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Abstract

Lactobacillus casei, L. paracasei, and L. rhamnosus form a closely related taxonomic group (Lactobacillus casei group)
within the facultatively heterofermentative lactobacilli. Here, we report the complete genome sequences of L. paracasei
JCM 8130 and L. casei ATCC 393, and the draft genome sequence of L. paracasei COM0101, all of which were isolated
from daily products. Furthermore, we re-annotated the genome of L. rhamnosus ATCC 53103 (also known as L.
rhamnosus GG), which we have previously reported. We confirmed that ATCC 393 is distinct from other strains
previously described as L. paracasei. The core genome of 10 completely sequenced strains of the L. casei group
comprised 1,682 protein-coding genes. Although extensive genome-wide synteny was found among the L. casei group,
the genomes of ATCC 53103, JCM 8130, and ATCC 393 contained genomic islands compared with L. paracasei ATCC
334. Several genomic islands, including carbohydrate utilization gene clusters, were found at the same loci in the
chromosomes of the L. casei group. The spaCBA pilus gene cluster, which was first identified in GG, was also found in
other strains of the L. casei group, but several L. paracasei strains including COM0101 contained truncated spaC gene.
ATCC 53103 encoded a higher number of proteins involved in carbohydrate utilization compared with intestinal
lactobacilli, and extracellular adhesion proteins, several of which are absent in other strains of the L. casei group. In
addition to previously fully sequenced L. rhamnosus and L. paracasei strains, the complete genome sequences of L.
casei will provide valuable insights into the evolution of the L. casei group.
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Introduction reported the complete genome sequence of L. rhamnosus ATCC
53103 [15]. L. rhamnosus GG, the original strain of L. rhamnosus

The genus Lactobacillus is the largest group of the family ATCC 53103, was isolated from a healthy human intestinal flora,
Lactobaft.m'awae gnd containAs more than 130 species. The species and is one of the most widely used and well-documented
Lactobacillus casei, L. paracaset, and L. rhamnosus are phylogenetically probiotics, which confer a health benefit on the host when
and phenotypically closely related and are regarded together as the administered in adequate amounts [16]. It has been reported that

Lactobacillus caser group within the facultatively heterofermentative L. rhamnosus GG can shorten the duration of infectious diarrhea
lactobacilli [1]. The classification and nomenclature of this group ’

are controversial [2—7]. Some strains of L. caset, L. paracaset, and L.
rhamnosus have for long been used as probiotics in a wide range of
different products marketed in many countries. L. casei and L.
paracaset have also been isolated from a variety of environmental
habitats, including raw and fermented dairy (especially cheese) and
plant materials (e.g., wine, pickle, silage, and kimchi). They are
used as acid-producing starter cultures in milk fermentation as
adjunct cultures for intensification and for acceleration of flavor
development in bacterial-ripened cheeses. They are commonly the
dominant species of nonstarter lactic acid bacteria in ripening
cheese.

reduce antibiotic-associated symptoms, and alleviate food allergy
and atopic dermatitis in children [16].

In this paper, we present the complete genome sequences of
L. casee ATCC 393 and L. paracaser JCM 8130 (also known as
ATCC 25302), which were isolated from a cheese and milk
product, respectively, and the draft genome sequence of L.
paracaser COMO101 isolated from a commercial fermented milk
product. Furthermore, we re-annotated the genome of L.
rhamnosus ATCC 53103. We then compared sequenced genomes
of the L. casei group to gain a broader view of the genetic
variability within the group. Comparison of the genome
sequences of strains isolated from the human gut and dairy
products can provide valuable insights into the lifestyle
adaptation of the L. casei group.

In the L. caset group, the genomes of five L. paracaser strains
(ATCC 334, BD-II, BL23, LC2W, and Zhang) and three L.
rhamnosus strains (ATCC 53103, Le 705, and ATCC 8530) have
been fully sequenced to date [8-14]. We have also previously
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Figure 1. Circular representations of the chromosomes of L. rhamnosus ATCC 53103, L. paracasei JCM 8130, and L. casei ATCC 393.
From the outside: circles 1 and 2 of the chromosome show the positions of protein-coding genes on the positive and negative strands, respectively.
Circle 3 shows the positions of protein-coding genes that are shared among the 10 completely sequenced genomes of the L. casei group. Circle 4
shows the positions of tRNA genes (orange) and rRNA genes (blue). Circle 5 shows a plot of GC skew [(G — C)/(G+C); orange indicates values >0; blue
indicates values <0]. Circle 6 shows a plot of G+C content (outward: higher values than the average). The genomic islands in each strain are boxed:
regions including carbohydrate utilization gene cluster (pink), prophage-like regions (green), and the others (blue).

doi:10.1371/journal.pone.0075073.g001

Materials and Methods

Genome Sequencing

L. paracaser JCM 8130 and L. casee ATCC 393 were obtained
from the Japan Collection of Microorganisms (JCM) and the
American Type Culture Collection (ATCC), respectively. In this
study, ten strains of putative L. paracaser isolated from the
fermented milk product Yakult (Yakult Ltd., Japan) exhibited
the same pattern by random amplification of polymorphic DNA
fingerprinting [17]. We thus selected one L. paracaser strain
designated as COMO101 for sequencing. L. paracaset JCM 8130,
L. casee ATCC 393, and L. paracasec COMO101 were cultured in
MRS (deMan, Rogosa and Sharpe) broth (Difco) at 37°C for 24 h,
and the genomic DNAs were isolated and purified as previously
described [18].

The genome sequences of L. paracaser JCM 8130, L. caset ATCC
393, and L. paracasec COMO101 were determined by the whole-
genome shotgun strategy using Sanger sequencing (3730x] DNA
sequencers) and 454 pyrosequencing (GS-FLX sequencers). We
generated 19,200 (3.9-fold, 3730xl) and 284,003 (25.7-fold, GS-
FLX) sequences from the L. paracaser JGCM 8130 genome, 28,416
(5.9-fold, 3730xl) sequences from the L. casec ATCC 393 genome,
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and 131,707 (15.4-fold, GS-FLX) sequences from the L. paracasei
COMO101 genome. The 454 pyrosequencing reads were assem-
bled using the Newbler assembler software. A hybrid assembly of
454 and Sanger reads was performed using the Phred-Phrap-
Consed program. Gap closing and re-sequencing of low-quality
regions were conducted by Sanger sequencing to obtain the high-
quality finished sequence. The overall accuracy of the finished
sequence was estimated to have an error rate of <1 per 10,000
bases (Phrap score of =40). The deep sequencing dataset of L.
paracaset JCM 8130 and L. paracases COMO101 are deposited in the
DDBJ/GenBank/EMBL Sequence Read Archive under the
accession numbers DRA000955 and DRA000956, respectively.

Informatics

An initial set of predicted protein-coding genes was identified
using Glimmer 3.0 [19]. Genes consisting of <120 base pairs (bp)
and those containing overlaps were eliminated. All predicted
proteins were searched against a non-redundant protein database
(nr, NCBI) using BLASTP with a bit-score cutoff of 60. The start
codon of each protein-coding gene was manually refined from
BLASTP alignments. The tRNA genes were predicted by the
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The L. casei group
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Figure 2. Genome-based phylogenetic analysis of the L. case/ group. (A) Phylogenetic relationships between the genomes of sequenced
lactobacilli inferred from 34 concatenated ribosomal protein amino acid sequences. The scale bar represents an evolutionary distance. Sequences
were aligned with ClustalW with a bootstrap trial of 1,000 and bootstrap values (%) are indicated at the nodes. An unrooted tree was generated using
NJplot. The chromosome size is shown in parentheses. (B) Three-way comparisons between L. casei ATCC 393 with L. rhamnosus ATCC 53103 and L.
paracasei ATCC 334. The 2,191 genes shared by the three strains were classified into three categories on the basis of the BLAST score ratio analysis
[23]. (C) Venn diagram comparing the gene inventories of four strains of the L. casei group. Data resulted from reciprocal BLASTP analysis. The

numbers of shared and unique genes are shown.
doi:10.1371/journal.pone.0075073.g002

tRNAscan-SE [20], and the rRNA genes were detected by
BLASTN search using known Lactobacillus TRNA sequences as
queries. Protein domains were identified using HMMER with the
Pfam database. Orthology across whole genomes has been
determined using BLASTP reciprocal best hits in all-against-all
comparisons of amino acid sequences. Two sequences were
identified as highly conserved orthologs if their BLAST score ratio
is more than 0.8. When two genome sequences were compared
using BLASTN, non-matching regions were predicted as genomic
islands. The presence of an N-terminal signal peptide sequence
was predicted using the SignalP [21]. Clustered regularly
interspaced short palindromic repeats (CRISPR) were predicted
using the CRISPRFinder [22]. Draft genome sequences of L.
rhamnosus ATCC 21052 (accession no. AFZY01000000), L.
rhamnosus  HNOO1 ~ (ABWJ00000000), L. 7rhamnosus LMS2-1
(ACIZ00000000), L. paracase: 3700:2 (ABQV00000000), and L.
caser (zeae) KC'TC 3804 (BACQO1000000) were obtained from
GenBank.

The complete genome sequences of L. paracaser JCM 8130,
L. caset ATCC 393, and L. rhamnosus ATCC 53103 are deposited in
the DDBJ/GenBank/EMBL database under the accession
numbers AP012541-AP012543, AP012544-AP012546, and
APO11548, respectively. The draft genome sequence of
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COMO101 has been deposited in public database under the
accession numbers BAGT01000001-BAGT01000184.

Results and Discussion

Comparative Genome Analysis within the L. casei Group

We first re-annotated the genome of L. rhamnosus ATCC 53103,
which we previously reported in the short paper [15]. Next, we
determined and annotated the complete genome sequences of L.
paracaset JCM 8130 and L. casee ATCC 393. The genome of L.
paracaset JCM 8130 consists of a circular chromosome of
2,995,875 bp and two plasmids, and that of L. casec ATCC 393
consists of a circular chromosome of 2,924,929 bp and two
plasmids (Fig. 1). The chromosomes of L. paracaset JCM 8130 and
L. casee ATCC 393 contained 2,848 and 2,737 predicted protein-
coding genes, respectively. The larger plasmid (27 kilobases [kb])
of ATCC 393 shared 14 genes, such as beta-galactosidase and
cystathionine beta-synthase, with a 65-kb plasmid (accession no.
FM179324) of L. rhamnosus Lc 705 (Fig. S1), thus indicating that
both plasmids may be derived from the same origin. Furthermore,
we generated a draft genome sequence of L. paracasec COMO101
that consists of 184 contigs (>500 bp) with a total length of
3,003,364 bp. The COMO0101 genome contained 2,767 predicted
protein-coding genes. One of the highly redundant contigs
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contained a gene for plasmid replication protein that showed
100% amino acid identity with that of L. paracaser strains,
indicating that the COMO101 genome probably has at least one
plasmid. Their chromosome sizes (2.9-3.0 megabases [Mb]) were
among the largest group in the Lactobacillus genomes, with an
average size of 1.8-2.0 Mb (Fig. 2A). General features of these
genomes are summarized in Table S1.

We constructed a phylogenetic tree for concatenated sequences
of ribosomal proteins from sequenced Lactobacillus (Fig. 2A). L. caser
ATCC 393 and the L. caser—paracaser phylum were found to form a
distinct clade within the L. caset group, and L. casee ATCC 393 was
shown to be closer to L. casei (zeae) KCTC 3804. A three-way
comparison between the genomes of L. casee ATCC 393, L.
rhamnosus ATCC 53103, and L. paracasec ATCC 334 using the
BLAST score ratio analysis [23] revealed a greater number of
proteins in L. caset ATCC 393 showing a high score for L. rhamnosus
ATCC 53103 than those showing a high score for L. paracaser
ATCC 334 (Fig. 2B). Moreover, L. casec ATCC 393 shared more
genes with L. rhamnosus ATCC 53103 than with L. paracaset ATCC
334 (Fig. 2C). We thus found that L. casee ATCC 393 is more
closely related to L. rhamnosus strains than to L. paracaser strains
based on the phylogeny, overall protein similarities, and number of
shared genes. This result supports the previous reports that L. caset
ATCC 393 is distinct from other strains previously described as L.
paracaset [2,3,5,6]. Furthermore, we also constructed a multi-locus
sequence typing (MLST)-based phylogenetic tree [24] for L.
paracaser strains (Fig. S2A), showing that COMO101 shares the
same MLST lineage with BL23, LC2W, and BD-II. Moreover,
COMO101 shared more genes with BL23 than with ATCC 334
and JCM 8130 (Fig. S2B). Thus, COMO0101 is phylogenetically
closely related to BL23, LC2W, and BD-II in L. paracase: strains.

We compared the genomes of L. rhamnosus ATCC 53103, L.
paracasei JCM 8130, L. caset ATCC 393, and L. paracaset ATCC 334
(Fig. 2C). Thus, 1,793 genes were common to the four strains, and
a total of 4,315 ortholog clusters were assigned to the pan-genome
of the four strains. Of the 1,793 core genes, 1,682 (94%) were also
conserved among the other six completely sequenced strains (BD-
II, BL23, LC2W, Zhang, Lc 705, and ATCC 8530) of the L. casei
group. Broadbent et al. (2012) showed that 1,715 protein-coding
genes were common to 17 sequenced L. caser strains [25]. These
results suggest that approximately 1,700 genes constitute the core
genome of the L. caser group, likely inherited from their common
ancestor. All dispensable protein-coding genes, which were found
in one or more but not all the 10 completely sequenced strains of
the L. casei group, were functionally classified based on the clusters
of orthologous groups from the NCBI COGs database, and the
gene repertoires were compared (Fig. S3). There was a consider-
able difference in the number of genes assigned to COG category
G (carbohydrate transport and metabolism) and category L
(replication, recombination, and repair) among the strains. L.
rhamnosus strains had a lower number of genes assigned to COG
category L because the L. rhamnosus genomes contained a lower
number of transposase genes compared with the other strains,
suggesting that insertion element-mediated genome diversification
1s less frequent in L. vhamnosus strains. In contrast, L. paracaset JGM
8130 and L. casee ATCC 393 contained a higher number of
transposase genes. Most of the genes assigned to COG category G
were encoded in hypervariable regions in the genomes of the L.
caser group (described later). We next classified all protein-coding
genes of L. rhamnosus ATCC 53103 and sequenced intestinal
lactobacilli on the basis of the COGs database (Fig. 3A). L.
rhamnosus ATCC 53103 contained a higher number of genes
assigned to COG category G compared with intestinal lactobacilli.
The abundance of genes related to carbohydrate transport and
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metabolism in L. rhamnosus ATCC 53103 may contribute to the
wide variety of qualities in this strain compared with other
probiotics.

Bacteriocins are small antimicrobial peptides produced widely
by lactic acid bacteria. The L. rhamnosus ATCC 53103 genome
encoded the bacteriocin gene cluster (LRHM_2289 to
LRHM_2312), which contained genes encoding the two-compo-
nent sensor and regulator, four bacteriocin immunity proteins,
ATP-binding cassette (ABC) transporter with the proteolytic
domain, and small peptides. The cluster was conserved in the
genomes of the L. casei group, but in the corresponding region of L.
casee. ATCC 393, a gene for bacteriocin ABC transporter was
mnterrupted by transposase (LBCZ_2129 to LBCZ_2133) and
genes for immunity proteins were absent, suggesting that L. caset
ATCC 393 may not be able to produce bacteriocin.

CRISPRs, along with their associated cas genes, are known to
constitute a defense system against the propagation of phages and
plasmids; these were observed in the genomes of a number of lactic
acid bacteria [26]. L. rhamnosus ATCC 53103 contained a
CRISPR region (2,260,261-2,261,880) and four CRISPR-associ-
ated genes (LRGG_2116 to LRGG_2119). The 36-bp-long
sequence was present 25 times and separated by 30-bp unique
spacer sequences. It has been reported that two distinct types
(Lsall and Ldbul) of CRISPR loci were identified in the L. case:
genomes [25]. L. caset strains BD-II, BL23, LC2W, and Zhang also
have an Lsall-type CRISPR region at the same locus on the
chromosome, suggesting that the ancestral strain of the L. casei
group had encoded a CRISPR region. However, the 36-bp repeat
sequence of the four L. case: strains differs by two bases from that of
L. rhamnosus ATCC 53103, and the number of the repeat
sequences was different (17-22) among these strains. COMO0101
has the orthologs of the four CRISPR-associated genes, indicating
that COMO101 also may have a CRISPR region. In contrast, L.
paracasei JCM 8130, L. caset ATCC 393, L. rhamnosus Lc 705, and L.
rhamnosus ATCC 8530 had no CRISPR, suggesting that these
strains may have lost a CRISPR region during adaptation to their
environment where phage detection is not essential.

Genomic Islands

Whole-genome alignment showed a high level of synteny
among the strains of the L. casei group (Fig. S4). A previous report
showed that there was a high degree of synteny among the
genomes of 17 L. caser strains [25]. These results indicate that
strains of the L. casei group have a stable genome structure.
However, each genome contained specific genes, many of which
were grouped in clusters as genomic islands (GIs). It has been
reported that the comparison of the genomes of L. paracaset ATCC
334 and BL23 revealed 12 and 19 GIs (>5 kb) in ATCC 334 and
BL23, respectively [27]. Similarly, we identified 26 GIs (>5 kb) in
L. rhamnosus ATCC 53103 that were not conserved in L. paracasei
ATCC 334 (a cheese isolate) (Table 1, Fig. 1). The 26 genomic
islands of L. rhamnosus ATCC 53103 included six carbohydrate
utilization gene clusters (regions —1 to —6), four of which were
completely or partially present in L. paracasei BL23, whose
ecological origin is unclear. This result supports the previous
findings that cheese isolates, including L. paracaset ATCC 334, have
undergone significant gene decay, including loss of many genes
involved in carbohydrate utilization [25,27]. Thus, L. paracase:
ATCC 334 contains a lower number of genes related to
carbohydrate transport and metabolism compared with the other
sequenced L. paracaser strains (Fig. S3). In probiotic lactobacilli,
horizontal gene transfer played an important role in shaping the
common ancestor [28]. Such acquisition of new genes can expand
a bacterium’s potential for adaptation to a new niche. The
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Figure 3. Abundance of genes related to carbohydrate transport and metabolism in L. rhamnosus ATCC 53103. (A) Comparative
analysis by functional categories of the gene repertoires of sequenced intestinal lactobacilli. The number of genes assigned to COG category G in
each genome is shown. (B) Carbohydrate utilization gene clusters of L. rhamnosus ATCC 53103. Genes and their orientations are depicted with
arrows. Regions -5 and -6 are compared with the corresponding genomic locations in L. rhamnosus Lc 705. Gray bars indicate orthologous regions.

doi:10.1371/journal.pone.0075073.g003

common ancestor of L. rhamnosus ATCC 53103 and L. paracasei
ATCC 334 seems to have acquired carbohydrate utilization gene
clusters via lateral gene transfer. These carbohydrate utilization
gene clusters may have provided adaptive features to some strains
including ATCC 53103 for their survival and proliferation in the
human intestine. In contrast, these carbohydrate utilization gene
clusters may have been lost in the lineage to ATCC 334 during its
adaptation to the cheese environment.

Similarly, compared with L. paracaset ATCC 334, 15 and 24 GIs
were found in L. paracaset JCM 8130 and L. cases ATCC 393,
respectively (Table 1, Fig. 1). Of these Gls, 6 (JCM 8130) and 10
(ATCC 393) were found at the same loci with those of L. rhamnosus
ATCC 53103. A comparative genome hybridization in 22 L. case:
strains isolated from various habitats has revealed 25 hypervari-
able regions [27], of which 11 were found at the same loci of the
Gls in L. rhamnosus ATCC 53103. Thus, these results suggest that
the chromosomes of the L. caset group contain several hypervari-
able regions at the same loci.

The six carbohydrate utilization gene clusters of L. rhamnosus
ATCC 53103 contained the genes for phosphoenolpyruvate-
carbohydrate phosphotransferase (PTS)-type transporter systems,
glycosyl hydrolases, transcriptional regulators, and other carbo-
hydrate-related proteins (Fig. 3B). L. rhamnosus ATCC 53103
encoded 28 complete PTS-type transporter systems, 11 of which
were encoded adjacent to genes for glycosyl hydrolase and

PLOS ONE | www.plosone.org

transcriptional regulator, thereby allowing localized transcriptional
control. The organization (carbohydrate transporter, glycosyl
hydrolase, and transcriptional regulator) is reminiscent of the
many clusters found in Bifidobacterium longum [29].

Six of the 26 GIs of L. rhamnosus ATCC 53103 overlapped with
all the hypervariable regions among the sequenced L. rhamnosus
strains (ATCC 53103, Lc 705, ATCC 8530, ATCC 2105,
HNOO01, and LMS2-1). Three of the six hypervariable regions
were prophage-like regions (LRHM_1038 to LRHM_1090,
LRHM_1455 to LRHM_1475, and LRHM_2779 to
LRHM_2794 in ATCC 53103). The other three regions
corresponded to regions containing carbohydrate utilization gene
clusters (regions -3, -5, and -6), indicating that L. rhamnosus strains
show flexibility in sugar utilization. Two of the five PTS-type
transporter systems in region-5 and two in region-6 were missing
in Le 705, ATCC 8530, and LMS2-1 strains (Fig. 3B). Compar-
ative genomic hybridization analyses have showed that the region
corresponding to regions -5 and -6 contains an overrepresentation
of genes involved in carbohydrate utilization and transcriptional
regulation in 22 L. casei strains [27]. Taken together, the region
corresponding to regions -5 and -6 in the genomes of the L. case
group may be required to fine-tune its ability to utilize
carbohydrates.

October 2013 | Volume 8 | Issue 10 | e75073
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Figure 4. Gene clusters encoding cell surface proteins in L. rhamnosus ATCC 53103. (A) WxL clusters. (B) Putative glycosylated cell-surface
protein clusters. Genes and their orientations are depicted with arrows. Gray bars indicate orthologous regions between L. rhamnosus ATCC 53103

and L. paracasei ATCC 334.
doi:10.1371/journal.pone.0075073.g004

Extracellular Components

Another group has also determined the complete genome
sequence of L. rhamnosus GG, and revealed the presence of the
SpaCBA pili on the cell surface of L. rhamnosus GG [9]. SpaA is a
backbone-forming major pilin, SpaB is a minor pilin, and SpaC
located at the pilus tip is essential for the mucus adherence of L.
rhamnosus GG [9,30]. The spaCBA genes are encoded in the largest
GI (LRHM_0376 to LRHM_0466) in L. rhamnosus ATCC 53103
(Fig. S5). The L. paracasei Zhang, L. paracaser BL23, and L. paracaset
ATCC 334 genomes also encode the spaCBA genes (Fig. S5). In
contrast, L. casee ATCC 393 completely lacks the spaCBA genes.
The spaCBA genes were also encoded in L. paracasec GOMO101,
but the spaC gene was truncated by a nonsense mutation [25] (Fig.
S5), which probably encodes a non-functional protein. Douillard
et al., (2013) clearly showed that the L. paracasei strain isolated from
Yakult produced no pilus structures by an immunoelectron
microscopy using immunogold staining [31]. It has been reported
that the adhesion capacity of L. rhamnosus GG to Caco-2 cells and
intestinal mucus was approximately 10 times that of strain Shirota,
which was obtained from Yakult [32]. This may be because L.
rhamnosus GG encodes the intact SpaCBA and L. paracasei
COMO101 encodes truncated SpaC. Furthermore, L. paracasei
JCM 8130, L. paracasee BD-II, and L. paracasei LC2W also
contained truncated spaC’ gene (Fig. S5), and L. rhamnosus Lc 705
and ATCC 8530 completely lacked the spaCBA genes. The spaCBA
genes have been found only in the L. casei group to date. Because
different lineages in L. caset strains contained the spaCBA genes, it
has been suggested that the spaCBA genes were not recently
acquired [25]. It could thus be speculated that the ancestral strain
of the L. casei group had encoded the intact spaCBA genes and then
spaCBA may have been lost or disrupted in certain strains of the L.
casel group.

PLOS ONE | www.plosone.org

L. rhamnosus ATCC 53103 had three gene clusters encoding
proteins with a C-terminal WxL domain (Fig. 4A). The WxL
domain is conserved in the surface proteins in low-GC gram-
positive bacteria [33] and attaches to the peptidoglycan on the cell
surface [34]. The WxL protein cluster was not found in other
sequenced intestinal lactobacilli. The proteins with the WxL
domain were present together with the proteins containing the
DUF916 domain (PF06030) of unknown function and the small
proteins with the LPXTG-like sorting motif, and their gene
organizations were similar to that in L. plantarum WCFS1 [35]. Of
the three WxL protein clusters, one (LRHM_1699 to
LRHM_1702) was not conserved in the sequenced L. paracasei
strains (Fig. 4A, Table 2). There were 14 genes encoding proteins
that had both a signal sequence for secretion and an LPX'TG-type
motif for covalent anchoring to the peptidoglycan matrix (Table 2),
and these proteins can be cleaved by sortase. The protein
LRHM_1529 was composed of 3,275 amino acid residues,
representing the largest protein in this genome, and it contained
mmperfect repeats consisting of serine, alanine, and aspartic acid.
This serine-rich motif has been found in the extracellular proteins
in the genomes of other gram-positive bacteria such as L. plantarum,
L. johnsonu, and Streptococcus pneumoniae [29,36,37]. The protein
LRHM_1529 was encoded in the region (LRHM_1518 to
LRHM_1530), which contained two glycosyltransferase genes
(Fig. 4B). It has been suggested that glycosyltransferase, encoded
by the adjacent genes, caused O-linked glycosylations on the
serines in the putative cell surface protein, thus producing mucin-
like structures [36]. Similarly, the protein LRHM_2193 had an
LPXTG-type motif, and it contained imperfect repeats consisting
of serine and alanine and two adjacent glycosyltransferase genes
(Fig. 4B). Thus, LRHM_1529 and LRHM_2193 could encode
glycosylated cell-surface adhesives. The protein LRHM_1797
(2,357 amino acids) plays an important modulating role in

October 2013 | Volume 8 | Issue 10 | e75073
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adhesion to intestinal epithelial cells and biofilm formation [38].
These genes (LRHM_1529, LRHM_1797, and LRHM_2193)
were absent in the sequenced L. paracase: strains. The presence of a
variety of the cell surface adherence proteins could contribute to
the probiotic properties of L. thamnosus ATCC 53103.

Conclusions

We determined the complete genome sequences of L. paracasei
JCM 8130 and L. caset ATCC 393, and the draft genome sequence
of L. paracasec COMO101. Furthermore, we re-annotated the
genome of L. rhamnosus ATCC 53103. We confirmed that L. casei
ATCC 393 is distinct from the L. paracasei strains previously.
Comparative genome analysis revealed 1,682 core genes and
genome-wide synteny in the L. caser group. Chromosomes of the L.
caser group contained Gls, many of which are also found at the
same loci, suggesting that the chromosomes of the L. casei group
contain several hypervariable regions at the same loci, which may
contribute to the adaptation to each ecological niche. The spaCBA
pilus gene cluster, which was first identified in L. rhamnosus GG,
was also found in other strains of the L. casei group, but several L.
paracaser strains including COMO101 contained truncated spaC’
gene. L. rhamnosus ATCC 53103 encodes SpaCBA pili, proteins
with WxL, domain, two glycosylated cell-surface adhesives, and
several large proteins with the LPXTG motif. The complete
genome sequences of L. rhamnosus, L. paracasei, and L. caset will
provide a framework that will help understand the genomic
differences between strains within the L. caser group.

Supporting Information

Figure S1 Linear representations of the plasmids of L.
casei 393 and of L. rhammnosus Lc 705. Genes and their
orientations are depicted with arrows. Several lines connect orthologs
with the following colors: red, genes sharing over 95% amino acid
identity; orange, genes sharing 70-95% amino acid identity; blue,
transposase genes; and green, partially conserved genes.
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Figure 82 Genetic relationships among L. paracasei
strains as defined by multilocus sequence typing. (A)
Concatenated sequences of five MLST loci (fis<, metRS, mutL, pgm,
and pold) were analyzed as described previously [24]. (B) Venn
diagram comparing the gene inventories of four L. paracasei strains.
Data resulted from reciprocal BLASTP analysis. The numbers of
shared and unique genes are shown.
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Figure 83 COG classification of dispensable protein-
coding genes of the L. casei group.
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Figure S4 Synteny between the chromosomes in the L.
casei group. Each plot point represents reciprocal best matches
by BLASTP comparisons between orthologs.
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Figure S5 The spaCBA pili cluster arrangement. Genes
and their orientations are depicted with arrows.
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Table S1 General genomic features of strains se-
quenced in this study.
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