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In this research paper, the generalized projective Riccati equations method (GPREM) is applied 
successfully to procure the soliton solutions of the local M-fractional longitudinal wave equation 
(LWE) arising in mathematical physics with dispersion caused by the transverse Poisson’s effect 
in a magneto-electro-elastic circular rod (MEECR). Applying a wave transformation to the local 
M-fractional LWE, the equation can be turned into a set of algebraic equations. Solving the 
algebraic equation system, we procure the soliton solutions of the local M-fractional LWE. 
Both the obtained solution functions in the study and the graphical simulations depicted for 
these functions. It will assist researchers working in this field in the physical interpretation of 
this equation. Moreover, the reported solutions propose a rich platform to examine the local 
M-fractional LWE.

1. Introduction

As is well known, the term “soliton” was first introduced to the literature by American physicists Norman J. Zabusky and 
Martin D. Kruskal in 1965. The study of integrability of nonlinear partial differential equations involving functions of a spatial 
variable as well as a temporal variable by Kruskal in the 1960s actually has an important key role. These studies first started 
with a computer simulation of a nonlinear equation known as the Korteweg-de Vries (KdV) equation in the literature by Zabusky 
and Kruskal. Although the KdV equation is an asymptotic model of the propagation of nonlinear dispersed waves, Zabusky and 
Kruskal in some sense explored the “solitary wave” solution of the KdV equation, which propagates without dispersion and even 
regains its physical properties (shape) after interaction (collision) with other such waves. Because of its particle-like properties for 
such a wave, Zabusky and Kruskal called it “soliton” to describe it precisely. Many researches (Kruskal, Zabusky, Miura, Gardner, 
Zakharov, Shabat, Zakharov, Mikhailov, Ablowitz, Newell, Segur, Kaup, Manakov, and other distinguished scientists) have been 
carried out in fields such as nonlinear wave dynamics, nonlinear optics, solid state, plasma, and quantum physics, atmosphere, ocean 
engineering and planetary sciences due to both the introduction of the soliton concept into the literature and the integrability of 
nonlinear equations and the development of computer-aided symbolic software. Especially in the last two decades, new concepts, 
theories, and models related to nonlinearity have been developed and most of them have been supported by experimental studies 
[1–30]. Due to the increase in studies on solitons, the orientation of many researchers to this field. In particular, the modeling of 
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many physical events in nature and obtaining soliton solutions, and nonlinear equations have gained a unique field and importance. 
Such studies have naturally introduced specific approaches and methods to some fields, and some new solution methods have been 
developed. For example, in biomedical applications, a heating-free reprogrammable magnetization technique [31], an improved 
generic carrier-based PWM solution [32], the systematic analysis method [33], finite element analysis based partial differential 
equation systems solution application (COMSOL multiphysics) [34], a combination of single crystal and powder X-ray diffraction 
(XRD) using the positional parameters [35], finite control set model-predictive control (FCS-MPC) [36], the Wavesip method [37], 
amended water strider algorithm [38], Lagrangian relaxation algorithm [39]. Rods (or elastic rods) are one of the best-selected 
materials for solving nonlinear problems. The study of non-linear wave behavior in rods both theoretically and experimentally 
and the results obtained in technology have made the studies of wave propagation in rods more widespread. In mechanics, a rod 
is generally defined as a deformable solid with a finite rigidity in tension, torsion, and bending, which geometrically has two 
dimensions smaller than its third dimension. One type of wave propagation in rods is LW propagation. The most common model for 
LW propagation is the Bernoulli model. In this model, while defining the longitudinal vibrations of the rod, it is possible to neglect 
the potential energy of the shear strain and the kinetic energy of the transverse motion of the particles. According to Bernoulli’s 
theory, linear waves in rods propagate with the velocity 𝑐0 =

√
𝐸∕𝜌, where E is known as Young’s modulus and 𝜌 is the density of 

the material, respectively. In this model, velocity does not depend on the frequency and it is impossible to describe the geometric 
dispersion of LWs. This point, which is the biggest shortcoming of Bernoulli’s model, was later eliminated with the mathematical 
models proposed by Rayleigh, Love, Bishop, Mindlin, and Hermann.

Many studies have been performed to model wave propagation in a finite elastic rod. Assuming that the cross-section of the rod 
is circular and constant, and accepting some assumptions to use the Lagrangian material definition with the cylindrical coordinates 
among these, the Euler equation modeling the nonlinear wave equation of the elastic rod with finite deformation is obtained by using 
the Hamilton variation principle with the kinetic energy approach [40] as follows:
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where 𝑆 = 𝜋𝑅2 is the cross-sectional area of the circular rod with radius 𝑟, 𝜈 and 𝜌 are the Poisson’s ratio and density of 
the elastic material, respectively. 𝑈 is the longitudinal displacement, and t is the time variable. Eq. (1) is a wave equation of 
double nonlinearities and double dispersions of the circular-rod waveguide, which includes both lateral inertia and lateral shear 
simultaneously. Another study related to the elastic rod is the equation below, which models the nonlinear wave propagation in a 
standard elastic rod, based on the equations of motion in an elastic rod, again with cylindrical coordinates and assuming that the 
extended tractions on the lateral boundary of the rod should be zero. This form is also the form of the equation that is the subject of 
the study within the scope of the article and is given as follows [41]:
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in which 𝑐0 is the velocity of the linear longitudinal wave, 𝑁 is the dispersion parameter, 𝑥 is the spatial axis according to the 
longitudinal geometry of the rod, and 𝑡 is the time variable. Eq. (2) is a nonlinear wave equation with dispersion caused by the 
transverse Poisson’s effect. In addition to these mentioned studies, one of the models in this field is the model developed from the 
most studied and known Korteweg-de Vries equation. The equation is given [42]:

Ψ𝑡 + 6ΨΨ𝑥 +Ψ𝑥𝑥𝑥 = 0, (3)

in which Ψ = Ω𝑥 and Eq. (3) describes the nonlinear LWs in rods under certain conditions. This equation is the well-known 
Korteweg–de Vries (KDV) equation. Here, Ω is the longitudinal displacement of the particles, and 𝑥, 𝑡 are the dimensionless spatial and 
temporal coordinates, respectively. Many studies have been done and models have been explored (such as Rayleigh–Love, Bishop, and 
Mindlin–Hermann, Winkler–Pasternak, Bernoulli–Euler) on the LW propagation in the rod in relation to the KDV equation [43–54].

The aim of this investigation is to scrutinize the local M-fractional longitudinal wave equation emerging in a magneto-electro-elastic 
circular rod given by [55]:
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In Eq. (4) 𝒟2𝛼,𝛽
𝑀,𝑡

𝜓(𝑥, 𝑡) is M derivative of order 𝛼 of 𝜓(𝑥, 𝑡) with respect to 𝑡, 𝑝 presents the coefficient of dispersion term, and 𝑐0
states the linear longitudinal wave velocity for a MEECR. Moreover, all of them hinge on the geometry of the rod and the material 
characteristics.

Few new exact schemes have been introduced to derive get the soliton solutions of the LWE arising in a MEECR. Yang and Xu 
acquired the new solutions to the LWE model by using direct integration with boundary conditions and symmetry conditions in [56]. 
Baskonus and Gomez-Aguilar applied the Bernoulli sub-equation function method to obtain different soliton solutions of the LWE in 
[55]. The extended sinh-Gordon equation expansion method was applied to get various soliton solutions of LWE by Bulut et al. in 
[57]. Nur Alam and Tunc solved the LWE using the novel generalized (G’/G)-expansion method in [58]. Younis and Ali considered 
the ansatz method to construct soliton solutions of the LWE in [59]. Alderremy et al. explored the analytical and semi-analytical 
wave solutions in [60]. Ilhan et al. examined the analytical solution of the LWE utilizing the powerful sine-Gordon expansion method 
2

in [61]. Seadawy and Manafian examined different soliton solutions of the LWE utilizing the extended trial equation method in [62].
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This paper is detailed as: In Section 2, the general features of the local M-fractional derivative are presented. The GPREM is 
detailed in Section 3. The presented method is applied to the local M-fractional LWE to procure several soliton solutions in Section 4. 
The resulting solutions are detailed in Section 5. Conclusions are presented in the last section.

2. The basics of the truncated M-fractional derivative

This section presents the basic definition and known basic properties of the t-MFD.

Definition 2.0.1. The truncated Mittag-Leffler function is expressed by [63]:

𝑖𝐸𝛽 (𝑧) =
𝑙∑

𝑘=0

𝑧𝑘

Γ(𝛽𝑘+ 1)
,

where 𝛽 > 0 and 𝑧 ∈ 𝐶 .

Definition 2.0.2. Assume that ℎ ∶ [0, ∞) →ℝ be a function, the t-MFD for 𝑝 of order 𝛼 ∈ (0, 1), with respect to 𝑡 is defined by [22]:
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where 𝛽, 𝑡 > 0 and 𝑖𝐸𝛽 (⋅) states Mittag-Leffler function.

Theorem 2.0.1. Suppose that ℎ(𝑡) is a function that has derivatives of order 𝛼 when 𝑡0 > 0 for 𝛼 ∈ (0, 1] and 𝛽 > 0. Then, ℎ(𝑡) is continuous 
at 𝑡0 [63].

Theorem 2.0.2. Let 0 < 𝛼 ≤ 1, 𝛽 > 0, 𝑎, 𝑏 ∈ℝ and suppose that 𝑝, 𝑞 are 𝛼-differentiable at any 𝑡 > 0. Then,
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3. Description of the GPREM

This part clarifies the basics of the GPREM.
Assume that any NLPDE is expressed as:

𝑃 (𝜓,𝐷𝑡𝜓,𝐷𝑥𝜓,𝐷𝑥𝑥𝜓,𝐷𝑡𝑡𝜓,𝐷𝑥𝐷𝑡𝜓, ...) = 0, (5)

in which the parameters 𝑥 and 𝑡 are two independent variables, and subscripts represent partial derivatives with respect to 𝑥 and 𝑦.
Step 1: Let’s define the wave transformation equation given below:

𝜓(𝑥, 𝑡) = 𝑢(𝜁 ), 𝜁 = (𝑥± 𝜐𝑡), (6)

where 𝜁 is a new variable, 𝜐 symbolizes the soliton’s velocity. Eq. (5) takes to the following nonlinear ordinary differential equation 
form:

𝑃 (𝑢, 𝑢′, 𝑢′′,…) = 0, (7)

in which 𝑢′ = 𝑑𝑢

𝑑𝜁
, 𝑢′′ = 𝑑2𝑢
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.

Step 2: Consider that Eq. (7) accepts the following solution:
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in which 𝐴0, 𝐴𝑘 and 𝐵𝑘 are real coefficients to be calculated. 𝜎(𝜁 ) and 𝜌(𝜁 ) satisfy the following ODEs:

𝜎′(𝜁 ) = 𝜖𝜎(𝜁 )𝜌(𝜁 ), (9)

𝜌′(𝜁 ) = 𝜒 + 𝜖𝜌(𝜁 )2 − 𝜇𝜎(𝜁 ), 𝜖 = ±1, (10)

where (
𝜇2 + 𝑟

)

3

𝜌(𝜁 )2 = −𝜖 𝜒 − 2𝜇𝜎(𝜁 ) +
𝜒

𝜎(𝜁 )2 . (11)
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Herein, 𝜇 and 𝜒 are nonzero real values. If 𝜇 = 𝜒 = 0, then Eq. (7) admits the given formula as a solution:

𝑢(𝜁 ) =
𝑁∑
𝑘=1

𝐴𝑘𝜌
𝑘, (12)

in which 𝜌(𝜁 ) satisfies the following ODE given by Eq. (13):

𝜌′(𝜁 ) = 𝜌(𝜁 )2. (13)

Step 3: In Eq. (8) and Eq. (12), 𝑁 is a positive integer which is calculated utilizing the classical balancing rule in Eq. (7).
Step 4: Inserting Eq. (8) along with Eqs. (9)–(11) into Eq. (7), then, gathering all terms of the identical order of 𝜎𝑘(𝜁 )𝜌𝑙(𝜁 )

(𝑘, 𝑙 = 0, 1, 2, … 𝑁) and taking each to zero, we procure set of a system whose solutions yield the parameters of 𝐴0 , 𝐴𝑘, 𝐵𝑘, 𝜇, 𝑟, 𝜒 .
Step 5: Eq. (9) and Eq. (10) produce the given conditional solutions:
Family 1: When 𝜖 = −1, 𝑟 = −1, 𝜒 > 0, we get,
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Family 2: If 𝜖 = −1, 𝑟 = 1, 𝜒 > 0, we get,
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Family 3: If 𝜖 = 1, 𝑟 = −1, 𝜒 > 0, we get,
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Family 4: If 𝜇 = 𝜒 = 0, we get,

𝜎5(𝜁 ) =
𝐾

𝜁
, 𝜌5(𝜁 ) =

1
𝜖𝜁

, (18)

where 𝐾 is a nonzero real value.
Step 6: Utilizing the parameters of 𝐴0, 𝐴𝑘, 𝐵𝑘, 𝜇, 𝑟, 𝜒 and Eqs. (14)-(18), by considering the Eq. (6) and Eq. (8) the solutions of 

Eq. (5) are acquired.

4. Governing model

In this segment, the GPREM has been applied to the proposed local M-fractional LWE to have soliton solutions.
We use the following transformations:

𝜓 = 𝜓(𝑥, 𝑡) = 𝜓(𝜁 ), 𝜁 = 𝜆

𝛼
℘(1 + 𝛽) (𝑥𝛼 +𝜔𝑡𝛼) , (19)

in which 𝜆, 𝜔 are nonzero real values, 0 < 𝛼 ≤ 1. Inserting the wave transformation Eq. (19) into Eq. (4), we acquire:

2𝜆2𝜔2𝑝𝜓 ′′ − 2𝜔2𝜓 + 2𝑐20𝜓 + 𝑐20𝜓
2 = 0. (20)

If we utilize the balancing rule in Eq. (20) between the terms Ψ′′ 𝑎𝑛𝑑 Ψ2, we get the balancing constant as 𝑁 = 2. So, Eq. (8) takes 
the following structure:

𝑢(𝜁 ) =𝐴0 +
2∑

𝑘=1
𝜎(𝜁 )𝑘−1

[
𝐴𝑘𝜎(𝜁 ) +𝐵𝑘𝜌(𝜁 )

]
. (21)

Combining the Eq. (21) with Eq. (9) and Eq. (10), together, then, collecting all the coefficients of 𝜎𝑘(𝜁 )𝜌𝑙(𝜁 ) (𝑘, 𝑙 = 0, 1, 2, …) then 
equating to zero, algebraic system is obtained.
𝜎4(𝜁 ) coefficient:(

𝑐20𝜒𝐴
2
2 −

(
12𝜆2𝜔2𝑝𝜖3𝐴2𝑟

)(
𝜇2 + 1

)
−
(
𝑐20𝐵

2
2𝜖
)(

𝜇2 + 𝑟
))

= 0, (22)

𝜎3(𝜁 )𝜌(𝜁 ) coefficient:(
2𝑐20𝜒𝐴2𝐵2 −

(
12𝜆2𝜔2𝑝𝜖3𝐵2

)(
𝜇2 + 𝑟

))
= 0, (23)
4

𝜎3(𝜁 ) coefficient:
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2𝑐20

(
𝑅𝐴1𝐴2 −𝐵1𝜖𝐵2

(
𝜇2 + 𝑟+𝐵2

2𝜖𝜇𝑅
))

+ 𝜆2𝜔2𝜖𝑝
(
4𝑅𝜇𝐴2(6𝜖2 − 1) − 4𝜖2𝜇2𝐴1(1 + 𝑟)
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= 0, (24)
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(
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)
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)
+(
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)
= 0, (25)
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𝑐20𝜒(2𝐴0𝐴2 −𝐵2
2𝜖𝜒 −𝐴2

1) − 2𝜒𝐴2
(
𝑐20 −𝜔2)− 𝑐20𝐵

2
1𝜖𝜇

2 − 2𝜆2𝜔2𝑝𝜖𝜒(𝐴1𝜇 + 6𝜖2𝐴2𝜒)

− 𝑐20𝐵
2
1𝜖𝑟+ 4𝜆2𝜔2𝑝𝜖𝜒

(
𝜒𝐴2 + 𝜖2𝐴1𝜇

)
+ 4𝑐20𝐵1𝜖𝐵2𝜇𝜒 = 0, (26)

𝜎(𝜁 )𝜌(𝜁 ) coefficient:(
2𝜆2𝜔2𝑝𝜖𝐵2𝜒

)(
3 − 4𝜖2

)
− 2𝜔2𝐵2 + 2𝑐20 (𝐴1𝐵1 +𝐵2) + 2𝜆2𝜔2𝑝𝜖𝐵1𝜇(2𝜖2 − 1) + 2𝑐20𝐴0𝐵2 = 0, (27)

𝜎(𝜁 ) coefficient:(
2𝜔2𝐴1

(
𝜆2𝑝𝜖𝜒 − 1

)
+ 2𝑐20𝐴1

(
𝐴0 + 1

)
+ 2𝑐20𝜖𝐵1

(
𝐵1𝜇 −𝐵2𝜒

)
− 4𝜆2𝜔2𝑝𝜖3𝐴1𝜒

)
= 0, (28)

𝜌(𝜁 ) coefficient:(
−2𝜔2𝐵1 +

(
2𝑐20𝐴0𝐵1

)(
𝐴0 + 1

))
= 0, (29)

𝜎0(𝜁 ) coefficient:(
−𝑐20𝐵

2
1𝜖𝜒 + 𝑐20𝐴

2
0 − 2𝜔2𝐴0 + 2𝑐20𝐴0

)
= 0. (30)

Solving this system which is consisting Eq. (22)-Eq. (30) via a suitable algorithm and the aid of Maple, some of the obtained sets are 
as follows:

Family 1: Taking 𝜖 = −1 and 𝑟 = ∓1 in Eqs. (8), (9), (10), (20) and related obtained functions then solving the obtained system 
gives the following sets in Eq. (31), Eq. (33) and Eq. (35).

𝜒 =
𝑐0

2 −𝜔2

𝑝𝜆2𝜔2 , 𝐴0 =
2
(
𝑐0

2 −𝜔2)
𝑐0

2 , 𝐴2 = −6𝑝4𝜆4𝜔4(𝜇2 − 1)
𝑐0

2
(
𝑐0

2 −𝜔2
) ,

𝐵1 = 0,𝐵2 = −

√(
𝑐0

2 −𝜔2
)
𝑝
(
𝜇2 − 1

)
𝜆3𝜔3𝑝

𝑐0
2
(
𝑐0

2 −𝜔2
) , (31)

and we procure the following solution with

𝜓1(𝑥, 𝑡) = 2
𝜔2 − 𝑐0

2

𝑐0
2 +

6𝜇
(
𝑐0

2 −𝜔2) sech
(
Φ𝑁

)
𝑐0

2
(
𝜇 sech

(
Φ𝑁

)
+ 1

) +
(
𝑐0

2 −𝜔2) sech
(
Φ𝑁

)
×Φ𝑁𝑀, (32)

where

Φ𝑁 =

√
−𝜔2+𝑐02
𝑝𝜆2𝜔2 𝜆Γ(1 + 𝛽) (𝑥𝛼 +𝜔𝑡𝛼)

𝛼
,

Φ𝑁𝑀 =

⎛⎜⎜⎜⎝−
6𝑝𝜆2𝜔2(𝜇2−1)sech

(
Φ𝑁

)
𝑐02

(
𝜇 sech

(
Φ𝑁

)
+1

) −
6𝑝𝜆3𝜔3

√(
𝑐0−𝜔2

)2(
𝜇2−1

)
𝜆2𝜔2

tanh
(
Φ𝑁

)
𝑐02

(
𝑐02−𝜔2)(𝜇 sech

(
Φ𝑁

)
+1

)
⎞⎟⎟⎟⎠

𝑝𝜆2𝜔2sech
(
Φ𝑁

) .

Family 2: Taking 𝜖 = ∓1 and 𝑟 = 1 in Eqs. (8), (9), (10), (20) and solution of the system algebraically gives the following solutions:

𝜒 =
𝑐0

2 −𝜔2

𝑝𝜆2𝜔2 , 𝐴0 =
−2

(
𝑐0

2 −𝜔2)
𝑐0

2 , 𝐴1 =
6𝜇𝑝𝜆2𝜔2

𝑐0
2 , 𝐴2 = −6𝑝2𝜆4𝜔4(𝜇2 + 1)

𝑐0
2
(
𝑐0

2 −𝜔2
) ,

𝐵1 = 0,𝐵2 = −

√(
𝑐0

2 −𝜔2
)
𝑝
(
𝜇2 + 1

)
𝜆3𝜔3𝑝

𝑐0
2
(
𝑐0

2 −𝜔2
) , (33)

and we procure the following solution with

𝜓2(𝑥, 𝑡) = 2
𝜔2 − 𝑐0

2
+

6𝜇
(
𝑐0

2 −𝜔2)csch
(
Φ𝐺

)( ( ) ) +
(
𝑐0

2 −𝜔2)csch
(
Φ𝐺

)
×Φ𝐺𝐻 , (34)
5

𝑐0
2 𝑐0

2 𝜇 csch Φ𝐺 + 1
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where

Φ𝐺 =

√
−𝜔2+𝑐02
𝑝𝜆2𝜔2 𝜆Γ(1 + 𝛽) (𝑥𝛼 +𝜔𝑡𝛼)

𝛼
,

Φ𝐻 =

⎛⎜⎜⎜⎜⎝
−
6𝑝𝜆2𝜔2 (𝜇2 − 1

)
csch

(
Φ𝐺

)
𝑐0

2
(
𝜇 csch

(
Φ𝐺

)
+ 1

) −
6𝑝𝜆3𝜔3

√(
𝑐0−𝜔2)2(𝜇2−1)

𝜆2𝜔2 tanh
(
Φ𝐺

)
𝑐0

2
(
𝑐0

2 −𝜔2
)(

𝜇 csch
(
Φ𝐺

)
+ 1

)
⎞⎟⎟⎟⎟⎠
,

Φ𝐺𝐻 =
Φ𝐻

𝑝𝜆2𝜔2csch
(
Φ𝐺

) .
Family 3: Taking 𝜖 = ∓1 and 𝑟 = −1 in Eqs. (8), (9), (10), (20) and resolving the system of the algebraic equations, we get the 

following values:

𝑐0 = 𝜔

√
−𝜒𝜆2𝑝+ 1, 𝐴0 = −

2𝜒𝜆2𝑝
𝜒𝜆2𝑝− 1

, 𝐴1 =
6𝜆2𝑝𝜇

𝜒𝜆2𝑝− 1
, (35)

𝐴2 = −
6𝜆2𝑝

(
𝜇2 − 1

)
𝑅
(
𝑅𝜆2𝑝− 1

) , 𝐵1 = 0,𝐵2 = −
6
√

−𝜒
(
𝜇2 − 1

)
𝜆2𝑝

𝜒
(
𝜒𝜆2𝑝− 1

) ,

and we procure the following solutions given in Eq. (36) and Eq. (37) as follows:

𝜓3,1(𝑥, 𝑡) = −
2𝜒𝜆2𝑝

𝜒𝜆2𝑝− 1
+

6𝜆2𝜇𝑝𝜒sec
(
Υ𝑍

)(
𝜒 𝜆2𝑝− 1

)(
𝜇sec

(
Υ𝑍

)
+ 1

) +
𝜒sec

(
Υ𝑍

)(
𝜇sec

(
Υ𝑍

)
+ 1

) ×Υ𝑍𝑋, (36)

and

𝜓3,2(𝑥, 𝑡) = −
2𝜒𝜆2𝑝

𝜒𝜆2𝑝− 1
+

6𝜆2𝜇𝑝𝜒csc(Υ𝑍 )(
𝜒 𝜆2𝑝− 1

)(
𝜇csc

(
Υ𝑍

)
+ 1

) +
𝜒csc

(
Υ𝑍

)(
𝜇csc

(
Υ𝑍

)
+ 1

) ×Υ𝑍𝑌 , (37)

where

Υ𝑍𝑋 =
⎛⎜⎜⎜⎝−

6𝜆2𝑝
(
𝜇2 − 1

)
sec

(
Υ𝑍

)(
𝜒𝜆2𝑝− 1

)(
𝜇sec

(
Υ𝑍

)
+ 1

) −
6
√

−𝜒
(
𝜇2 − 1

)
𝑝𝜆2tan

(
Υ𝑌

)
√
𝜒
(
𝜒𝜆2𝑝− 1

)(
𝜇sec

(
Υ𝑍

)
+ 1

) ⎞⎟⎟⎟⎠ ,

Υ𝑍𝑌 =
⎛⎜⎜⎜⎝−

6𝜆2𝑝
(
𝜇2 − 1

)
csc

(
Υ𝑍

)(
𝜒𝜆2𝑝− 1

)(
𝜇csc

(
Υ𝑍

)
+ 1

) −
6
√

−𝜒
(
𝜇2 − 1

)
𝑝𝜆2cot

(
Υ𝑍

)
√
𝜒
(
𝜒𝜆2𝑝− 1

)(
𝜇csc

(
Υ𝑌

)
+ 1

) ⎞⎟⎟⎟⎠ ,
Υ𝑍 =

√
𝜒𝜆℘ (1 + 𝛽) (𝑥𝛼 +𝜔𝑡𝛼)

𝛼
andΥ𝑌 =

√
𝑅𝜆℘ (1 + 𝛽) (𝑥𝛼 +𝜔𝑡𝛼)

𝛼
.

5. Result and discussion

In this section, the achieved results are declared. We acquire bright, dark, and periodic soliton solutions for the LWE in a MEECR 
with local M-derivative. Figs. 1–4 demonstrate some of the acquired solutions. These solutions provide critical contributions to the 
interpretation of some physical problems. Fig. 1 is the graphical simulation of 𝜓1(𝑥, 𝑡) given by Eq. (32). Fig. 1-(a) is the 3D, Fig. 1-(b) 
is the contour views. 3D graph demonstrates the bright soliton in Fig. 1-(a) for 𝜆 = 1, 𝜔 = −0.5, 𝑐0 = 2, 𝑝 = 4, 𝜇 = 3 and 𝛽 = 0.95. Fig. 1-(c) 
represents 2D soliton profile for 𝑡 = 2, 𝑡 = 4, and 𝑡 = 6. It can be seen that the amplitude and the shape of the bright soliton remain 
during the propagation. Furthermore, as 𝑡 increases, soliton travels to the right. Fig. 1-(d) is the 2D graphical depiction to show 
the effect of the 𝛼 when taking the values as 0.7, 0.8, 0.9, and 1.0, respectively. Soliton keeps its bright soliton view but if we pay 
attention to the peaks of the soliton as if the soliton moves to the right. Since the Fig. (1d) reflects the 2D graphs of different values, 
we can interpret this situation as the different forms of the soliton depending on the fractional orders.

Fig. 2 is also graph of 𝜓1(𝑥, 𝑡) given by Eq. (32). Fig. 2-(a) depicts 3D while Fig. 2-(b) shows the contour projection. Fig. 2-(a) 
demonstrates the dark soliton view in 3D for 𝜆 = 1, 𝜔 = −1.5, 𝑐0 = −1, 𝑝 = −1, 𝜇 = 1 and 𝛽 = 0.95. Fig. 2(c) represents the 2D soliton 
profile for 𝑡 = 2, 𝑡 = 4 and 𝑡 = 6. It can be seen that the amplitude and the shape of the dark soliton remain during the propagation. 
Furthermore, as t increases, soliton travels to the right. A similar examination was made on dark soliton with Fig. 2-(d). When 𝛼
takes the values as 0.80, 0.85, 0.90, and 1.0, although the soliton behaves similarly to the previous one, the peak of the soliton stays 
on the horizontal axis, and the wings of the soliton open upwards depending on the increasing values of 𝛼 (blue to purple lines).

Fig. 3 belongs to 𝜓2(𝑥, 𝑡) which is given in Eq. (34). 3D graph demonstrates the bright soliton in Fig. 3-(a), contour in Fig. 3-(b), 
2D in Fig. 3-(c) for various 𝑡 values. For values of parameters 𝜆 = 1, 𝜔 = −1.1, 𝑐0 = 2, 𝑝 = 4, 𝜇 = 0.5 and 𝛽 = 0.99. Moreover, Fig. 3-(c) 
presents the 2D soliton profile for 𝑡 = 2, 𝑡 = 4, 𝑡 = 6 and 𝑡 = 8. It can be seen that the amplitude and the shape of the bright soliton 
6

remain during the propagation. Furthermore, as t increases, soliton travels to the right. Similarly, the effect of on the bright soliton 
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Fig. 1. The views in 3D, 2D, contour of 𝜓1(𝑥, 𝑡) for 𝜆 = 1,𝜔 = −0.5, 𝑐0 = 2, 𝑝 = 4, 𝜇 = 3, 𝛽 = 0.95.

for 0.7, 0.8, 0.9, 1.0 values was investigated in Fig. 3-(d). As can be seen from the graph, the skirts of the soliton shrink downwards 
depending on the increasing 𝛼 values. This effect is observed less on the left side and more prominent on the right side. At the same 
time, the apex of the soliton shifts to the left in a sense.

Fig. 4 depicts the some views of 𝜓3,1(𝑥, 𝑡) given in Eq. (36). Fig. 4-(a), Fig. 4-(b) and Fig. 4-(c) belong to 3D, contour and 2D 
simulations, respectively. 3D graph demonstrates the periodic soliton solution in Fig. 4-(a) for values of parameters 𝜆 = −0.5, 𝜔 =
1, 𝜒 = 0.8, 𝑝 = 1, 𝜇 = 5 and 𝛽 = 0.90. Moreover, Fig. 4-(c) represents the 2D soliton profile for 𝑡 = 2, 𝑡 = 4, 𝑡 = 6, and 𝑡 = 8. It can be 
observed from Fig. 4-(a) that amplitude of the soliton decreases while the order of fractional derivative increases. Furthermore, as 
t increases, soliton travels to the right. The Fig. 4-(d) is another graph showing the effect of 𝛼 when 𝛼 takes 0.7, 0.8, 0.9, and 1.0. 
In the bright soliton representation of the graph for 0 < 𝑥 < 5, different behavior is observed on the left and right-hand sides. In the 
representation, which is less obvious on the left, growth is observed due to the increasing values of 𝛼, and on the right, shrinkage is 
observed. As the spatial value of 𝑥 increases, this effect manifests itself in a more prominent periodic appearance (𝑥 > 10).

We would also like to emphasize the following points here. There are many studies on the LWE equation in the literature. This 
shows that the models constructed with LWE have an effective importance in clarifying many physical phenomena, and the studies 
performed with LWE are still current and show the necessity of making new remarks in this field. In this context, the results obtained 
will be a drop in an ocean in terms of both the soliton behavior and the applicability of the method chosen for such problems. In order 
to present graphical presentations of the resulted solution functions, selections were made by paying attention to the requirements 
of both the considered problem and the proposed method in the parameter selections. The real formation of 𝑢(𝜁 ) for the solution 
function resulting from the selected parameter values is one of these sensitivities. All resulted solution functions provide the main 
equation for the selected sets. In this respect, the solution functions and graphical expressions obtained within the scope of the article 
7

coincide with the studies and generally accepted concepts, examinations, techniques and findings in the literature.
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Fig. 2. The plots in 3D, 2D, contour of 𝜓1(𝑥, 𝑡) for 𝜆 = 1,𝜔 = −1.1, 𝑐0 = −1, 𝑝= −1, 𝜇 = 1, 𝛽 = 0.95.

6. Conclusion

In this paper, the importance of studying the local M-fractional LWE stems from its always an attractive topic in physics and has a 
wide range of applications since few studies have been done on the LWE in the literature. Therefore, there are very few exact solutions 
to the LWE. This conclusion has motivated us to examine different types of solutions, utilizing the GPREM, which contributes a very 
efficacious and robust mathematical tool for solving nonlinear problems in mathematical physics and natural sciences. Consequently, 
some exact solutions for LWE have been accomplished in Section 4. Some solutions are also graphically depicted to comprehend the 
dynamic behavior of the results. These solutions provide critical contributions to the interpretation of some physical problems.
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Fig. 3. 3D, contour, 2D depictions of 𝜓2(𝑥, 𝑡) for 𝜆 = 1,𝜔 = −1.1, 𝑐0 = 2, 𝑝 = 4, 𝜇 = 0.5 and 𝛽 = 0.99.
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