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Abstract

Why are sensory signals and motor command signals combined in the neurons of origin of the spinocerebellar pathways
and why are the granule cells that receive this input thresholded with respect to their spike output? In this paper, we
synthesize a number of findings into a new hypothesis for how the spinocerebellar systems and the cerebellar cortex can
interact to support coordination of our multi-segmented limbs and bodies. A central idea is that recombination of the
signals available to the spinocerebellar neurons can be used to approximate a wide array of functions including the spatial
and temporal dependencies between limb segments, i.e. information that is necessary in order to achieve coordination. We
find that random recombination of sensory and motor signals is not a good strategy since, surprisingly, the number of
granule cells severely limits the number of recombinations that can be represented within the cerebellum. Instead, we
propose that the spinal circuitry provides useful recombinations, which can be described as linear projections through
aspects of the multi-dimensional sensorimotor input space. Granule cells, potentially with the aid of differentiated
thresholding from Golgi cells, enhance the utility of these projections by allowing the Purkinje cell to establish piecewise-
linear approximations of non-linear functions. Our hypothesis provides a novel view on the function of the spinal circuitry
and cerebellar granule layer, illustrating how the coordinating functions of the cerebellum can be crucially supported by the
recombinations performed by the neurons of the spinocerebellar systems.
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Introduction

The coordination of our multi-segmented bodies and limbs is an

unsolved computational challenge that is dealt with seamlessly by

the neuronal circuitries of our brains. Within the brain, the

cerebellum is considered the most important structure for

coordination [1,2] but we know very little about the mechanisms

that could underlie this aspect of cerebellar function. The

spinocerebellar and spino-reticulo-cerebellar systems are major

sources of mossy fiber (MF) inputs for the widespread cerebellar

regions with direct connections to the motor systems, the

corticospinal, rubrospinal, reticulospinal, tectospinal and/or ves-

tibulospinal tracts [3–13] and the corresponding regions of the

cerebellum are implicated in limb coordination in man [13]. The

neurons of origin of these systems are located in the spinal cord,

where they act as components of the spinal motor circuitry

(Figure 1) or receive input directly from such neurons. These

systems comprise the spinocerebellar tracts (SCTs), i.e. the ventral

spinocerebellar tract (VSCT) and its components including the

spinal border cells (SBCs), the components of the dorsal

spinocerebellar tract (DSCT), the rostral spinocerebellar tract

(RSCT) as well as the spino-reticulocerebellar tracts (SRCTs)

providing MFs to the cerebellum via the lateral reticular nucleus

(LRN) [14–18] (Fig. 1). All of these systems receive sensory

feedback either directly or mediated via spinal interneuron

systems. They also receive input from supraspinal motor centers,

again either directly or mediated via spinal interneuron systems.

Single SCT and SRCT neurons can vary with respect to the

relative weights of the sensory feedback and motor command

components. Considering the influence from motor command

systems, it is reasonable to assume that the MFs of these systems

carry information to the cerebellum regarding on-going move-

ments, rather than transmitting information resulting from passive

sensory stimulation [19]. However, why this combination of

different sensory and motor signals occurs before the level of the

cerebellum and how it is used by the cerebellum is not well

understood.

A second issue of cerebellar function is the tonic inhibition of

granule cells (GrCs) in the mature mammalian cerebellum. The

inhibition of GrCs in the adult cerebellar cortex, supposedly

mostly due to Golgi cell release of GABA, primarily consists in

tonic and slowly modulated inhibition whereas fast inhibitory

postsynaptic potentials are weak or absent [20,21]. A couple of

observations indicate that GrCs are designed to be tonically

inhibited. The tonic GrC inhibition is to a large extent mediated

via alpha-6-containing GABA(A) receptors [22,23], which is a type

of receptor that is characterized by long-lasting inhibitory effects

and is present at uniquely high concentrations in the cerebellar
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granule layer [24–26]. The second observation is that even when

the alpha-6 subunit is knocked-out using genetic engineering,

GrCs seem to compensate for this loss of hyperpolarisation by

increasing the expression of potassium conductances [27]. At the

same time as the tonic component of the GrC inhibition develops,

the traditional fast inhibitory response is gradually lost [20,28].

Accordingly, GrC responding with burst responses to skin

stimulation show little sign of Golgi cell inhibition, even though

the afferent Golgi cells are relatively strongly activated by the same

stimulation [21]. However, although the contribution to the

immediate, fast information processing may be modest, Golgi cells

can still contribute to cerebellar processing by regulating the

difference between the resting membrane potential and spike firing

threshold of the GrCs by modulating the level of tonic inhibition.

This arrangement could result in that the GrC resting membrane

potentials are distributed across the population of cells. Consistent

with this idea, the resting membrane potentials of GrCs in vivo [29]

had a mean value of 264 mV, but reached at least as low as

280 mV and as high as 240 mV.

A third conspicuous observation is that for GrCs receiving

cutaneous input, the 3–5 MF synapses that the GrC receives

have been reported to carry functionally equivalent inputs. In a

study focused on the cuneocerebellar tract [30], in which the

individual MFs carry submodality-specific input from small

receptive fields primarily from the distal forelimb, the GrCs were

found to sample submodality- and receptive field-specific inputs

[21], i.e. information that was equivalent to that of the individual

MFs. In an extended study, where cutaneous inputs mediated via

the SCT and SRCT systems were included, the MF inputs to

individual GrCs were found to be similarly coded, i.e. they

originated not only from same receptive field and same

submodality, they were also found to originate from precer-

ebellar cells that coded for that particular skin input in the same

way [31]. This ‘similar coding’ principle of MF to GrC

innervation was suggested to be due to the fact that different

afferent pathways process the skin afferent input in different

ways, with different degrees of involvement of other modalities

and/or descending motor commands. In order to preserve the

information generated by the afferent systems similarly coded

MFs needed to converge on the same GrCs [19]. This view is

supported by numerous anatomical studies, showing that

different afferent pathways have focal rather than diffuse

termination patterns in the cerebellar cortex [6,32–34] and that

different afferent pathways have complementary distributions in

the GrC layer [35–37]. Hence, at least for the cerebellar regions

involved in limb control, MFs carrying functionally equivalent

inputs preferably target the same set of GrCs. A consequence is

that the probability of finding GrCs sampling functionally

disparate input would be expected to be low. Altogether, the

findings of these studies were at odds with previous theoretical

predictions that GrCs were expected to integrate MF information

from widely separate, functionally disparate sources [38,39], and

presented a challenge to our understanding of the cerebellar

granule layer and thereby of the cerebellar cortex in general.

Figure 1. The information provided by the spinocerebellar and
spinoreticulocerebellar mossy fibers derives from the spinal
interneuron circuitry. The vermis and pars intermedia of the
cerebellum receives a substantial part of their mossy fiber inputs from
the SCT/SRCT pathways [19]. The SCT/SRCT pathways consist of spinal
interneuron projections either directly as mossy fibers (rostral
spinocerebellar tract, RSCT), via a relay in the lateral reticular nucleus
of the brainstem (spino-reticulo cerebellar path, SRCT), or via relay cells
located in the spinal cord (ventral and dorsal spinocerebellar tracts,
VSCT and DSCT) [19]. These spinal interneurons can project directly to
alpha-motorneurons and likely form an integral part of the spinal motor
circuitry, by conveying sensory feedback and motor commands to the
motor nuclei of the spinal cord [99].
doi:10.1371/journal.pcbi.1002979.g001

Author Summary

The movement control of the brain excels in the seamless
coordination of our multi-segmented limbs and bodies
and in this respect the brain widely outperforms the most
advanced technical systems. So far, however, there is little
knowledge about the neuronal circuitry mechanisms by
which this coordination could be achieved. The present
paper makes a synthesis of some recent findings of
cerebellar neuronal circuitry functions and spinocerebellar
systems to introduce a novel hypothesis of how the
cerebellar and spinal cord neuronal networks together
establish signals that form a basis for coordination control
in the mammalian central nervous system. The hypothesis
takes into account some recent, surprising findings about
cerebellar granule cell function and explains some long-
standing enigmas concerning the structure of and infor-
mation mediated by the spinocerebellar pathways. It
describes some interesting parallels between the spino-
cerebellar network and Artificial Neural Networks (ANNs),
and capitalizes on some of the major conclusions from
ANN studies to explain the biological observations.

Multi-dimensional Sensorimotor Information
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In the present paper, we seek a theoretical explanation for how

these three observations can be understood in terms of the

function of the spinal and cerebellar neuronal circuitry and how

they could provide for the integration across input dimensions

necessary to achieve coordination. In the initial part of the paper,

we account for the main settings of our hypothesis to describe how

sensorimotor functions can be generated in the SCT and SRCT

MF systems and how the cerebellum could integrate this

information to approximate useful functions. We continue by

exploring how non-linear interactions between input dimensions

could be handled in the spinal circuitry and the cerebellum and

the limitations that may apply to these systems in this respect. For

this purpose we construct a simple static model and use a concrete

example of non-linear interactions between input dimensions used

in the performance evaluation of previous cerebellar models.

Models

Properties of the Purkinje cells and interneurons of the
molecular layer

As the Purkinje cells (PCs) constitute the only output from the

cerebellar cortex, their responses to stimuli reaching the cerebel-

lum through the MFs determine what the cerebellar cortex is able

to do, and what type of transformations of the input signals that

are possible. While Albus [38] viewed the PC as a binary

perceptron for classification, he also acknowledged that the PC is

able to modulate its relatively high spontaneous firing frequency,

creating in principle a continuous output signal. The spontaneous

firing rate of simple spikes can be modulated in both excitatory

and inhibitory directions by specific inputs, in a manner consistent

with their generation by excitatory parallel fiber (PF) and

inhibitory interneuronal inputs, respectively, and with these inputs

being summed primarily in a linear fashion [40]. Since the

molecular layer interneurons are innervated by the parallel fibers

and in turn inhibit the PC, the weights between PFs and PCs are

allowed to become negative [40,41]. The bidirectional plasticity

and the complementary location of the receptive fields in PCs and

interneurons confirm this assumption [42,43]. Eq. (1) describes a

simplified relationship between PF and PC activity, and forms the

basis of the later mathematical models of this paper, where the

properties of the neurons in the granular layer will also be taken

into consideration.

xPC~
X

wix
GrC
i zsPC ð1Þ

where xPC is the PC activity, xGrC
i the activity of the ith GrC, sPC

is the spontaneuos activity of the PC and wi is the synaptic efficacy

between the ith GrC and the PC. Note than wi is allowed to be

negative since the GrC input can be mediated through inhibitory

interneurons [40,41].

Properties of the granule layer
A distinct feature of GrCs is the marked difference between the

resting membrane potential and the threshold potential for spike

firing [21,29,44]. Once the spike firing threshold is crossed,

however, the input-output relationship of the GrCs is approx-

imately linear [29,45]. The activity of a GrC can be approximated

to be,

xGrC
i ~

X*4

j~1

wi,jx
MF
j {si

 !z

ð2Þ

where jð Þ~
j jw0

0 jƒ0

�

wi,j represents the synaptic weight between the jth MF and the ith

GrC and si is the distance to the spike firing threshold from the

GrC resting membrane potential. The firing threshold is

constructed through the use of a ramp function (j)z, which is

defined to be equal to 0 whenever j is equal to or lower than 0, but

equal to j whenever j is larger than 0. When the synaptic input

depolarizes the neuron above si, the GrC spike output xGrC
i will

also start to increase in proportion to the synaptic input. Eqs. (1) &

(2) assumes that the MF input to the cerebellum is rate encoded,

consistent with existing in vivo studies of MFs in awake animals

during behaviour [46–49], and during fictive locomotion [50–52].

As pointed out above, previous observations indicate that an

individual GrC sample functionally equivalent input from all of its

incoming MFs [21,31]. As individual MFs branch to contact up to

thousands of GrCs [33], the GrC layer would be expected to

contain a highly redundant representation of MF inputs, which is

also suggested by a systematic investigation of MF receptive fields

[53]. Due to neural noise and the limitations of spike encoded

transmission of information [54], some redundancy in the GrC

representation would be expected to be needed to average out the

noise. The very large number of GrCs innervated by the same MF

does however suggest that the GrC population by some means

recode the incoming MF signals, rather than just compensate for

the inherent noise in the afferent signal. In the following section,

we propose a solution for how useful expansion recoding can be

performed by a redundant population that sample functionally

equivalent input. In this view, the role of the Golgi cell to GrC

tonic inhibition, potentially supplemented by other sources of

GABA input as described in the discussion, is to allow the GrC

responses within a redundant population to become sufficiently

varied, hence playing a crucial role of the proposed expansion

recoding.

Populations of redundant GrCs as piecewise-linear
approximations

Using a population of redundant GrCs, which sample

functionally equivalent MF input and differ with respect to the

separation between the resting Vm and the spike firing threshold, it

becomes possible for the PC to combine the inputs from these

GrCs into a piecewise-linear (PL) approximation of an arbitrary

smooth function, see Figure 2A. In this case, even if each GrC in

the population would receive exactly the same MF inputs, the

diversified thresholds in the population of GrCs would be a useful

feature for the PC that integrates these signals. Since the GrC

thresholds directly correspond to the knots of the PL-approxima-

tion (see Figure 2A), the number of GrCs is directly related to the

approximation error, which for PL approximations is bounded by

N{1, where N is the number of knots or GrCs. In other words, as

new knots are introduced, the upper bound of the approximation

error will shrink in proportion to the number of new knots.

A simple example
To further develop this reasoning, we proceed by considering a

simplified example of input from knee skin afferents, for which a

relatively straight-forward relationship between knee-joint angle

and firing frequency of single afferents on the hairy skin of the

thigh has been reported [55]. In this study, it was shown that skin

afferents with receptive fields located at different distances from

the knee joint all could code for the knee angle but with different

Multi-dimensional Sensorimotor Information
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Figure 2. Piecewise-linear (PL) approximations in the cerebellar neuronal network. (A) Using the excitatory input directly from PF and the
inhibitory pathway through molecular layer interneurons, the PC can construct a PL approximation of arbitrary non-linear functions of the input
reaching the GrCs. (top) Two PFs innervate the PC directly (3 & 4), while the other two innervate a stellate interneuron (1 & 2). (middle) The four GrCs
have slightly different thresholds and varying MF efficacy leading to varying activity slopes. (bottom) The PC modulates its output using the input
coming from the GrCs according to Eq. (1). The path through the inhibitory molecular layer interneurons allows the weight and thus the slope of the
curve to be negative. Each GrC threshold corresponds to one knot in the PL PC output. (B) The distribution of GrC thresholds over the input range
determines how well the PC can approximate the non-linear regions of the approximated function. (top) Several receptive fields can contribute to
measure a single intrinsic dimension. In this case, the skin stretch can be used to deduce the joint angle. (middle) The different receptive fields allow
the GrC thresholds to be spread over a larger input range than that using only a varying degree of Golgi cell tonic inhibition. (bottom) Sum of activity
of all GrCs activated from the three receptive fields. As the population GrC activity rises over the entire input range, their output could be used to
approximate non-linearities over the entire input range. (C) A naı̈ve approach to enable the PC output to approximate functions of two-dimensions.
In this example, afferent information from skin stretch and Ib afferents are added separately in the PC, generating an approximated surface. At each
point in the input space, the PC output is calculated by adding the contribution from GrCs innervated by the two separate afferent types.
doi:10.1371/journal.pcbi.1002979.g002
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intensity. Considering this example, it is conceivable that in

addition to the tonic inhibition, GrC populations with related but

not completely equivalent inputs could help differentiate the firing

thresholds with respect to the knee joint angle over a larger input

region. The combined effect of both Golgi cell inhibition and

related receptive fields is illustrated in Figure 2B. In accordance

with this view, the distribution of the active range, with respect to

joint angle within a population of muscle-spindle afferents, has

been found to cover the entire range of joint-angle positions

investigated, while any individual afferent from the population had

a much smaller active range [56]. The properties of the one-

dimensional example in Figure 2B do, however, not tell how the

one-dimensional arrangement could be expanded to integrate

signals related to more than one input dimension and approximate

complex, possibly non-linear interactions between them. To

approach this issue, we consider in addition to the skin stretch

sensors another type of sensor, the Ib afferents, the firing

frequency of which is related to muscle force [57]. Note that even

though we are presenting these ideas using sensory inputs, the

following line of reasoning would also apply to information from

the motor command domain, but since the exact content and

format of these signals is less well known it would make for a worse

example. For example, skin stretch might well be replaced with

motor command in Figure 2C below.

The naı̈ve approach to multidimensional input would be to

simply superimpose one PL approximation along each dimen-

sion, see Figure 2C. Each point in the input space of the

combined approximation, would map to the sum of all the

separate one-dimensional approximations. Relating this approach

to the cerebellar structure, it would correspond to each GrC

receiving signals from a single input dimension. The PC, working

as a linear integrator of GrC inputs, would then integrate

information from the input dimensions available in the GrC

population contacting this PC via the parallel fibers, hence

integrating the information into multiple combined PL-approx-

imations of these input dimensions. But, a presumed core

cerebellar function is to improve coordination, which depends

on interactions between adjacent limb segments, between

multiple modalities or submodalities and between motor com-

mand and sensory feedback, i.e. interactions that are most likely

non-linear. It is not obvious to what extent the naı̈ve approach

could be used to approximate such non-linear interactions. Given

the description of the MF-GrC system so far, it is possible to

interpret Eqs. (1) and (2) as a radial basis-function network with

PL radial basis functions [58]. Light and Cheney [59] showed

that such a network cannot approximate arbitrary multivariate

functions to arbitrary precision with no recombination of the

input signals prior to the hidden layer (‘hidden layer’ corresponds

to a layer of neurons located between the input layer and the

output layer of the system, i.e. in our case the GrCs).

Consequently, if the cerebellum is to be able to approximate

arbitrary functions, it is not enough to have raw afferent signals as

MF content as in the naı̈ve approach described above – there is a

need for the signals to be recombined.

Hypothesis - General static model of the spinocerebellar
system

In contrast to the naı̈ve approach, the most general approach

would be to allow each GrC to receive any combination of all the

inputs that reach the cerebellum via the MFs as illustrated in

Figure 3A. It is possible to formalize such a multidimensional PL

approximation into the following equation, in order to investigate

its properties:

xPC~
X

wix
GrC
i zsPC~

XN

i~1

wi

XM
j~1

bi,jx
raw
j {si

 !z

zsPC ð3Þ

where N is the number of GrCs and M is the number of raw

signals transmitted through the MFs. As opposed to in Eq. (2), bi,j

is not a single synaptic efficacy of the MF GrC transmission, but

the total transmission efficacy between the jth raw input signal and

the ith GrC, which includes contributions from one or more MF-

to-GrC synapses. We use xraw
j to denote signals that have not been

recombined, e.g. sensory signals related to a single input

dimension. It should be noted that Eqs. (2) and (3) are not in

contrast to each other, since in Eq. (2) the efficacies between the

raw signals and the MF activities are not mentioned. In other

words, any situation that can be described by Eq. (3) can also be

true for Eq. (2) and Eq. (1) by the correct choice of efficacies

between raw signals and the MF activities.

Eq. (3) has close links and mathematical similarities to several

concepts in multivariate regression and in particular artificial

neural nets (ANN), see Bishop [60]. It is a special case of a feed-

forward ANN with a single hidden layer, where each hidden unit

would correspond to a GrC, and all hidden units have ramp

activation functions. In Eq. (3) and Figure 3A, as in a regular feed-

forward ANN, each hidden unit (i.e. GrC) is innervated by all units

in the input layer (i.e. raw input signals). Marr and Albus assumed

such multimodal recombination as an essential part of their

models, in order to expand the input onto a higher dimensional

space enabling non-linear classification. It is known that in theory

such networks can approximate arbitrary functions [61], but in

practice they often require either a very large amount of neurons

or extremely large synaptic weights to approximate high

dimensional or complex function surfaces [62].

Recombination of inputs - projections in input space
Available evidence from the mammalian cerebellum, however,

does not support any substantial multimodal recombination within

the granule layer (see Introduction) and the linear integrative and

firing properties of the individual GrCs combined with the rate

coding in the SCT/SRCT systems (see above) do not seem well

suited for calculating non-linear functions. But extensive multi-

modal recombination of inputs does occur in the major MF

pathways, i.e. in the neurons of origin of the SCTs and SRCTs

[8,14–17,49,63–70], and they are a major source of integrated

sensorimotor information to the cerebellum. The biological

observations consequently suggest an alternative view of the

spinocerebellar network structure (Figure 3B). Notably, in this

view, the multimodal recombination that is necessary in the Marr-

Albus type of classifier is retained but the recombination is placed

prior to the granule layer.

The recombination of two or more input dimensions can be

viewed as a projection in the input space defined by the available

input dimensions. The term projection is used because a

recombination of the input variables, provided that it is a linear

recombination, can be seen as a projection along a straight line. It

should be noted that even though we in the account below

primarily discuss linear projections, also non-linear projections are

valid. In fact, non-linear recombinations could differentiate the

input in addition to the firing thresholds of the GrCs. In specific

cases, such non-linear recombinations have been shown to

improve the quality of approximations containing non-linear

interactions between input dimensions [71]. Since the SCT/

SRCT neurons are located within a complex network of spinal

Multi-dimensional Sensorimotor Information
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interneurons, non-linear functions can potentially be generated

here.

If the available recombinations of the input dimensions are

present already at the stage of the MFs (Figure 3B), then the

number of MFs imposes a restriction on how many projections

that can be represented in the system. The number of GrCs is

much higher than the number of MFs [33,40], but as noted above,

if the PCs are to be able to make PL approximations along each

projection, a population of GrCs is needed to represent each type

of sensorimotor combination provided by the MF systems (i.e., to

create a large number of knots in the PL approximation) (Figure 2).

In any case, as we will see below, the number of GrCs is far too

low to be able to accommodate all possible recombinations in the

system. Hence, the cerebellum is limited to working with a

restricted set of recombinations, or projections. In the case of a

restricted number of projections in the available input space, there

exist regression models which allow us to further analyze the

properties of such a model [72]. Eq. (3) can be changed into the

more restricted form

xPC~
XM
j~1

fj
�bbj
:�xxraw

� �
zsPC~

X
j~1M

XNj

i~1

wi,j
�bbj
:�xxraw{si,j

� �z
zsPC

ð4Þ

where M is the number of projections, bj determines the direction

of the projection and Nj the number of GrCs along projection j.

Before we apply the model in Eq. (4) to the double joint arm we

will describe to what extent the ‘curse of dimensionality’ [73]

affects and probably shapes the properties of the projections

available in these systems.

Limited number of GrCs
To illustrate the curse of dimensionality and its implications for

the amount of sensorimotor functions that could be represented in

the cerebellum, all inputs to the system is first assumed to be

limited to a finite number of values. Since there is a physical limit

upon most biological signals, the number of finite values (N) of the

input could for example be chosen such that we can achieve a

sufficiently good approximation error according to the bound,

N{1, that was presented earlier. The size of the space spanned by

one such discretized input could be considered to be N. If we

introduce another input or dimension to this space, it will become

a square with size NN. By adding another input dimension, the

space will become a cube with size NNN.

Hence, the size of the input space grows exponentially with the

number of input dimensions. Furthermore, each GrC, through the

PF to PC synaptic weight, can only determine the value of the

approximation at a single point in the input space [58]

(Figures 2,3). If the number of dimensions increase, and the size

of the input space grow, the average distance between randomly

placed points in that space grows as O N{1=d
� �

, where d is the

number of dimensions and N is the number of points spread

randomly across the entire space [60]. Hence, as more and more

dimensions are introduced to the input space, the number of

approximation points or GrCs has to grow exponentially in order

to maintain the average distance between these points. Formally,

the root mean squared error (RMSE) can be shown to be related

to the average distance between points and is bounded by

Figure 3. Comparison of network structures of ANNs and spinocerebellar systems. (A) A standard feed-forward ANNs with one hidden
layer (GrCs), where every input is available to all units in the hidden layer. (B) In contrast, in the spinocerebellar system, MF inputs to GrCs have a focal
termination, where different functional types of MFs are connected to different sets of GrCs. In this arrangement it is possible for recombination of
the sensorimotor inputs to take place already at the level of the SCT/SRCT units, while the recombination at the granule layer is restricted to the
approximately four functionally similar MFs that innervate every GrC. In the biological system, the GrCs have only excitatory synapses upon the PCs,
i.e. only positive weights. It is however possible to obtain inhibitory GrC to PC efficacies by mediating the GrC signal via the inhibitory interneurons of
the molecular layer (Int) (cf. [40,100]).
doi:10.1371/journal.pcbi.1002979.g003
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O N{2=d
� �

[74]. The exponential growth of the space spanned by

all input dimensions and all the resulting implications are what

Bellman coined as the curse of dimensionality [73].

In a biological system, one sensory receptor sampling informa-

tion from one submodality at one locus in the body would

correspond to one dimension. In the extreme case, each sensor is

considered to sample unique information and therefore represents

a unique input dimension. In this case, the total input space would

be of astronomical size due to the described exponential growth

per dimension. It is completely unfeasible that such a space can be

represented to any detail within the brain. To illustrate the

exponential growth in numbers even in a simplified system, let us

consider a set of receptors where each receptor samples

information from one submodality around a single joint. The

hand alone has approximately 20 degrees of freedom. In order to

encode the entire input space (for simplicity, we only consider

static configurations of the hand) with the MF-GrC population in

the human (assuming 10 billion GrCs are devoted to hand control,

which is likely to be a huge overestimate) the system would be

limited to about 3 knots along each input dimension. Hence, even

with these crude levels of accuracy in terms of sensory input (and

disregarding the role of the motor commands), the number of

GrCs needed reaches astronomical figures. If we add the wrist and

hence 2 more degrees of freedom to the input, the number of

GrCs required for the same crude accuracy would rise to 100

billion GrCs (compared to the estimates of a total of 70–100 billion

GrCs in the human cerebellum [75]), illustrating the exponential

growth. Again, it is easier to discuss the input dimensions in terms

of sensor signals, which we know relatively well what they code for.

Nonetheless, it should be recalled that we in addition have to take

into account the motor command, which is likely to represent

another multi-dimensional set of signals whose functions and

interdependencies with the sensor signals would also need to be

approximated.

The bounds upon the approximation error we have discussed so

far are the worst case scenarios, in which we are assuming that the

cerebellum needs to approximate arbitrary functions. As described

above, it would require all possible recombinations to be present at

level of the granule layer, requiring an enormous amount of GrCs,

most of which would remain superfluous if there were no non-

linear interactions between the recombined dimensions that

actually needed to be approximated. In contrast, if it was sufficient

to only use specific projections in the input space, selected to

enable the system to approximate specific non-linear functions, the

number of MFs and GrCs needed could possibly be substantially

reduced. For example, input dimensions that never interact (that

we will refer to as ‘superfluous projections’) would not need to

converge at all, and it would be possible to approximate additive

functions of two or more input dimensions even if they did not

converge until the PC layer. Interestingly, Barron [74] showed

that it is possible to construct a feed forward ANN that reduces the

bound upon the approximation error from O N{2=d
� �

to

O N{1
� �

, showing that it in principle is possible to reduce the

number of needed hidden units in the ANN to the point where the

curse of dimensionality is completely avoided but the precision of

the approximation is still maintained. While it is unlikely that all

requirements to reach the second bound can be fulfilled in the

biological system, the results of Barron still demonstrates that

finding optimal recombinations of inputs can be used to reduce the

number of projections available in the system while maintaining

acceptable levels of the approximation errors. Given that it is

known that the SCT/SRCT systems represent a limited number

(in relative terms) of combinations of sensor and motor signals, this

viewpoint has a high biological relevance. Such recombination

would correspond to that the SRCT/SCT systems have selected to

represent specific projections within the input space. Consequent-

ly, the structure of the spinocerebellar network prior to the granule

layer needs to be considered in order to explain how the curse of

dimensionality can be at least partially lifted.

Application
To illustrate how the coordination of a multi-segmented limb

could work in principle, we consider the simplified example of

controlling a planar double joint arm. The planar double joint arm

has previously been used to evaluate biophysically detailed models

of cerebellar function [76,77], also including feasible neural delays

[78]. Note that the kinematic variables in this example could

reside both in the domain of the sensors and in the domain of the

motor command – this is not relevant in this example, though, as

we only intend to illustrate in principle how projections can be

useful in approximating non-linear functions across different

dimensions. This example serves the additional purpose of

illustrating that a limited number of appropriate projections can

go a long way in capturing the interdependencies between

different input dimensions. Thereby, this example ties back to

the SCT/SRCT systems where more selective, rather than

unlimited, combinations of inputs are available. Position, speed

and acceleration, i.e. the variables represented in our example,

from multiple arm-joints do indeed seem to be represented in

individual MFs of the arm-controlling regions of the cerebellum

[46] although this does not mean to imply that these are the only

variables represented or that the terms in Eq. (5) correspond to the

exact interdependencies represented within the spinocerebellar

system.

To enable accurate control of the arm, the movement of both

joints needs to be coordinated due to interaction torques arising

from inertial, centripetal and Coriolis forces [79]. These interac-

tions lead to non-linear terms in the inverse equations of motion of

the arm, i.e. the transformation from joint angles, velocities and

accelerations to joint torques, which depends on two or three

kinematic variables of the arm joints. The three types of non-linear

dependencies among the different terms in the inverse dynamics of

the planar double joint arm are listed below,

sin heð Þ€hh, sin heð Þ _hhe
_hhs, sin heð Þ _hh

2 ð5Þ

where h is the joint angle, _hh and €hh are joint velocities and

accelerations, respectively, and the subscripts e and s denote the

elbow and shoulder joints, respectively. The terms are simplified

compared to those in the inverse dynamics [79], but retain all non-

linear interactions. In particular, all constant coefficients are

removed and all cos ? heð Þ are replaced with sin ? heð Þ to ease visual

comparisons of the results. Variables without subscripts indicate

that the term is present within the inverse dynamics with both a

shoulder and an elbow variant.

In order to explore how the neuronal circuitry could be used to

construct approximations of these equations, we apply the basic

static model from Eq. (4) to the non-linear terms in Eq. (5). In

particular, we investigate how the input to the cerebellum through

the recombination of the input variables influences the quality, or

the root mean squared error (RMSE), of the approximations that

were constructed.

We also investigated whether selecting particular combinations

of input enables better approximations, or if it is sufficient to

choose the recombinations at random. By creating approximations

of the terms in Eq. (5) with a varied number of random projections

as input to the granule layer, it is possible to investigate how
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reliable an approach using a random selection would be and how

many different projections such a method would need to use. To

evaluate the results in the case of random projections of input, we

compare the approximations using random projections situation

with approximations where the directions of the projections were

also optimized, instead of chosen at random. Having the optimal

projections also allow us to compare approximations using a

varied number of GrCs. They can also be used to explore if the

optimal projections or at least quality-wise similar (‘good enough’)

projections are included in the set of random projections that were

used in the previous step. Finally, it also allows us to explore if the

results using fewer different recombinations could be significantly

improved or compensated by increasing the number of GrCs.

All approximations are constructed by minimizing the error

function in Eq. (6), which calculates the RMSE of the approxi-

mation compared to the approximated function over a grid of

points covering the input space.

eRMSE~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

f̂f �xxið Þ{f �xxið Þ
h i2

s
ð6Þ

where f �xxð Þ is the approximated function or target function, f̂f �xxð Þ
the approximation and the �xxi are placed on an equidistant grid

covering the input space.

In order to capture the relevant shapes of the functions surfaces

of the terms in Eq. (5), the input to the trigonometric functions

range between {p and p. The RMSE is evaluated as the

proportion of the maximum RMSE obtained with Eq. (6) having

f̂f �xxð Þ~0. All two-dimensional approximations were constructed

using the Levenberg-Marquardt algorithm [80] using the imple-

mentation in the Matlab optimization toolbox. Matlabs Nelder-

Mead algorithm [81] was found to handle the larger amount of

unknowns better than the Levenberg-Marquardt algorithm, due to

the need for Jacobians in the Levenberg-Marquardt method, and

was used to create the three-dimensional approximations. It is

important to note that we use general approximation methods

with the intent to prove the possibility to construct approximations

with the model rather than to develop a method to construct such

approximations.

Results

We explored how well non-linear functions could be captured

using a limited number of projections, each represented in a

limited number of GrCs, in a model of the SCT/SRCT systems

and the cerebellar cortex to which the constraints described above

applied. The functions that the model was assigned to approxi-

mate were a couple of central functions for monitoring interseg-

ment dependencies in a multi-segmented limb (see ‘Application’),

i.e. functions that have to be monitored somewhere in a system

designed to achieve coordination control. Given what is known of

the SCT and SRCT synaptic inputs and signals (see preceding

sections), the signals necessary for approximating such functions

might well be generated in these systems. Figure 4A illustrate how

well the approximations created with the model in Eq. (4) could

capture the non-linearities in Eq. (5) using a limited number of

GrCs and a limited number of projections. The approximations

with the lowest RMSE (relative to the actual function) using 60

GrCs along 1 and 2 projections, respectively, are compared to the

actual functions (Figure 4A, right column). As it is hard to illustrate

approximations with three regressors, the three-dimensional term

sin heð Þ _hhe
_hhs, is exchanged with _hhe

_hhs together with sin heð Þ _hh
2

in

Figure 4A. The colors illustrate the shape of the surface in a similar

fashion as in Figure 2B, but in contrast to Fig. 2B the projections

are not perpendicular to each other as in the naı̈ve case with raw

inputs, but indicated by the broken lines. Due to the symmetry of
_hhe

_hhs, approximations with equal RMSEs can be obtained by

rotating the projections 900 making them close to equal to the

projections used for the optimal approximation of sin heð Þ€hh. The

best found approximation of sin heð Þ _hh
2

using two projections

deviates with a considerably higher RMSE and the projections

nearly overlap.

In a next step, we tested the effects of increasing the number of

projections available to the system beyond two projections.

Figure 4B illustrates that on average, using random projections,

RMSE values improved substantially when moving from two to

three projections. Notably, the approximation of sin heð Þ _hh
2
, which

was hard to approximate using two projections, could now be

approximated with much better RMSE values. Figure 4B also

indicates the RMSE values obtained for non-recombined raw

signals (only two projections, corresponding to the two axes in the

panels of Figure 4A), which generally lead to poorer results.

Figure 4B in addition indicates separately the projections leading

to the lowest RMSE values (i.e. the projections illustrated as

dashed lines in Fig. 4A). This illustrates that out of a set of random

projections, it is generally possible to find close to optimal

recombinations (or, rather, ‘good enough’ recombinations, see

Discussion).

In mathematical terms, already the relatively simple double

joint arm gives rise to several functions that cannot be

approximated using raw (i.e. non-recombined) inputs to the GrCs.

E.g. for _hhe
_hhs and sin heð Þ _hh

2
, both the worst case using a single

projection and the approximations using the raw inputs reached

100% of the maximum RMSE, i.e. a flat function surface

equivalent to f̂f �xxð Þ~0. The average and worst case RMSE of the

approximations was substantially improved as the number of

available projections was increased (Figure 4B). The best obtained

RMSE did however stay relatively constant as the number of

projections was increased to two or more.

Concerning sin heð Þ _hh
2
, the approximation using both raw

signals had no better RMSE than the approximation using a

single ideal projection of both signals. Again, when the number of

projections in the system is increased, the average and worst case

RMSE was substantially reduced also in this case. At the same

time, the best obtained RMSE did not improve as the number of

projections was increased to three or more.

Common for all three functions was that low RMSEs could be

obtained with only two or three projections (Figure 4B) and that

the average RMSE of the approximations could be reduced by a

rather modest increase in the number of projections, especially

approximating _hhe
_hhs. The above analysis indicates that recombi-

nations of sensorimotor signals describing the non-linear depen-

dencies between limb segments is necessary at the level of the

cerebellar granule layer in order to create approximations of the

functions in Eq. (55). At the same time, several GrCs can receive

the same MF input without impairing the quality of the

approximation in any significant way, allowing the recombination

to take place already prior to the granule layer.

While it was possible to find projections trough random selection

that yielded good approximations of the 2-dimensional terms, the

same is not true for the three-dimensional term sin heð Þ _hhe
_hhs (see

Figure 5). It should be possible to find approximations that reach the

same RMSEs as with its two-dimensional counterpart sin heð Þ _hh
2

(see

Figure 4B), but the constructed approximations indicate that

random selection of projections is not sufficient to reach the same

low RMSEs, even with a relatively high number of projections.
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However, by also including the projection directions to the

approximation algorithm to search for the optimal projections,

three-dimensional approximations with RMSEs comparable with

their two-dimensional counterpart were found, even with a

relatively low number of projections (see Figure 6). These

observations indicate that the higher the number of dimensions,

the worse the random projections would work. Hence, in particular

for high-dimensional inputs, it would be highly inefficient for the

spinocerebellar systems, and the cerebellar granule layer, to rely on

random projections.

It should be noted that the algorithm did not converge by its

own measure when Nelder-Mead was used, but had to be limited

to a maximum number of iterations. Also, the algorithm did

converge on local minima solutions and had to be restarted

around the found minima to reach the solutions that are presented

in Figure 6. There is no formal guarantee that the found solutions

lie close to the global optima, and should be considered as upper

bounds as better solutions could exist.

It is also interesting to note that the approximations using

optimized projections had close to the same RMSE as the most

accurate approximations created with random projections. By

comparing the RMSEs of the sin heð Þ _hh
2

approximations using two

and three projections in Figure 6, it is also evident that it is not

enough to increase the number of GrCs in the approximation

using two projections to reach the RMSE of the approximation

obtained using three projections. However, as long as the number

of projections is sufficient, additional projections does not seem to

increase the accuracy as can be seen comparing the RMSEs of the

Figure 4. Approximation examples of basic non-linear functions. (A) Approximated surfaces using a single or two projections (left and
middle columns, respectively) compared to the approximated or target function surface (right-hand column) (i.e RMSE = 0). The colors represent the
height of the surface ranging from negative values (blue) to positive values (red), comparable to the surface in Figure 2C. In each row, a different non-
linear interaction retrieved from the terms within the inverse dynamics of the planar double joint arm in [79] is used. The illustrated projections had
the lowest RMSE of 100 tested projections, each tested projection having a random direction. The actual RMSE values can be found in (B). The
approximated surfaces also display the actual projections used as dashed lines above the surfaces. The value of the elbow angle variable, he range
between {p and zp, to capture an entire period of the sin function that is approximated. (B) RMSE of approximations of three two-dimensional
non-linear terms in A. The approximations where constructed using random projection directions and a total of 60 GrCs. 100 approximations where
constructed for each box. The mean RMSE is shown by the center line of the box, the boxes themselves extend to the 25th and 75th quartile and the
whiskers extends to the most extreme RMSE not considered to be outliers, which are instead shown as black crosses. The red markers with an arrow
from ‘‘raw signal’’ show the RMSE of approximations using the raw signals as projection directions, i.e. without recombination of inputs and those
with an arrow from ‘‘in A’’ show the RMSE of the approximations shown in (A).
doi:10.1371/journal.pcbi.1002979.g004
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sin heð Þ _hhe
_hhs approximations using 4 and 8 projections in Figure 6.

Altogether, these findings (i.e. from Figures 4–6) indicate that

while it was possible to construct approximations of all the non-

linear terms in Eq. (5) with small RMSEs, the properties of the

function that is approximated determines how many projections

that are necessary and how they should be selected.

Discussion

Recombination of sensory and motor command signals in the

spinocerebellar systems is likely a crucial circuitry feature to allow

the cerebellum to be able to perform a variety of motor control

functions such as coordination. Here we made a theoretical

analysis of how this information can be used, based on some novel

constraints coming out of in vivo analyses of cerebellar GrC

function and the properties of the spinocerebellar systems.

Important conclusions are:

1. Essential recombinations of sensory and motor signals are

present already in the MF input as it enters the cerebellum.

This may be a main role of the SCT/SRT systems.

2. There is a large number of GrCs sampling MF signals from

functionally equivalent inputs, but they differentiate the signal

by having different thresholds and by sampling input from

sensors with somewhat different sensitivity. This is a necessary

property for the PCs to be able to adequately approximate

functions describing the states of the body and the nervous

system.

3. The number of potential projections within the high-dimen-

sional sensorimotor information space is essentially infinite,

implying that the GrCs and the SCT/SRCT systems must be

highly selective with respect to which recombinations are

represented.

4. These considerations has the surprising consequence that the

number of GrCs, despite that these are by far the most

numerous neuronal element within the brain [75], is a

numerical bottle-neck for how well the cerebellum can

approximate the properties of our bodies and object-body

interactions.

Assumptions and constraints – when does the model not
hold?

A main focus of our hypothesis is that the spinal circuitry makes

a number of sensorimotor functions, useful in the task of

coordination, available to the cerebellar cortex through its MF

projections via the SCT/SRCT systems. A second component of

the hypothesis is how this information could be received by the

cerebellar granule layer. Here, our hypothesis and the constructed

model rests on a number of experimental observations in vivo,

which suggest that rate coding is the predominant form of coding

Figure 5. Three-dimensional approximations with random
projections. Similar to the approximations in Figure 4B, but the
approximated function is instead the three-dimensional term from Eq.
(5), approximated over a three-dimensional grid. As in Figure 4, 60 GrCs
were used and 100 approximations with random projections were
constructed for each of the boxes. The mean RMSE is shown by the
center line of the box, the boxes themselves extend to the 25th and
75th quartile and the whiskers extends to the most extreme RMSE.
doi:10.1371/journal.pcbi.1002979.g005

Figure 6. Approximation error when the number of granule cells is increased. The figure shows how the RMSE is reduced when the
number of GrCs is increased as the functions in the figure legend were approximated using the specified number of projections. To search for the
optimal approximations, the approximation directions were also optimized along with the GrC to PC weights. The first equation sin heð Þ _hhe

_hhs, is three-

dimensional and was approximated using both 4 and 8 projections, while the others are two-dimensional. Note that the last equation sin heð Þ _hh
2

was
approximated both using 2 and 3 projections to investigate the relatively large differences found using random projections (see Figure 4B).
doi:10.1371/journal.pcbi.1002979.g006
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in MFs, that GrCs receive input from functionally similar MFs and

that the dominant mode of control of excitability in GrCs is

through tonic inhibition, presumably mainly through Golgi cells.

One of our main assumptions is that these observations apply. On

the view of the cerebellar cortex, the hypothesis extends the

adaptive filter hypothesis [40,82] and addresses the some of the

questions raised in a recent review [40] related to the role of the

granule layer and the MF signaling that follow from the described

in vivo findings. Naturally, in cases where the MF systems would

operate primarily through spike time coding and where inhibitory

synaptic inputs from Golgi cells to GrCs primarily operates

through fast, phasic IPSPs, very different functional interpretations

of the function of the granule layer would apply. Under these

circumstances other functional models of the granule layer, similar

to those presented in other reviews and models [83,84], would

become more likely. At present, however, support for our

assumptions from in vivo recordings seems relatively strong. All

recordings of MFs in awake animals during natural behavior seem

to support the interpretation that MFs operate with rate coding, in

particular for the spinocerebellar systems and within the limb

control zones that we are considering here [46,49–52,85,86] but

also for MFs in the oculomotor controlling regions of the

cerebellum [48] and quite possibly also for vestibulocerebellum

[47]. Also Golgi cells seem to follow the rate coding principle in

relation to controlled movement [48,47]. Similarly, although

intracellular recordings in GrCs in vivo are rare, studies of their

inhibitory responses in vivo are rarer still, but those available

indicate that a prominent tonic inhibition is existent [21], that in

the adult animal fast IPSPs are difficult to detect [29], whereas

tonic inhibition under Golgi cell control is demonstrable [88], and

that even in the juvenile animal (which is remarkable considering

that full maturation of the Goc-grc inhibition does not occur until

adulthood, see Introduction) more than 98% of the inhibitory

charge is carried by tonic inhibition [89]. Hence, although the

predominance of tonic inhibition in the Golgi cell to GrC

inhibition is still controversial, so far all in vivo studies available

support this idea.

Notably, another controversy with respect to GrC function,

which revolves around the question whether single MFs on high-

frequency repetitive activation can cause the GrC to fire or not

[40,90], does not affect the functional view presented here. As long

as the MF – GrC transmission has a threshold this functional view

would not change. In fact, a varying threshold across the

population of GrCs, which is beneficial for our present model,

could possibly in some cases result in that single MFs would have

such heavy influence on GrC firing also in vivo, although this

remains to be shown [40].

Note that as long as the inhibition exerted on GrCs is

predominantly tonic, the exact timing of Golgi cell spikes,

although regulated through an intricate set of mechanisms [91],

has a comparably small impact in this model.

Possible functional roles of Golgi cells in our model
In the present hypothesis, Golgi cells or GABAergic control of

GrCs have the important function of diversifying the GrC thresholds

to maximize the ability of the PCs to make piecewise-linear

approximations of any function that is useful for fulfilling their roles

in motor control. Although the source of GABA that sustain the

tonic inhibition of GrCs is somewhat controversial, and may include

for example glial sources [92], assuming that there is a contribution

from GABA released by Golgi cells has some interesting conse-

quences. By regulating Golgi cell activity, it might then be possible to

give the same GrC different thresholds in different contexts. This

would depend on the fact that MFs representing a given input have

focal terminations [35,37,53], which should create clusters of GrCs

with functionally similar inputs, and that Golgi cells inhibit primarily

local clusters of GrCs [12,93]. Hence, by modulating the Golgi cell

spike firing to different depths [88], which would result in a

modulated tonic inhibition [87], the cerebellar cortex could assign

different specific roles to the same GrC in different contexts, even

though the input it receives from the MFs are still coding for the

same function. Exploring these issues, and the mechanisms of how

the cerebellar cortical circuitry could regulate the thresholds of

specific GrC clusters in different contexts, are important outstanding

issues for future cerebellar research.

Crucial role of the spinal circuitry in presenting useful
sensorimotor functions

Although it is known that the spinal neurons of origin of the

SCT and SRCT pathways integrate sensory feedback with

descending motor command signals, the idea that this integration

is used to provide the cerebellum with sensorimotor functions or

projections into sensorimotor space is a fundamental assumption

in the current hypothesis. This assumption has not been

extensively explored, but there is certainly data that is consistent

with this idea [94,95].

As argued in the Model and Hypothesis section, in relation to

the potential number of projections that could be formed within

the complex sensorimotor space of our bodies, the cerebellum and

the number of GrCs that are available poses a severe limit on the

number of projections that can be represented. It follows that the

selection of these projections is an important step for the organism

so that the most useful calculations, relative to the sensorimotor

apparatus available, is made available to the cerebellum.

How these projections are established and configured are crucial

outstanding issues, but a number of observations suggest that the

spinal cord is an appropriate place to take the decisions of which

projections that are relevant. Simulations using a realistic network

structure and local sensory feedback patterns have shown that the

spinal circuitry does provide a number of useful sensorimotor

functions that can be played on by using motor commands [96].

The connectivity of the circuitry is established through plasticity

processes whose outcome depends on the configuration of the

sensorimotor apparatus [97] and the existence of spontaneous

movements [98]. In other words, the development of the spinal

circuitry is adapted to the development of the sensorimotor

apparatus and the correspondence between movement and sensory

feedback. It is likely that individual neurons of the spinal circuitry

during the development ‘finds’ appropriate combinations of sensors

and motor command signals, associations that are helpful for brain

movement control by providing such assistive sensorimotor

functions. The close correspondence between the sensor signals

and motor command signals in the individual neurons could be a

means for the spinocerebellar system to avoid superfluous recom-

binations (which the system can certainly not afford, see argumen-

tation under ‘Limited number of GrCs’) and that ‘good enough’

recombinations (close to optimal) might be formed with a high

probability. Describing the processes that establish the precise

patterns of recombinations made available by individual spinal

interneurons could be a particular intriguing example of advanced

learning processes within the central nervous system and is another

crucial outstanding issue for future research.
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