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Correlation of Apobec Mrna 
Expression with overall Survival 
and pd-l1 Expression in Urothelial 
Carcinoma
Stephanie A. Mullane1, Lillian Werner1,2, Jonathan Rosenberg3, Sabina Signoretti1,4,5, 
Marcella Callea4, Toni K. Choueiri1,5,6, Gordon J. Freeman5,6 & Joaquim Bellmunt1,5,6,7

Metastatic urothelial carcinoma (mUC) has a very high mutational rate and is associated with an 
APOBEC mutation signature. We examined the correlation of APOBEC expression with overall survival 
(OS) and PD-L1 expression in a cohort of 73 mUC patients. mRNA expression of APOBEC3 family of 
genes (A3A, A3B, A3C, A3F_a, A3F_b, A3G, A3H) was measured using Nanostring. PD-L1 expression, 
evaluated by immunohistochemistry, on tumor infiltrating mononuclear cells (TIMCs) and tumor 
cells was scored from 0 to 4, with 2–4 being positive. Wilcoxon’s non-parametric tests assessed the 
association of APOBEC and PD-L1. The Cox regression model assessed the association of APOBEC with 
OS. All APOBEC genes were expressed in mUC. Increased A3A, A3D, and A3H expression associates with 
PD-L1 positive TIMCs (p = 0.0009, 0.009, 0.06). Decreased A3B expression was marginally associated 
with PD-L1 positive TIMCs expression (p = 0.05). Increased A3F_a and A3F_b expression was associated 
with increased expression of PD-L1 on tumor cells (p = 0.05). Increased expression of A3D and A3H was 
associated with longer OS (p = 0.0009). Specific APOBEC genes have different effects on mUC in terms 
of survival and PD-L1 expression. A3D and A3H may have the most important role in mUC as they are 
associated with OS and PD-L1 TIMC expression.

In the United States, there were more than 76,000 cases and more than 16,000 deaths from urothelial carcinoma 
(UC) in 20141. Cisplatin-based chemotherapy has improved clinical outcomes in metastatic UC (mUC), nonethe-
less the median overall survival is only 14 to 15 months, and mUC mostly remains an incurable disease2.

APOBEC deaminase enzyme family normally creates predicable mutations in viral DNA, limiting the 
replication ability of transposons and viruses3–6. Recently, APOBEC3 family has been shown to be a major 
source of somatic driver and passenger mutations in cancer7,8. The APOBEC3 family consists of seven mem-
bers; APOBEC3A (A3A), APOBEC3B(A3B), APOBEC3C (A3C), APOBEC3D (A3D), APOBEC3F_a(A3F_a), 
APOBEC3F_b (A3F_b), APOBEC3G (A3G), and APOBEC3H (A3H).

Urothelial cancer has one of the highest mutational rates of all cancers, mean of 7.7 mutations per megabase7,9. 
The mechanism of this high mutation rate in UC is unknown. Although smoking has an epidemiologic associa-
tion with UC, smoking carcinogens are not the cause of the majority of mutations based on mutational clustering 
analyses7,10,11. Mutational clustering observed in UC TCGA specimens were predominately TCW -> TTW or 
TGW changes, consistent with mutations caused by the APOBEC family of cytidine deaminases7,10,12–14. Also 
suggestive of APOBEC activity in UC was the high expression of APOBEC3B in almost all UC TCGA specimens7.

Multiple studies have demonstrated a correlation between A3B and A3A overexpression with mutational 
load, induction of DNA damage markers, and cell death15–17. It has been demonstrated that increased number 
of mutations correlate with better response rates to chemotherapy18. We hypothesized that increased APOBEC 
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expression, which potentially plays a causative role in UC, would increase the mutation rate, thus increasing 
chemotherapy efficacy and OS as well as increasing PD-L1 positivity and increasing response to immunotherapy.

Assuming that increased APOBEC expression would cause more mutations, we inferred that increased 
expression of APOBEC correlates with PD-L1(CD274, B7-H1) expression in both tumor and immune cells. A 
higher mutational burden has been shown to lead to a higher neoantigen load. Since the anti-tumor immune 
response targets neoantigens, a higher neoantigen load means more reactive T cells and IFN-g production19. As 
a tumor evolves to evade the immune response, this IFN-g production may increase PD-L1 expression on tumor 
cells and TIMC, strengthening immune evasion. This could help to explain response to immunotherapy and will 
deserve further exploration in immunotherapy treated patients in future trials.

In a clinically annotated cohort of metastatic bladder cancer patients treated with platinum based therapy, we 
analyzed the association of APOBEC mRNA expression with PD-L1 expression, and overall survival (OS).

Methods
Patients and samples. 73 mUC patients were identified from Brigham and Women’s Hospital and Hospital 
del Mar in Barcelona (Spain). Formalin fixed paraffin-embedded (FFPE) specimens from radical cystectomy or 
transurethral resection of bladder tumors were retrieved from the departments of pathology. All patients subse-
quently developed metastatic disease and received platinum based first line therapy. Prognostic factors including 
ECOG PS at initiation of chemotherapy, and whether patients had visceral site of metastasis, and clinical follow 
up data were collected. All subjects provided written informed consent. Institutional Review Board approval was 
obtained at Hospital del Mar and Dana-Farber/Harvard Cancer Centerbefore data acquisition and tumor stain-
ing, and all research was performed in accordance with the approved guidelines.

mRNA expression and mutational analysis. mRNA expression profile of 300 genes, chosen based on 
their known or potential role in UC, was measured using Nanostring technology. Oligonucleotide probes for all 
genes analyzed were synthesized by Nanostring, and transcripts were counted using the automated Nanostring 
nCounter system. Counts were normalized with the nSolver Analysis Software (v1.0) in which mRNA expres-
sion was compared to internal Nanostring controls, several housekeeping genes, and invariant genes in bladder 
cancer identified by analyzing gene expression variances in several published datasets20–22. For this analysis, we 
only looked at APOBEC mRNA expression. Throughput mutation profiling was performed by using both mass 
spectroscopy-based genotyping (Oncomap 3 platform) and confirmed with hME sequencing (Supplementary 
Table 1).

Immunohistochemistry and scoring of PD-L1 Expression. A tissue micro array (TMA) was con-
structed from treatment-naïve primary UC tissue. PD-L1 expression was evaluated by immunohistochemistry 
using a mouse monoclonal anti-PD-L1 antibody (405.9A11) developed in Dr. Gordon Freeman’s laboratory 
(Dana-Farber Cancer Institute, Boston, MA)23–25 Tumor-infiltrating mononuclear cells (TIMCs), PD-L1 expres-
sion on tumor cells and TIMCs with membranous expression was determined by two independent pathologists 
(MC, SS). PD-L1 tumor positivity was defined as ≥5% of tumor cell membrane staining. The extent of TIMCs 
was assessed in hematoxylin and eosin-stained slides and recorded as absent (0), focal (1), mild (2), moderate (3) 
and high (4) with score 0 or 1 considered negative. The extent of PD-L1-positive TIMCs was also assessed using 
the same scoring scale (0–4) and samples with a score of 2–4 were considered PD-L1 positive. For additional 
information, please see ref. 25.

Statistical Analysis. Overall survival (OS) was defined from the start of first line chemotherapy to the date 
of death or censored on the last known date alive. Cox regression model was used to assess the association of 
APOBEC expression with OS in multivariable analysis adjusting for ECOG status and whether patients had  
visceral disease. Hazard ratio and 95% CI are also listed. Wilcoxon’s non-parametric tests were used to summa-
rize the associations of expression of APOBEC genes, and PD-L1 expression on TIMCs and tumor cells. Hotspot 
mutations correlation with APOBEC gene expression was assessed using Wilcoxon’s non-parametric test treating 
gene expression as continuous variables. All statistical analyses were performed using SAS 9.4 (SAS Institute, 
NC). All tests were two-sided and a p-value of <0.05 was considered statistically significant.

Results
Patient characteristics (n = 73) are presented in Table 1. All patients were included in the phase I clinical trial of 
cisplatin, gemcitabine, and paclitaxel (TCG) or phase II clinical trial comparing TCG vs. GC26.Median OS is 13 
months and 41 patients died at time of data collection. Median follow up is 21 months.

PD-L1 tumor cell and PD-L1 MNC expression across the entire cohort is described in Table 2. mRNA expres-
sion level of APOBEC3A (A3A), APOBEC3B (A3B), APOBEC3C (A3C), APOBEC3D (A3D), APOBEC3F_a 
(A3F_a), APOBEC3F_b (A3F_b), APOBEC3G (A3G), and APOBEC3H (A3H) were measured using Nanostring 
and expression levels were dichotomized at the median. Median and quartile values are presented in Table 3.

We initially explored the correlation between APOBEC expression and OS, as increased mutations corre-
late with response to platinum in UC18 (Table 4). High expression of A3A, A3D, and A3H were correlated with 
longer OS in multivariate analysis (p = 0.01 [HR:0.45 (0.23–0.85)], p = 0.02 [HR = 0.46 (0.24, 0.88), p = 0.004 
[HR = 0.38(0.19, 0.73)], respectively).

Subsequently, we investigated the association between APOBEC3 family expression and PD-L1 positivity 
in tumor cells and TIMCs, as previous evidence indicated specific members of the APOBEC3 family increases 
the number of mutations, and an increased mutational burden was associated with increased positive PD-L1 
staining27.

Increased expression of A3A and A3D were significantly correlated with presences of TIMCs (p = 0.007, 
p = 0.05, respectfully) (Table 3).Increased expression of A3A, A3D, and A3H was associated with increased 
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expression of PD-L1 on TIMCs (p = 0.0009, 0.0009, 0.06, respectively)_(Figs 1 and 2). Decreased expression of 
A3B was marginally associated with increased expression of PD-L1 on TIMCs (p = 0.05) (Table 4).

While PD-L1 expression on TIMCs has been associated with OS and an improved response to the checkpoint 
inhibitors in mUC28–31, we also analyzed the association between PD-L1 expression on tumor cells and APOBEC 
expression, as it may provide insight about how the expression of these two proteins within the same tumor affect 
each other. While increased expression of A3A, A3D, and A3H correlated with increased PD-L1 expression in 

N %

ECOG PS

 0 24 33%

 1 47 64%

 2 2 3%

Visceral disease

 Without 42 58%

 With 31 42%

Stage

 0 5 7%

 1 5 7%

 2 35 48%

 3 23 32%

 4 4 5%

 Unknown 1 1%

Table 1.  Patient Characteristics.

N %

Mononuclear Cell presence (score = 2, 3, 4)

 0 1 1%

 1 24 33%

 2 21 29%

 3 17 23%

 4 3 4%

 Unknown 7 10%

PD-L1 mononuclear presence (score = 2, 3, 4)

 0 19 26%

 1 21 29%

 2 18 25%

 3 6 8%

 4 2 3%

 Unknown 7 10%

PD-L1 tumor (≥5%)

 Negative 63 86%

 Positive 10 14%

Table 2.  PD-L1 Expression.

Gene Median Expression Quartile 1 Expression Quartile 3 Expression

APOBEC3A 14.09 6.79 26.27

APOBEC3B 43.13 23.37 83.28

APOBEC3C 162.04 100.51 264.17

APOBEC3D 59.48 44.61 97.2

APOBEC3F_b 67.91 50.43 98.51

APOBEC3F_a 30.51 19.31 51.87

APOBEC3G 97.03 71.81 163.87

APOBEC3H 13.26 7.37 21.79

Table 3.  APOBEC expression.
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TIMCs, low expression of A3F_a and A3F_b was associated with increased expression of PD-L1 on tumor cells 
(p = 0.04). No other APOBEC gene expression was associated with PD-L1 expression in tumor cells.

We summarized number of hotspot mutations, using Oncomapv3 (Table 4) in a subset of patients. We grouped 
number of mutations as 0 vs. 1(Supplementary Table 2). There was no significant association found between having  
hotspot mutations in these select genes and APOBEC gene expression (p-values-A3A: 0.09, A3B: 0.80, A3C: 0.79, 
A3D: 0.21, A3F: 0.64, A3G: 0.39, A3H: 0.20).

Gene

MNC presence (score = 2, 3, 4)
PDL1 MNC presence  

(score = 2, 3, 4) Longer OS PDL1 tumor expression ( ≥ 5%)

P-vlaue P-vlaue HR, CI P-vlaue P-vlaue

APOBEC3A 0.007 High Expression 0.0009 High expression 0.45  
(CI:0.23–0.86) 0.01  High expression 0.87  

APOBEC3B 0.13 0.05 Low expression 0.89  0.18  

APOBEC3C 0.80 0.2  0.6  0.06  

APOBEC3D 0.05 High Expression 0.009 High expression 0.49  
(0.25–0.95) 0.02 High expression 0.23  

APOCEC3F_a 0.40 0.49 0.43 0.05 Low expression

APOBEC3F_b 0.46 0.31 0.15 0.04 Low expression

APOBEC3G 0.59 0.65 0.55 0.47  

APOBEC3H 0.19 0.06 High expression 0.36  
(0.19–0.71) 0.004 High expression 0.8  

Table 4.  APOBEC overexpression correlation with PD-L1/PD-1 and OS. Correlation of APOBEC 
expression with OS was performed using a Cox regression model in multivariate analysis adjusting for ECOG 
PS and visceral disease. Wilcoxon’s non-parametric tests were used to summarize the associations of expression 
of APOBEC genes, and PD-L1 expression on TIMCs and tumor cells. *HR: Hazard Ratio; *CI: Confidence 
Interval.

Figure 1. Association of APOBEC3D and OS.

Figure 2. Association of APOBEC3H and OS.
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Discussion
Many cancers are triggered by genomic instability. Instability can be induced by external factors, including UV, 
carcinogens, or smoking, or it can be induced by internal factors including mutations in MSH1 and BRCA132,33 
genes. Recently, evidence has emerged that the APOBEC family promotes genomic instability in cancer by causing  
specific mutations in tumors10,13,16,34,35. UC has one of the highest mutational rates of all cancers in the TCGA 
analysis7,9. It is predicted, based on mutational clustering, that the high mutation rate in UC is largely caused by 
the APOBEC enzyme family10.

In this study, we examined the association between APOBEC expression with OS and PD-L1 expression on 
TIMCs and tumor cells. Increased expression of A3A and A3D were correlated with increased TIMC presence. 
All of these values became more significant when correlating APOBEC expression with increased PD-L1 expres-
sion in TIMCs, indicating APOBEC expression may increase TIMC presence along PD-L1 expression. We also 
saw decreased expression of A3B with increased PD-L1 expression in TIMCs.

A significant association between A3A, A3D, and A3H with OS was observed, which might be driven by 
these APOBECs causing a high mutational burden. A3D and A3H both affect cell cycle regulation6. A3H is small, 
nuclear bound and interacts with DNA in interphase and telophase, whereas A3D is known to cause cell cycle 
profile changes in HIV36. These APOBEC enzymes may cause a high mutational burden and might be responsible 
for chemotherapy18 response leading to survival benefit in a similar way to what is seen with immunotherapy27.

We observed the strongest association between A3A and PD-L1 expression. Higher expression of A3A was 
also correlated with TIMC presence and longer OS. Recently Chan et al described that, based on the mutational 
pattern, A3A is more likely than A3B to be responsible for the majority of mutations in UC and other tumor 
types7,34, potentially explaining the strong association we observed. Overexpression of A3A is also known to cause 
more mutations than other APOBEC enzymes34, whereas A3B was the highest expressed APOBEC gene in the 
TCGA analysis and is also correlated with increased mutations in breast and UC7,37. In our study, A3B expression 
was higher than A3A, indicating that the expression level in which APOBEC enzymes produce mutation may be 
different for the different enzymes.

Decreased expression of A3F_a and A3F_b were associated with increased PD-L1 expression in tumor cells. 
It is known that A3F lacks efficacy in causing mutations, as demonstrated by work done in HIV38,39, however it 
is unknown why we observed this opposite correlation. It is also possible that A3F and other APOBEC genes 
cause additional changes in the cell immune response, such as up regulating other immune checkpoint inhibitors, 
which down regulate PD-L1 expression.

Increased expression of A3G and A3C did not associate with increased PD-L1 expression in TIMCs, tumor 
cells, or OS. A3G has a different binding motif and is thought to not act in the same fashion as other APOBECs10. 
While A3C had the highest expression in our analysis, it has been shown to not be as potent at creating mutations 
compared to the other APOBEC genes40. Based on our observations, these genes might not play a strong role in 
UC mutagenesis.

Recently, immune checkpoint inhibitors, anti-PD1 and anti-PD-L1, have emerged as promising treatment 
strategies in UC41. Increased PD-L1 expression on tumor infiltrating immune cells is correlated with improved 
response to checkpoint inhibitors and with potentially better OS in mUC24,41. However, presently, there are no 
well-established predictive response biomarkers42 to either chemotherapy or checkpoint inhibitors. Several 
hypotheses have been presented to describe why some diseases are more responsive to these agents and why only 
select patients respond. Response to anti-PD-L1 therapy has been correlated with PD-L1 expression in tumor 
and immune cells, alterations in PIK3/AKT pathway, STAT3/JAK3 pathway, specific neoantigens expression, and 
mutational load27,43–47. In UC, it is hypothesized that responses to checkpoint inhibitors is due to the high muta-
tional rate or frequent alterations in the PIK3/AKT pathway48–50. We can hypothesize based on our findings, that 
APOBEC expression may be a predictor of response to immunotherapy, due to the likely increase in mutation 
rate27,45,51, however this needs to be confirmed in further studies.

There were multiple limitations to our study. First, we did not have next generation sequencing data on these 
samples, thus we had to assume the APOBEC expression is associated with the mutational signatures and bur-
dens as has been previously reported8,10,34,52. The expression of APOBEC is likely driven by tumor cells, however 
single-cell sequencing will provide additional evidence to this hypothesis.

In a brief exploration of mass spectrometry based hot spot sequencing of these samples, hot spot mutation bur-
den was not correlated with any APOBEC expression. Tissue sample analyzed were obtained from local tumors  
at the time of diagnosis and not from distant metastatic locations. It is known that PD-L1 expression and muta-
tional burden can differ between primary and metastatic sites in other tumor types25,53. It is also unknown about 
how other clinical variables or treatment variables affect PDL1 expression. This may be different in different 
tumor types, like the differences seen between smoking and PD-L1 expression in bladder versus NSCLC24,54. 
There is considerably more research that needs to be completed. To confirm these results, a large prospective 
cohort of uniformly treated mUC patients, ideally, comparing primary and metastatic tissue. Our findings should 
be confirmed in chemotherapy treated patients and expanded into immunotherapy treated patients. If confirmed, 
APOBEC expression may be used to identify patients who respond well to metastatic chemotherapy. Of great 
interest would be to comparing APOBEC expression, APOBEC signatures, mutational load, and response to 
chemotherapy and immunotherapy in UC.

Overall, we observed increased expression of APOBEC genes that also associated with increased PD-L1 
expression and OS. This may indicate that patients with increased expression of these proteins derive a survival 
benefit when receiving platinum based chemotherapy and we can hypothesize that they might be more likely to 
respond to checkpoint inhibitors. These observations require prospective validation and warrant future study in 
the ongoing checkpoint inhibitors trials in UC that are looking for better predictive factors of response.
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