation.20 As an example, the sequence fragment ACGCGGAUUA
can be represented as {(1, 1, 1, 1), (0, 1, 0, 0.5), (1, 0, 0, 0.33), (0,
1, 0, 0.5), (1, 0, 0, 0.4), (1, 0, 0, 0.5), (1, 1, 1, 0.29), (0, 0, 1, 0.125),
(0, 0, 1, 0.22), (1, 1, 1, 0.3)}. Each sample has 164 NCP and ND
features.
SCPseDNC

The SCPseDNC encoding27 is defined as follows:

V = d1; d2;.; d16 ; d16 + 1;.; d16 + l; d16 + l+ 1;.; d16 + lL½ �T ; (6)

where

du =

8>>>><
>>>>:

fuX16

i= 1
fi +w

XlL

j= 1
qj

; 1%u%16ð Þ

wqu�16X16

i= 1
fi +w

XlL

j= 1
qj

; 16%u%16 + lLð Þ
; (7)

where fu for u= 1; 2; .; 16 is the normalized occurrence fre-
quency of the i-th dinucleotide in the sequence, w is the weight
factor ranging from 0 to 1, and L is the number of physico-
chemical indices. Six indices (i.e., Rise (RNA), Roll (RNA), Shift
(RNA), Slide (RNA), Tilt (RNA), Twist (RNA)) were set as the



Figure 6. Instructions for Using the XG-m7G Web Server

(A) Example of the “prediction” function of the XG-m7G web server. (B) Example of the “train model” function of the XG-m7G web server
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default indices for RNA sequences. qj (j= 1; 2; .; l) is the
j-tier correlation factor, defined as:

8>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>:

q1 =
1

L� 3

XL�3

i= 1

J1i;i+ 1

q2 =
1

L� 3

XL�3

i= 1

J2i;i+ 1

.

qL =
1

L� 3

XL�3

i= 1

JLi;i+ 1

.

qlL�1 =
1

L� l� 2

XL�l�2

i= 1

JL�1
i;i+ l

qlL =
1

L� l� 2

XL�l�2

i= 1

JLi;i+ l

l<L� 2ð Þ; (8)

Where l represents the highest counted rank (or tier) of the correla-
tion along the nucleotide sequence, and the correlation function is:

Jui;i+m = PuðRiRi+ 1Þ$PuðRi+mRi+m+ 1Þ; (9)

where u= 1; 2; .; L; m= 1; 2; .; l; i= 1; 2; .; L� m� 2,
and PuðRiRi+ 1Þ is the numerical value of the u-th (u = 1,2, ., L)
physicochemical index of the dinucleotide RiRi+ 1 at position i, and
PuðRjRj+ 1Þ represents the corresponding value of the dinucleotide
RjRj+ 1 at position j. By setting l = 20 and w = 0.9, we generated a
136-dimensional vector.
Machine Learning Algorithm

XGBoost28,29 is a type of optimized distributed gradient boosting al-
gorithm. The principle of the XGBoost algorithm can be summarized
as follows:

Assume a training dataset D= xi; yið Þ; i= 1; :::; nf g of the size n,
where xi = ðxi1; xi2;.; ximÞ denotes an m-dimensional feature vector
with the corresponding (output) category yi:

byi = XK
k= 1

fk xið Þ; fk˛F; (10)

where K represents the number of trees, fkðxiÞ represents the score
that is associated with the model’s k-th tree, and F denotes the space
of scoring functions available for all boosting trees.

Differing from another tree-based algorithm, GBDT (gradient
boosting decision tree), XGBoost uses the second-order Taylor
expansion to approximate the loss function, and it is more effi-
cient in avoiding the over-fitting issue mainly by adding regulari-
zation terms to the objective function. For more details about
XGBoost, please refer to Chen and Guestrin.25 In recent years,
XGBoost has been extensively utilized in bioinformatics and
computational biology for addressing a range of challenging tasks,
such as pseudouridine site identification,30 on-target activity pre-
diction of single guide RNAs (sgRNAs),31 recognition of internal
ribosome entry sites,32 and so on. In this study, we applied
XGBoost to develop the m7G prediction model. Our results
demonstrated that XGBoost achieved a better predictive perfor-
mance than did other machine learning algorithms for m7G
site prediction.
Molecular Therapy: Nucleic Acids Vol. 22 December 2020 369
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Figure 7. Overall Framework of XG-m7G
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Evaluation Metrics

To evaluate the prediction performance of XG-m7G we used four
metrics, that is, Sn, Sp, Acc, and MCC, which have previously been
used to assess the performance of predictors in other studies.33,34

We also used ROC curves,35–38 which plot the true-positive rate
against the false-positive rate, and AUC to further assess the model
performance. Sn, Sp, Acc, and MCC are defined as follows:

Sn = 1� N +
�

N +
; (11)

Sp = 1� N�
+

N�; (12)

Acc = 1� N +
� +N�

+

N + +N� ; and (13)

MCC =
1� N +� +N�

+

N + +N�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
1+ N�

+�N +�
N +

	�
1+ N +� �N�

+

N�

	r ; (14)

where N + represents the total number of m7G site-containing se-
quences, N� represents the total number of non-m7G sequences, N +

�
represents thenumberofm7Gsite-containing sequences incorrectly pre-
dicted as non-m7G sequences, and N�

+ represents the number of non-
m7G sequences incorrectly predicted asm7G site-containing sequences.

Notably, these metrics are also used in the existing method iRNA-
m7G for identification of m7G sites. Therefore, it is convenient
370 Molecular Therapy: Nucleic Acids Vol. 22 December 2020
to make a fair and credible comparison of XG-m7G and iRNA-
m7G.
SHAP

SHAP is a unified framework for interpreting predictions, pro-
posed in 2017 as the only consistent and locally accurate feature
attribution method based on expectations.39 This technique can
interpret feature importance scores from complex training
models, and it provides an interpretable prediction for a test
sample. SHAP values have been proposed as a unified measure
of feature importance, as they assign an importance value (fi)
to each feature representing the effect of including that feature
in model prediction. In cooperative game theory, SHAP values
can be computed as follows:

fi =
X

S4F; if g

jSj! jFj � jSj � 1ð Þ!
jFj! fSW if g xSW if g

� �� fS xSð Þ
 �
(15)

where F represents the set of all features and S represents all
feature subsets obtained from F after removing the ith feature.
Then, two models, fSWfig and fS, are retrained, and predictions
of these two models are compared to the current input
fSWfigðxSWfigÞ� fSðxSÞ, where xS represents the values of the
input features in the set S. To estimate fi from 2jFj differences,
the SHAP approach approximates the Shapley value by
either performing Shapley sampling or Shapley quantitative
influence.
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