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Fibroblast growth factor (FGF) 23 is a phosphaturic hormone whose physiologic actions 
on target tissues are mediated by FGF receptors (FGFR) and klotho, which functions 
as a co-receptor that increases the binding affinity of FGF23 for FGFRs. By stimulating 
FGFR/klotho complexes in the kidney and parathyroid gland, FGF23 reduces renal 
phosphate uptake and secretion of parathyroid hormone, respectively, thereby acting 
as a key regulator of phosphate metabolism. Recently, it has been shown that FGF23 
can also target cell types that lack klotho. This unconventional signaling event occurs 
in an FGFR-dependent manner, but involves other downstream signaling pathways 
than in “classic” klotho-expressing target organs. It appears that klotho-independent 
signaling mechanisms are only activated in the presence of high FGF23 concentra-
tions and result in pathologic cellular changes. Therefore, it has been postulated that 
massive elevations in circulating levels of FGF23, as found in patients with chronic 
kidney disease, contribute to associated pathologies by targeting cells and tissues 
that lack klotho. This includes the induction of cardiac hypertrophy and fibrosis, the 
elevation of inflammatory cytokine expression in the liver, and the inhibition of neutrophil 
recruitment. Here, we describe the signaling and cellular events that are caused by 
FGF23 in tissues lacking klotho, and we discuss FGF23’s potential role as a hormone 
with widespread pathologic actions. Since the soluble form of klotho can function as 
a circulating co-receptor for FGF23, we also discuss the potential inhibitory effects of 
soluble klotho on FGF23-mediated signaling which might—at least partially—underlie 
the pleiotropic tissue-protective functions of klotho.

Keywords: FGF23, klotho, fibroblast growth factor receptor 4, chronic kidney disease, cardiac hypertrophy, 
inflammation

FGF23—A BRieF iNTRODUCTiON

The family of fibroblast growth factors (FGF) consists of 22 members in humans, with a broad 
range of biological functions, including the regulation of embryonic development, organogenesis, 
and metabolism (1). FGFs are divided into seven subfamilies based on phylogenic analyses and 
overlapping structures (2). Members of the FGF19 subfamily, consisting of FGF19, FGF21, and 
FGF23, function as circulating hormones and are, therefore, termed endocrine FGFs (3, 4). Unlike 
paracrine FGFs, such as FGF1 or FGF2, endocrine FGFs share a characteristic structure and lack the 
heparin-binding domain in their C-terminus which enables their secretion, circulation, and action 
on distant target organs (5, 6).
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FiGURe 1 | The major target organs of FGF23. FGF23 can directly target different cell types in a variety of organs. The underlying molecular pathways can differ  
in their requirement for klotho as well as the involvement of specific FGFR isoforms and downstream signal mediators, leading to cell type-specific events and 
tissue-specific effects.
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FGF23 is a bone-derived hormone that lowers serum phos-
phate levels (7–9). Dietary phosphate intake stimulates the 
production and secretion of FGF23 from osteocytes, and FGF23 
directly targets the kidney to increase phosphate excretion by 
downregulating the cell surface expression of the sodium-
dependent phosphate transporters, NaPi-2a and NaPi-2c, in 
the proximal tubule (10–14) (Figure  1). In addition, FGF23 
reduces circulating levels of active vitamin D by inhibiting 
renal 1-α-hydroxylase (also called CYP27B1), the enzyme that 
converts the prehormone 25-hydroxyvitamin D into its active 
form, 1,25-dihydroxyvitamin D (1,25D), and by increasing the 
expression of 24-hydroxylase (also called CYP24A1), the enzyme 
that degrades 1,25D into inactive metabolites (10–14). In the 
parathyroid gland, FGF23 inhibits the secretion of parathyroid 
hormone (PTH) (15, 16) (Figure 1). FGF23’s effects on reducing 
circulating levels of 1,25D and PTH further contribute to its 
phosphaturic actions (3, 17).

The biologically active form of FGF23 is a 32 kDa glycopro-
tein with a conserved N-terminus that shares homologies with 
the other FGF family members and contains a conserved FGF 
receptor (FGFR) binding site (18–20) (Figure  2). As the case 
for all endocrine FGFs, the C-terminus of FGF23 has only low 
binding affinity for heparin and instead is capable of interact-
ing with alpha-klotho (termed klotho from here on) (20–24),  
a member of a family of three transmembrane proteins that act 
as FGFR co-receptors for endocrine FGFs (6, 25). The half-life 
of circulating FGF23 is about 45–60  min in humans (26), and 
appears to be much shorter in rodents, with about 20 min in mice 
(27) and 5 min in rats (28). Renal extraction seems to be a major 
contributor to FGF23 metabolism, while renal FGF23 excretion 
might play a minor role as FGF23 cannot be detected in urine, 
at least not in rodents (28). However, FGF23 can be measured 
in urine from patients with acute kidney injury (AKI), where 

elevations correlate with mortality (29). Whether in the context 
of AKI urinary FGF23 is derived from circulating filtered FGF23  
or produced by the injured kidney is currently not clear.

FGF23—POSTTRANSLATiONAL 
MODiFiCATiONS AND PROCeSSiNG

FGF23 can be cleaved by subtilisin-like pro-protein convertases, 
such as furin, at a consensus sequence (Arg176-X-X-Arg179) that is not 
present in other FGF family members (30–32) (Figure 2). FGF23 
is O-glycosylated at several sites (31, 33, 34), and O-glycosylation 
at Thr178 by polypeptide N-acetylgalactosaminyltransferase 3 
(GalNT3) protects FGF23 from proteolytic cleavage (35). FGF23 
is also phosphorylated at several serine residues (36), and phos-
phorylation at Ser180 via the secretory protein kinase family with 
sequence similarity-20 member C (FAM20C), also called dentin 
matrix protein 4, inhibits GalNT3-mediated O-glycosylation, 
and thereby promotes proteolytic cleavage of FGF23 (37). A tight 
regulation of FGF23’s posttranslational modifications and pro ces-
sing is crucial, as mutations in modification sites and interference 
with processing can block or promote FGF23 cleavage, leading 
to elevated serum levels of intact FGF23 and hypophosphatemia 
(32, 38, 39) or to reduced serum levels of intact FGF23 and hyper-
phosphatemia (33, 34, 40–42), respectively, both associated with 
mineral bone disorders.

Furin-mediated cleavage of FGF23 results in the generation 
of two fragments and thereby separates the binding domains for 
FGFRs and klotho from each other (Figure 2). As FGF23 appears 
to act in concert with FGFR and klotho, it has been assumed 
that the two FGF23 fragments by themselves are inactive, as 
supported by injection studies in mice showing that both frag-
ments lack phosphaturic activity (31). Interestingly, injections of 
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FiGURe 2 | The regulation of FGF23 by posttranslational modifications. O-glycosylation by N-acetylgalactosaminyltransferase 3 (GalNT3) at threonine residue 178 
(T178) protects FGF23 from proteolytic cleavage resulting in the generation of intact, biologically active FGF23. Phosphorylation of FGF23 on serine residue 180 (S180) 
by family with sequence similarity-20 member C (FAM20C) prevents O-glycosylation and promotes proteolytic cleavage by furin proteases. The biological 
relevance of the two generated FGF23 fragments is unclear. Abbreviations: aa, amino acid; N, N-terminus; C, C-terminus.
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the C-terminal fragment containing the klotho binding site in a 
genetic mouse model with high serum concentrations of FGF23, 
reduce FGF23 excess and associated renal phosphate wasting 
(22, 43), suggesting that FGF23 cleavage not only removes the 
klotho binding site from FGF23, but also generates an endog-
enous inhibitor of FGF23. While the mechanism underlying 
such an inhibitory action is not understood, it is plausible 
to speculate that C-terminal FGF23 can interact with klotho 
without binding and activating FGFRs, thereby competitively 
blocking access of intact FGF23 to the FGFR/klotho complex 
and inhibiting FGF23-induced signaling. The existence of such 
a mechanism is supported by an in  vitro study, showing that 
the FGF23-mediated reduction of phosphate uptake in proxi-
mal tubular cells is blocked in the presence of the C-terminal 
FGF23 fragment (44). However, this view has been challenged 
by a different injection study in mice showing that C-terminal 
FGF23 retains phosphaturic activity (45), indicating that either 
the C-terminus by itself can bind FGFRs or that the fragment’s 
cellular actions are FGFR-independent and possibly mediated by 
other receptors. Furthermore, cell culture studies with chimeric 
FGF23:FGF21 proteins have shown that the replacement of the 
C-terminal klotho-binding site in FGF23 does not result in a loss 
of FGF23’s ability to activate FGFR/klotho-mediated signaling 

(46), suggesting that the N-terminus of FGF23 by itself can bind 
klotho. Nevertheless, a recent analysis of the crystal structure of 
the FGF23/FGFR1/klotho ternary complex clearly indicates that 
the N-terminus of FGF23 interacts with FGFRs, while FGF23’s 
C-terminus is bound to klotho (47).

It is currently unclear whether FGF23 cleavage fragments are 
biologically active, and if so, whether this activity differs from the 
actions of intact FGF23. One could speculate that furin-mediated 
cleavage serves as a first step in further proteolysis and removal of 
FGF23. However, since the same bone cell not only synthesizes, 
but also cleaves FGF23 and is, therefore, capable of releasing 
intact FGF23 as well as FGF23 fragments into the circulation 
(48), it is reasonable to assume that the fragments have a func-
tion and are not just a proteolytic garbage product. As FGF23 
synthesis and cleavage appear to be independent events, they 
provide two distinct levels for the regulation of FGF23 produc-
tion (48). It is possible that classic factors associated with mineral 
metabolism [such as phosphate, calcium 1,25D, and PTH (11, 
49–52)] and novel factors linked to pathologic scenarios [such as 
systemic elevations of inflammatory cytokines, iron deficiency, 
and hypoxia (53–56)] regulate FGF23 production in osteocytes 
and osteoblasts at different levels. The massively elevated serum 
levels of intact FGF23, as observed in late stages of chronic kidney 

https://www.frontiersin.org/Endocrinology/
https://www.frontiersin.org
https://www.frontiersin.org/Endocrinology/archive


4

Richter and Faul Widespread Effects of FGF23

Frontiers in Endocrinology | www.frontiersin.org May 2018 | Volume 9 | Article 189

disease (CKD) (57, 58), seem to result from an increase in FGF23 
synthesis (59) accompanied by an inhibition of FGF23 cleavage 
(53, 60). The inducers and mechanisms of FGF23 production 
and processing in bone are currently studied by many investiga-
tors [as reviewed in more detail elsewhere (48, 61–64)], and their 
characterization should provide important answers to one of the 
key questions in the field, i.e., why circulating FGF23 is elevated 
in CKD, as well as novel pharmacological targets to lower serum 
FGF23 levels. Furthermore, it needs to be determined whether 
cleavage of FGF23 only occurs in bone or also in the circulation 
and/or other tissues, which would suggest that the half-life of 
circulating FGF23 can be regulated and might be increased in 
CKD, and whether distant organs, such as the kidney, can control 
the production and processing of FGF23 in bone cells. Moreover, 
it is likely that changes in renal clearance of FGF23 might also 
contribute to CKD-associated FGF23 elevations.

KLOTHO—A PROTeiN THAT COMeS  
iN MULTiPLe FORMS

Klotho was originally identified as an anti-aging protein, 
because genetically modified mice lacking klotho develop a 
variety of phenotypic features that are associated with premature 
aging, including multiple organ dysfunction and a significantly 
shortened life span (65). The klotho gene encodes a 130  kDa 
single-pass transmembrane protein that is composed of two 
extracellular domains, termed KL1 and KL2, a transmem-
brane domain and a short cytoplasmic tail (66, 67). The KL1 
and KL2 domains show amino acid sequence homologies with 
β-glucosidase of bacteria and plants, and, therefore, klotho could 
potentially catalyze the release of glucose from oligosaccharides 
(65). However, based on the absence of two conserved glutamic 
acid residues that are important for enzymatic activity of this 
family (65), it appears that klotho has only weak glucosidase 
activity, if any. A recent structural analysis of the klotho ecto-
domain combined with an in vitro assay to detect glycosidase, 
sialidase, and β-glucuronidase activities confirmed that klotho 
lacks enzymatic activity (47).

Klotho is mainly expressed in the kidney, brain, and parathy-
roid gland (65, 68, 69). In addition to the membrane-associated 
full-length protein, the ectodomain of klotho can also exist in a 
soluble form (soluble klotho, sKL), which can be generated by 
proteolytic cleavage of full-length klotho via the α-secretases, a 
desintegrin and metalloproteinase (ADAM) 10 and ADAM17, 
leading to sKL shedding from the cell membrane (70–73). sKL 
cleavage can also be mediated by the β-APP cleaving enzyme 1 
(BACE1), which belongs to the family of β-secretases, and the 
remaining membrane-associated klotho fragment is further 
processed and removed by the γ-secretase complex (71, 73). The 
kidney is the major source for sKL (73–75), but also ependymal 
cells of the choroid plexus in the brain might release sKL by shed-
ding (76–78), and sKL can be detected in the blood (73, 79–84) 
and the cerebrospinal fluid (CSF) (83, 84). The half-life of sKL in 
rats is about 7 h (73), which might be shortened in CKD, where 
degradation of circulating sKL appears to be increased (79).  
It seems that sKL is cleared from the circulation by the kidney, 

most likely by transport across renal tubules to the apical mem-
brane and release into the urinary lumen (73), and sKL can be 
measured in the urine (73, 79–82). However, other studies have 
failed to detect sKL in urine (85), questioning if and how sKL can 
enter the urinary space.

sKL—AN eNDOCRiNe FACTOR wiTH 
PLeiOTROPiC FUNCTiONS

It has been postulated that sKL acts as an endocrine factor that 
can target a variety of tissues (25, 86–88), but a specific receptor 
for sKL has not been identified to date, and the mechanisms 
underlying potential direct actions of sKL on target cells are only 
poorly understood. Several in vitro studies in multiple different 
cell types, such as fibroblasts, endothelial cells, vascular smooth 
muscle cells, cardiac myocytes, pulmonary epithelial cells, oligo-
dendrocytes, and neurons, indicate that sKL has cell-protective 
activities, including the inhibition of apoptosis, oxidative stress, 
senescence, and pathologic gene programs (80, 89–107), sug-
gesting that sKL might protect against cellular dysfunction as 
well as tissue fibrosis and inflammation. It has been postulated 
that such protective actions of sKL also exist in  vivo, and that 
a reduction in circulating sKL levels, as observed in aging or in 
diseases, such as CKD, contribute to widespread tissue injury  
(86, 87, 108). However, strong experimental evidence indicating 
that sKL protects tissues by directly targeting them is still missing. 
Furthermore, it remains unclear if pathologies associated with 
a global reduction in klotho expression are caused directly by 
the absence of sKL and its tissue-protective actions, or indirectly 
by the loss of membrane-associated klotho resulting in systemic 
alterations, such as elevations in serum levels of phosphate or 
FGF23 (109). To distinguish experimentally between both sce-
narios, animal models with preserved expression of membrane-
associated klotho, but a loss of sKL production [e.g., by genetically 
inactivating the proteolytic cleavage site in klotho (72)] need 
to be generated and analyzed. Since mice with kidney-specific 
deletion of klotho develop the same phenotype as mice that lack 
klotho globally (74), sKL derived from other sources than the 
kidney appears to lack tissue-protective effects and might not be 
capable of compensating for a loss of kidney-derived sKL.

To date the molecular base for the potentially pleiotropic 
actions of sKL remains a mystery. Several ligand/receptor com-
plexes, such as insulin/IGF1/IGF1R (110–113), TGFβ1/type-II  
TGFβ receptor (114, 115), AngII/AT1R (96, 116), and Wnt/
Frizzled (115, 117–119), have been postulated to serve as direct 
sKL targets (88). However, it is unclear how one particular 
protein can inhibit various signal mediators and receptors 
that significantly differ in their structure, biophysical features, 
and mode of action. Recently, a different mechanistic explana-
tion has been suggested for sKL’s pleiotropic effects (87). The 
two KL domains of sKL can bind sialic acid, thereby targeting 
monogangliosides, such as GM1 and GM3, in cell membranes 
(120). Since the binding affinity of each KL domain for sialic acid 
is low (121), sKL preferentially interacts with lipid raft domains 
where gangliosides are enriched. The association with sKL 
might then affect overall lipid raft dynamics and composition, 
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thereby regulating the localization and activity of a variety of 
raft-associated proteins, including signaling receptors and ion 
channels (87). This hypothesis is supported by in  vivo find-
ings showing that raft-associated, but not raft-independent, 
phosphoinositide 3-kinase (PI3K) signaling is elevated in mice 
lacking klotho (120). Furthermore, by binding to sialic acid on 
transmembrane proteins, sKL can regulate their cell surface 
abundance. This has been shown for transient receptor potential 
vanilloid type 5 (TRPV5), renal outer medullary potassium 
channel 1 (ROMK1) and NaPi-2a, which are all located in renal 
tubular cells (81, 122–124), suggesting that sKL might regulate 
ion homeostasis (125). It has been reported that sKL has sialidase 
and β-glucoronidase activity (81, 122–124, 126), indicating that 
sKL not only binds, but also removes sialic acid from lipids and 
proteins. However, the recent structural and functional analysis 
of sKL described earlier refutes such a hypothesis (47). Binding 
sialic acids in glycolipids and glycoproteins is a plausible mecha-
nistic explanation for sKL’s pleiotropic actions (87). To further 
test this hypothesis, the respective binding site in sKL needs 
to be characterized and genetically inactivated followed by the 
functional characterization of the resulting sKL mutant in cell 
culture and animal models. Furthermore, since all eukaryotic 
cells contain lipids rafts (127), it is unclear how the described 
mechanism could ensure target specificity for sKL’s action.

Based on the low binding affinity of each KL domain for sialic 
acid, it has been suggested that sKL acts as a multimer (87). 
However, strong experimental data supporting the existence of 
sKL oligomers is still missing. Overexpression studies in cultured 
cells indicate that full-length klotho is capable of forming dimers 
(83, 128), and sKL might exist in an oligomeric form in serum 
and CSF from human and mice (83). Furthermore, klotho 
and sKL appear to be N-glycosylated (83, 129), but to date a 
detailed characterization of their posttranslational modifications 
including functional consequences has not been conducted. 
Interestingly, sKL might have intracellular activity, as suggested 
by a recent study (129). sKL can interact with a variety of cyto-
solic proteins, some of which are involved in regulating cellular 
anti-oxidative activities or posttranslational modifications and 
folding of other proteins. While this mechanism needs further 
experimental validation, including an explanation of how sKL 
secretion is blocked or bypassed, it is tempting to speculate that 
its dysregulation in klotho-expressing tissues might contribute 
to aging-related injury. A potential intracellular role of klotho is 
also supported by the fact that the klotho-related protein, KLrP, 
acts as a cytosolic enzyme (130).

FGFR-MeDiATeD SiGNAL 
TRANSDUCTiON

The mammalian genome encodes four different FGFR isoforms 
(i.e., FGFR1-4) (1). FGFRs are receptor tyrosine kinases which 
are composed of an extracellular domain consisting of three 
immunoglobulin-like domains and containing the ligand-bind-
ing site, a transmembrane domain, and a cytoplasmic tyrosine 
kinase domain (131). Upon FGF binding, FGFRs form dimers 
and auto-phosphorylate each other at specific tyrosine residues 

within their cytoplasmic tails which then initiates subsequent 
downstream signaling events (132). The FGFR isoforms differ 
in their affinity for particular FGF ligands. Alternative splicing 
events increase the variety of FGFR1-3 isoforms, designated 
as b and c splice variants, thereby increasing the spectrum 
of FGFRs with distinct FGF binding specificities (1, 131). 
Although in vivo proof is still missing, in vitro studies suggest 
that FGFR isoforms not only form homo- but also heterodimers 
(133–135), which would further increase the possible combina-
tions of FGFRs to form dimeric complexes with different FGF 
binding specificities.

FGFs ligands require the presence of co-receptors for efficient 
FGFR binding. For paracrine FGFs, this co-receptor is heparin/
heparan sulfate which captures the FGF upon release and forms 
a stable complex with FGFRs in an isoform-dependent manner 
on the same or neighboring cell (131). Endocrine FGFs, such as 
FGF23, have significantly reduced affinity for heparin (21, 136). 
This feature enables FGF23 to avoid being captured by extracel-
lular matrices and to function as a hormone, while it also reduces 
the capacity of heparin to promote FGF23 binding to FGFRs 
(137). Instead of heparin, klotho acts as an FGF23 co-receptor 
that promotes efficient binding of FGF23 to FGFRs (138, 139). 
Biochemical binding studies have shown that klotho increases the 
FGFR binding affinity of FGF23 by about 20-fold (23). The recent 
report of its atomic structure revealed that FGF23, sKL, and 
FGFR1c form a 1:1:1 complex, where sKL functions as a scaffold 
protein that brings FGFR and FGF23 in close proximity, thereby 
conferring stability of the ternary complex (47). Surprisingly, while 
heparan sulfate does not affect the formation and stabilization of 
the monomeric complex, it is required for complex dimerization, 
suggesting that the active signaling complex consists of FGF23, 
sKL, FGFR1, and heparan sulfate in a 2:2:2:2 stoichiometry (47). 
While FGFRs are widely expressed, the restricted expression of 
klotho to renal tubules and parathyroid gland defines FGF23 target 
tissues (15, 65, 75). It is plausible to assume that besides heparin 
and klotho, many other co-factors participate in the formation of 
FGF/FGFR signaling complexes, such as cell adhesion proteins of 
the cadherin and immunoglobulin superfamilies (140–145), and 
modify the binding affinity, accessibility, and activity of FGFRs.

Fibroblast growth factor receptor signaling is transduced 
by the cytoplasmic adaptors, phospholipase Cγ (PLCγ), and 
FGF receptor substrate 2α (FRS2α) (1, 132). Following ligand-
induced auto-phosphorylation of FGFR, PLCγ binds directly to 
one specific phosphorylated tyrosine residue within the FGFR 
cytoplasmic tail (146, 147). Subsequent tyrosine phosphoryla-
tion of PLCγ results in PLCγ activation by the receptor (148). 
Downstream signal transduction is mediated by PLCγ-catalyzed 
production of diacylglycerol and inositol 1,4,5-triphosphate that 
can increase cytoplasmic calcium levels thereby inducing the 
activation of several calcium-sensing signal mediators, including 
the protein phosphatase calcineurin (131). The dephosphoryla-
tion of the transcription factor, nuclear factor of activated T cells 
(NFAT), by activated calcineurin causes the translocation of 
NFAT into the nucleus to modulate the expression of specific 
target genes (149). FGFR signaling can also be transduced via 
the activation of FRS2α by FGFR-mediated tyrosine phospho-
rylation (131). In contrast to PLCγ, FRS2α is constitutively 
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FiGURe 3 | Summary of potential scenarios for the crosstalk between FGF23 and klotho in the regulation of signal transduction. FGF23-activated signaling 
events are mediated and modified by the availability of either membrane-associated full-length klotho or soluble klotho (sKL). (I–III) Transmembrane klotho  
as well as sKL mediate FGF23 binding to FGFR1 resulting in the phosphorylation of FGF receptor substrate 2α (FRS2α) and the subsequent activation of  
Ras/mitogen-activated protein kinase (MAPK) signaling. (IV) In the absence of klotho and sKL, FGF23 binds FGFR4 which induces the phosphorylation of 
phospholipase Cγ (PLCγ) and the activation of calcium-regulated signal pathways, such as calcineurin/NFAT. (V–VI) Membrane-associated klotho and sKL  
can modulate klotho-independent FGF23/FGFR4 signaling in two different ways. First, in the presence of klotho or sKL, FGF23 cannot bind to FGFR4, and 
thereby not activate the PLCγ-driven signaling cascade. Second, binding of FGF23 to FGFR4 can also occur in the presence of transmembrane klotho or  
sKL, but causes different downstream events, switching from PLCγ to FRS2α phosphorylation, thereby activating Ras/MAPK instead of calcineurin/NFAT 
signaling. Abbreviation: P, protein phosphorylation.
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bound to FGFR independently of the receptor’s activation state 
(150). FRS2α-mediated signaling results in the activation of 
Ras/mitogen-activated protein kinase (MAPK) and PI3K/Akt 
signaling (131).

Although FGFRs can stimulate a variety of downstream 
signaling branches (132), most FGF and FGFR isoforms have 
been shown to employ the FRS2α/Ras/MAPK pathway to 
mediate their cellular effects. This is also the case for FGF23. 
In the presence of klotho, FGF23 can bind to the c splice 
variants of FGFR1-3 as well as to FGFR4 which results in 
the activation of MAPK signaling (47, 138, 139). In FGF23’s 
physiologic target organs (15, 16, 151–154), FGFR1 appears 
to be the main FGF23 receptor which acts in concert with 
klotho (Figure  3, I). It has been shown in HEK293 cells, 
which express different FGFR isoforms, including FGFR1, 
but lack klotho, that the forced overexpression of full-length 
klotho followed by FGF23 treatment results in FRS2α/Ras/
MAPK signaling (47, 128, 155, 156). Interestingly, the same 
effect was observed when HEK293 cells were co-treated with 
FGF23 and sKL (47, 139). These in vitro studies show that the 
introduction of klotho is sufficient to make FGFR express-
ing cells responsive to FGF23 resulting in an activation of 
FRS2α/Ras/MAPK signaling. Furthermore, they indicate that 
membrane-associated klotho and sKL share a common func-
tion, which is that both mediate FGF23-induced FRS2α/Ras/
MAPK signaling.

FGF23 AND KLOTHO CO-ReGULATe 
FGFR-MeDiATeD SiGNALiNG

Overall, one could speculate that sKL acts as a circulating FGF23 
co-receptor that promotes an interaction between FGF23 and 
membrane-bound FGFRs, thereby facilitating FGF23 binding to 
cell types that per se do not express klotho and mediating tem-
porary responsiveness to FGF23. Such a mechanism has been 
reported in fibroblast and myoblast cell lines in which the com-
bined treatment with FGF23 and sKL activates FGFR1/MAPK 
signaling leading to increased cell survival (157). Furthermore, 
combined treatment with FGF23 and sKL induces Ras/MAPK 
signaling in cultured osteoblasts, which is FGFR1-dependent 
and results in increased FGF23 production (158). FGF23 and 
sKL together also induce the phosphorylation of FRS2α and 
MAPK in cultured chondrocytes, which seems to be mediated 
by FGFR3 (159). Interestingly, elevating serum sKL levels in 
mice by viral overexpression of sKL in the liver or by injection 
of recombinant sKL protein causes increased Ras/MAPK signal-
ing and reduces NaPi-2a expression in the kidney resulting in 
increased renal phosphate excretion and hypophosphatemia 
(47, 157). When conducted in mouse models with CKD or 
genetic klotho deficiency, such sKL elevations reduce renal 
NaPi-2a expression as well as the increases in serum phosphate 
levels (158). Combined, these animal studies suggest that sKL 
can compensate for the reduction or loss of klotho, and that 
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by targeting the kidney, sKL might increase FGF23-mediated 
FGFR1/Ras/MAPK signaling in tubular cells, thereby reducing 
renal phosphate uptake and lowering serum phosphate levels. 
One could speculate that sKL acts as a circulating factor that 
elevates FGF23 production in the bone and mediates FGF23 
signaling in target organs by promoting FGFR1 binding (160). 
This view is supported by the recent finding that sKL lacking 
the FGFR binding domain does not show phosphaturic activity 
when injected into mice and cannot mediate FGF23-induced 
Ras/MAPK signaling in HEK293 cells. Similarly, mutant forms 
of sKL and FGF23 which disrupt sKL-FGF23 binding fail to 
activate Ras/MAPK signaling (47).

As described before, a recent structural analysis shows that 
sKL acts as a scaffold protein for FGF23 and FGFRs that promotes 
FGF23/FGFR-mediated signaling, suggesting that all effects of 
sKL are FGF23-dependent and thereby challenging the concept 
that sKL can function as an FGF23-independent hormone (47). 
A crystal structure can only provide a snap shot of one particu-
lar state within a multi-step signaling process and the precise 
order of binding events among the signal inducers remains 
unknown. Two scenarios seem to be possible. First, sKL binds a 
membrane-associated FGFR which then enables FGF23 binding 
to the receptor complex (Figure  3, II). It has been shown that 
sKL has high affinity for FGFR1c (22), and experiments in cell 
culture overexpression systems show that full-length klotho can 
bind FGFRs in the absence of FGF23 (139), suggesting that sKL 
might have similar abilities. It remains to be established whether 
endogenous sKL binding and effects are FGFR isoform-specific.  
As mentioned before, studies in HEK293 cells with overexpressed 
full-length klotho or with sKL incubations suggest that klotho 
preferably binds to FGFR1c, FGFR2c, FGFR3c, and FGFR4  
(47, 139). Second, FGF23 and sKL bind to each other in solu-
tion and then together interact with an FGFR on the cell surface 
(Figure  3, III). Although the sKL/FGF23 complex has been 
detected in the circulation of rodents (161) and in extracts 
and supernatants from transfected HEK293 cells (159), surface 
plasmon resonance spectroscopy studies have shown that sKL 
binds FGF23 only with very low affinity in the absence of FGFR 
(22). Clearly, more experimental work is required in order to 
determine whether FGF23 and sKL can interact with each other 
in solutions, such as cell culture supernatants or blood.

Studies in HEK293 cells and in primary cardiac myocytes 
showed for the first time that FGF23 can also affect cell types 
that do not express klotho (162), implying that the presence of 
klotho is not a prerequisite for FGF23 responsiveness. Whereas 
klotho-expressing cells respond to FGF23 by activating the 
FRS2α/Ras/MAPK cascade (138), FGF23 stimulates PLCγ/
calcineurin/NFAT in cells that lack klotho (155, 162, 163). 
Furthermore, while FGFR1 acts as the main FGF23 receptor 
in “classic” klotho-expressing FGF23 target organs (138, 139), 
klotho-independent effects of FGF23 appear to be mediated by 
FGFR4 (Figure 3, IV) (155, 163, 164). In HEK293 cells, FGF23 
only induces PLCγ binding to FGFR4, but to none of the other 
FGFR isoforms (155). Furthermore, deletion of FGFR4 or co-
treatment with FGFR4-specific blocking agents inhibits FGF23-
induced PLCγ/calcineurin/NFAT signaling in cardiac myocytes 
(155). Finally, FGF23 can activate the PLCγ/calcineurin/NFAT 

pathway in cultured hepatocytes, which of all FGFR isoforms 
only express FGFR4 (163). Overall, it appears that depending on 
the FGFR isoform and the presence or absence of klotho, FGF23 
activates distinct downstream signaling pathways. The FGFR4/
PLCγ/calcineurin/NFAT cascade seems to be a major mediator of 
klotho-independent FGF23 signaling (109), whose tissue-specific 
effects are discussed in detail below.

Since elevations in serum FGF23 levels, as observed in aging 
and in CKD, correlate with decreases in renal expression of klotho 
and in circulating levels of sKL (80, 165), it is interesting to specu-
late that associated pathologies are caused by both, high FGF23 
and low sKL. If true, one would assume that sKL might act as 
an inhibitor of klotho-independent pathologic actions of FGF23. 
The existence of such a mechanism is supported by a study in 
vascular smooth muscle cells and endothelial cells, where sKL 
counterbalances the effects of FGF23 (98). As discussed earlier 
for the stimulating effects of sKL on FGF23/FGFR1 signaling, it 
is possible that sKL inhibits FGF23/FGFR4 signaling by either 
binding first to FGFR4 (Figure 3, V), or via an initial interaction 
with FGF23 (Figure 3, VI). sKL could then block the interaction 
between FGF23 and FGFR4 and thereby inhibit PLCγ/calcineu-
rin/NFAT signaling. It is possible that sKL acts as a circulating 
FGF23 decoy receptor, as described for other ligands and trun-
cated forms of their transmembrane receptors, such as vascular 
endothelial growth factor (VEGF) and the soluble form of VEGF 
receptor-1 (called sFlt-1) generated by alternative splicing (166). 
It is also possible that sKL can bind FGFR4 and block the access 
or affinity of FGFR4 for FGF23. A similar mechanism has been 
reported in cultured proximal tubular epithelial cells, where 
sKL binding to FGFR1 inhibits FGF2/FGFR1 signaling, most 
likely by competing with FGF2 for FGFR1 binding (101). Such 
a mechanism might also underlie sKL’s inhibitory actions toward 
FGF2-induced Ras/MAPK signaling and proliferation in tumor 
cells (112). As an alternative mechanism, FGFR4 and FGF23 
might still be able to form a complex in the presence of sKL, but 
activate FRS2α/Ras/MAPK rather than PLCγ/calcineurin/NFAT 
downstream signaling, resulting in significant differences in cel-
lular effects (Figure 3, VI).

Shedded sKL consists of the KL1 and KL2 domains (70–73). 
Furthermore, it has been reported that also the KL1 domain 
alone can be generated by proteolytic cleavage from membrane-
associated klotho (70) or by alternative splicing and subsequent 
secretion into the extracellular environment (66, 67). However, 
a more recent study indicates that alternative splicing is not 
involved in the generation of any soluble forms of klotho, as 
alternative klotho mRNA transcripts are primed for nonsense-
mediated mRNA decay and are not translated into protein (167). 
Whether soluble KL1 actually exists in animals and in humans, 
and if so, is present in the circulation and can act as a hormone, 
needs to be established. Since the KL1 domain seems to be suf-
ficient for sialoganglioside binding (121), and KL1 has tumor 
suppressor activity in  vitro and in  vivo (112, 156), one could 
speculate that KL1 by itself has biological activity. However, 
studies with recombinant proteins have shown that KL1 cannot 
mediate FGF23-induced Ras/MAPK signaling in cultured cells 
(156), and when injected into mice, KL1 does not lower serum 
phosphate levels (112). A recent structural study reporting that 
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sKL binding to FGF23 and FGFR1 is mediated by KL2 and the 
linker region connecting KL2 with KL1 supports the idea that 
KL1 by itself might not have biological activity, at least no activity 
that requires FGF23 and FGFRs (47).

eFFeCTS OF FGF23 ON THe HeART

The heart was the first organ that was shown to respond to cir-
culating FGF23 in a klotho-independent fashion (162). FGF23 
directly targets cardiac myocytes via the described FGFR4/
PLCγ/calcineurin/NFAT signaling pathway and induces cardiac 
hypertrophy, and potentially other changes in cardiac remod-
eling, including cardiac fibrosis and altered cardiac metabolism, 
eventually resulting in reduced heart function (155, 162, 164) 
(Figure  1). Animal models with elevated serum FGF23 levels, 
induced by CKD, genetic deletion of klotho, injection of recom-
binant FGF23 protein, or a high phosphate diet, develop cardiac 
hypertrophy, which can be blocked by administration of specific 
inhibitors for FGFR4 or calcineurin (155, 164, 168). Since only 
some of these animal models develop kidney injury, hyper-
phosphatemia, or hypertension, while all of them have elevated 
FGF23 and cardiac hypertrophy, one can assume that by directly 
targeting the myocardium, FGF23 is a major driver of cardiac 
remodeling that acts independently of other pro-hypertrophic 
factors, such as high blood pressure or uremic toxins. However, 
these animal models also show low serum sKL levels, and it 
seems that in all scenarios studied to date, FGF23 elevations are 
always accompanied by a decrease in sKL concentrations (109). 
Since animal experiments indicate that sKL reductions per  se 
can contribute to cardiac injury (80, 107, 165, 169), it would be 
important to conduct studies in the absence of FGF23 in order 
to determine whether in the context of CKD, FGF23 elevations 
are required for the induction of cardiac injury. However, such 
loss-of-function studies are not feasible, as FGF23 deletion or 
inhibition in rodents elevates serum phosphate levels and causes 
severe cardiovascular injury resulting in premature death (12, 
170). Instead, the cardiac myocyte-specific deletion of the FGF23 
receptor, i.e., FGFR4, followed by the elevation of circulating 
FGF23 should help to determine whether direct cardiac actions 
of FGF23/FGFR4 contribute to cardiac hypertrophy.

Several studies have shown that repetitive intravenous and 
intraperitoneal injections of recombinant FGF23 protein in 
wild-type mice induce cardiac hypertrophy within 5  days, 
indicating that FGF23 has potent hypertrophic effects on the 
heart (162, 171–173). However, it remains unknown whether 
FGF23 elevations are also sufficient to impair cardiac function 
and cause heart failure. Future experiments in animal models 
with increased serum FGF23 levels need to study the observed 
changes in cardiac structure and function in more detail, and 
put them into context with particular FGF23 exposure concen-
trations and times, which is experimentally challenging. It has 
been hypothesized that long-term exposure at very high FGF23 
concentrations, as the case in patients with late stages of CKD, 
who can develop up to 1,000-fold elevations for months (174, 
175), causes pathological cardiac remodeling and contributes 
to uremic cardiomyopathy (109, 176–178). Such a hypothesis is 
supported by a recent study in mice lacking the alpha 3 chain 

of type IV collagen (Col4a3), a genetic animal model for CKD 
(179). Dependent on the genetic background, these mice either 
develop fast-progressing kidney injury and die at around 
10 weeks of age, or the development of severe kidney injury takes 
longer resulting in extended survival until about 20 weeks (180, 
181). Although both mouse lines show the same degree in blood 
pressure elevations, only slow-progressing Col4a3 knockout 
mice develop cardiac hypertrophy and fibrosis which is accom-
panied by increased cardiac expression levels of FGFR4 (179).  
At 10 weeks of age, fast-progressing Col4a3 knockout mice show 
significantly higher elevations in intact FGF23 concentrations 
than slow progressors. Although serum FGF23 levels in slow-
progressing mice further increase between 10 and 20  weeks, 
they never reach the levels of those detected in fast progressors. 
Overall, this study indicates that the duration of the exposure to 
increased circulating FGF23, rather than the degree of FGF23 
elevation per se, is an important determinant in the development 
of pathologic cardiac remodeling in this model of CKD. Future 
studies should determine the impact of cardiac FGF23/FGFR4 
signaling in comparison to other potential factors, such as hyper-
phosphatemia or hypertension, which based on the increased 
duration of impact might also have more damaging effects in 
slow-progressing Col4a3 knockout mice. Furthermore, detailed 
cardiac analyses of the rodent model for adenine-induced tubu-
lointerstitial nephropathy, where serum FGF23 levels are highly 
elevated (182) and appear to positively correlate with cardiac 
hypertrophy (183), should help to further determine a causative 
role of FGF23 in uremic cardiomyopathy.

Elevations in cardiac FGFR4 expression and calcineurin 
activity have not only been reported in animal models of CKD 
(155, 168, 184), but also in patients with CKD (185). A retrospec-
tive study with autopsy samples from heart tissue of 24 deceased 
pediatric patients showed that only individuals who had devel-
oped cardiac hypertrophy also showed significant elevations of 
FGFR4 in the heart, but not of FGFR1, as well as of calcineurin and 
NFAT (185). In these patients, FGFR4 expression positively cor-
related with the size of individual cardiac myocytes suggesting a 
causative relationship between FGFR4/PLCγ/calcineurin/NFAT 
activation and the induction of cardiac hypertrophy in humans. 
This is further supported by the finding that compared to dialysis 
patients who remained high FGF23 concentrations, patients who 
received a kidney transplant and had reduced FGF23 levels also 
showed lower cardiac expression of FGFR4, calcineurin, and 
NFAT (185). In the same study, CKD patients also showed the 
presence of sKL protein in the heart which must be derived from 
the circulation, as no increase in cardiac klotho mRNA could be 
detected. Interestingly, in this study declining sKL protein levels 
in the heart in combination with elevated FGF23 production cor-
related with cardiac hypertrophy, indicating that a reduction in 
sKL’s inhibitory actions toward FGF23’s pro-hypertrophic effects 
might contribute to uremic cardiomyopathy (185), thereby  
supporting the hypothesis that sKL can act as a decoy receptor 
for FGF23, as discussed above.

Several cell culture studies indicate that cardiac myocytes serve 
as a direct target for FGF23 (155, 162, 164, 186–188). Besides 
the activation of pro-hypertrophic gene programs (162, 188),  
FGF23 might also induce the expression of pro-fibrotic factors 
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and inflammatory cytokines in cardiac myocytes, thereby con-
tributing to cardiac injury (188). Furthermore, it has been 
recently shown that FGF23 can activate cardiac fibroblasts 
isolated from adult mice and newborn rats (188, 189), and that 
the experimental elevation of FGF23 expression in an animal 
model for myocardial infarct further increases cardiac fibrosis 
(189). Therefore, it is possible that by directly targeting cardiac 
fibroblasts, FGF23 contributes to cardiac fibrosis and patholo-
gic cardiac remodeling (Figure 1). The underlying mechanism 
is not clear, but since cardiac cells, including fibroblasts, in 
humans and rodents do not express klotho (75, 162, 184, 185), it 
would be worth to study a potential involvement of the FGFR4/
PLCγ/calcineurin/NFAT signaling cascade. It has been recently 
shown that fibroblasts isolated from an injured mouse kidney 
can respond to FGF23 resulting in the activation of pro-fibrotic 
gene programs (190), as discussed below. Interestingly, this 
FGF23 effect on injury-primed renal fibroblasts was mediated 
by FGFR4 and PLCγ/calcineurin/NFAT signaling and resulted 
in the activation of the pro-fibrotic transforming growth factor β 
(TGFβ) signaling cascade (191). Based on these studies, one 
could hypothesize that FGF23 responsiveness is also increased in 
injured cardiac fibroblasts. It would be interesting to determine 
effects of FGF23 on cardiac fibroblasts isolated from uremic 
hearts. Although they do not provide evidence for direct and 
causative actions of FGF23 on the heart, some animal studies have 
indicated that FGF23 might require a fibrotic (189) or inflam-
matory milieu (192, 193) in order to contribute to cardiac injury.  
As suggested for the kidney (190, 191), FGF23’s pro-fibrotic 
effect on the heart might be also mediated by FGF23-induced  
TGFβ signaling (189). However, a recent study has reported that 
FGF23 does not elevate TGFβ in isolated neonatal rat cardiac myo-
cytes or fibroblasts, and that other mediators, such as the renin– 
angiotensin–aldosterone system, connective tissue growth fac tor, 
or endothelin-1, might be involved in FGF23-induced alterations 
in the myocyte-fibroblast crosstalk that may contribute to cardiac 
fibrosis (188).

The concept of priming cardiac cells (and possibly of other 
cell types in the body) by tissue injury resulting in increased 
FGF23 sensitivity appears to be plausible. Although cause 
and mechanism of the priming event are not known, it is pos-
sible that CKD-related stressors, such as elevations in serum 
levels of phosphate or uremic toxins, increase the cell surface 
expression of FGFR4 which then senses FGF23 elevations. 
Since fibroblasts do not express FGFR4, or only at very low 
levels (155), this mechanism would fit with the concept of 
injury-induced FGF23 responsiveness of fibroblasts resulting in 
pro-fibrotic actions of FGF23. The hypothesis that FGF23 mainly 
contributes to cardiac injury in the context of CKD is also sup-
ported by two other findings. First, although serum FGF23 
levels are elevated following pressure overload via transaortic 
constriction in mice, FGF23 does not appear to be required 
for the development of pathologic cardiac hypertrophy in this 
animal model (171). Second, patients with X-linked hypophos-
phatemia (XLH), genetic forms of hypophosphatemic rickets, 
have high serum levels of FGF23 but do not develop cardiac 
hypertrophy (194). However, another clinical study challenges 
this view (195). Furthermore, it has been shown that genetic 

mouse models for XLH and autosomal recessive hypophos-
phatemic rickets (ARHR) show an increase in cardiac mass, 
while cardiac functions seems to be normal (172, 173, 196). 
Overall, primary forms of pathologic cardiac remodeling might 
not require FGF23, and not every scenario of FGF23 elevations 
might result in cardiac hypertrophy. In the context of second-
ary CKD-associated cardiac damage, the type and severity of 
kidney injury might also affect FGF23’s actions on the heart.  
A recent study in a genetic mouse model with primary podocyte 
injury leading to a CKD-mineral bone disease-like phenotype 
shows that although serum levels of phosphate and FGF23 were 
elevated, mice showed no signs of pathologic cardiac remodeling 
(197). It is possible that the absence of a cardiac phenotype was 
based on the relatively short exposure time, as mice died within 
8–10  weeks. Of note, although mice developed significant 
kidney injury, they did not have renal fibrosis. Therefore, one 
could speculate that mice did not develop cardiac hypertrophy, 
since they lack pathologic stimuli released by activated renal 
fibroblasts and/or associated with kidney fibrosis that act in 
synergy with FGF23 to harm the heart.

Cell culture and animals studies have shown that FGF23/
FGFR4-induced hypertrophy is reversible upon removal or 
inhibition of the FGF23 stimulus (164). Furthermore, studies in 
a rat model of CKD have shown that administration of a FGFR4-
specific blocking antibody (anti-FGFR4) not only prevents the 
induction of cardiac hypertrophy (155), but also blocks the 
progression of cardiac injury in animals with already established 
cardiac hypertrophy (164). Therefore, FGF23/FGFR4 might serve 
as a pathomechanism of uremic cardiomyopathy that could be 
tackled pharmacologically. Since FGF23 mediates its physiologic 
functions mainly via FGFR1, while its klotho-independent 
actions on the heart and other organs seem to be mediated by 
FGFR4 (155, 163, 191), a therapeutic approach to block FGFR4 
should only interfere with FGF23’s pathologic actions, while leav-
ing its role as an important regulator of phosphate metabolism 
unaffected. Since global FGFR4 knockout mice are viable and 
do not develop any significant phenotypic alterations (198), and 
delivery of anti-FGFR4 does not show toxic effects in rats (155), 
FGFR4 appears to be an appropriate drug target and its systemic 
blockade might only result in minor side effects. However, other 
findings dampen the excitement for FGFR4 blocking therapies. 
First, although anti-FGFR4 treatment of CKD rats as well as low-
ering elevated FGF23 levels by taking mice off a high phosphate 
diet, reduce cardiac hypertrophy, these interventions seem to 
have little or no effect on cardiac fibrosis (164). Compared to 
CKD patients who received a kidney transplant, dialysis patients 
have higher serum FGF23 levels and develop cardiac fibrosis, but 
cardiac FGFR4 expression levels do not correlate with fibrosis 
(188), further supporting the notion that cardiac FGF23/FGFR4 
signaling might not directly contribute to fibrosis. If cardiac 
fibrosis persists following FGFR4 blockade, one would assume 
that although hypertrophy is halted, cardiac injury will progress 
and heart function will further decline, eventually resulting in 
heart failure. Clearly, future in vitro and in vivo studies need to 
determine cardiac effects of FGF23 in a cell type-specific manner 
to elucidate precise cardiac actions of FGF23 and its potential for 
drug development. Second, it has been shown that FGF23 also 
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has acute effects on the myocardium. Within seconds, FGF23 
increases cytoplasmic calcium levels in an FGFR-dependent 
manner in cultured cardiac myocytes (186). Furthermore, within 
minutes, FGF23 elevates the contractile force of isolated murine 
ventricular muscle strips, which does not occur in the presence 
of an FGFR4 inhibitor (164). Therefore, FGF23/FGFR4 might 
have beneficial effects on the heart which involve an increase in 
cardiac function, and its blockade might result in adverse out-
comes. Whether acute effects of FGF23 on calcium homeostasis 
and contractility are indeed beneficial, or result in arrhythmia, 
as suggested by a different study (187), requires further analyses. 
Furthermore, it would be interesting to determine a potential 
involvement of FGF23 in the development of physiological 
hypertrophy, as observed during pregnancy and in athletes 
(199). However, to date it is still unknown whether under these 
two conditions of extreme physiologic and metabolic altera-
tions, serum FGF23 levels are even elevated. Only one study has 
reported an increase of circulating FGF23 by about twofold in 
pregnant mice (200), and a different study showed that in profes-
sional cyclists, serum FGF23 levels increase by about 50% during 
a 3-week race (201). An elevation of FGF23 in these scenarios 
appears to be plausible, as they should both involve significant 
changes in calcium/phosphate homeostasis. However, analyses 
of larger populations are required to draw meaningful conclu-
sions. Furthermore, to determine whether circulating FGF23 
might contribute to physiologic cardiac hypertrophy requires 
studies in animals with genetic modifications of the FGF23/
FGFR4 signaling pathway in the heart.

It appears that FGF23 can hit the heart in several ways: directly, 
by targeting cells in the myocardium, and indirectly, by contrib-
uting to traditional as well as non-traditional or CKD-specific 
cardiovascular risk factors (63, 125, 202). It has been shown that 
by targeting kidney distal tubules via FGFR1 and klotho, FGF23 
elevates the expression of the sodium chloride co-transporter 
(NCC) and reduces levels of angiotensin-converting enzyme 
2 (172, 173). By doing so, FGF23 increases sodium retention 
and activates the renin–angiotensin system, respectively. 
Combined, these renal effects lead to hypertension which is 
an established inducer of pathologic cardiac remodeling (199). 
FGF23 has been shown to be also involved in the regulation of 
iron metabolism by affecting erythropoiesis (62, 203). FGF23 
reduces renal production of erythropoietin and might thereby 
contribute to CKD-associated anemia (204). Furthermore, 
FGF23 promotes expression of inflammatory cytokines in the 
liver (as discussed below) (163), and possibly in other tissues. 
Since vice  versa, iron deficiency and inflammatory cytokines 
increase FGF23 production in bone (53), FGF23 could be part 
of a vicious cycle that contributes to FGF23-driven pathologies 
associated with CKD, such as anemia and systemic inflamma-
tion (62, 203), which are also potent inducers of pathologic 
cardiac remodeling and injury (199).

eFFeCTS OF FGF23 ON THe LiveR

In mammals, the liver is among the organs with highest FGFR4 
expression levels (205), raising the question if FGF23 has 
direct hepatic actions. Indeed, it has been shown that FGF23 

can activate FGFR4/PLCγ/calcineurin/NFAT signaling in 
cultured hepatocytes which lack klotho, and thereby induce the 
expression of the inflammatory cytokines, interleukin-6 (IL-6)  
and C-reactive protein (CRP) (163). As already described 
for the associated cardiac remodeling, animal models with 
elevated serum FGF23 levels, induced by renal ablation, dele-
tion of klotho, injection of FGF23, or administration of a high 
phosphate diet, show increased hepatic and serum levels of 
IL-6 and CRP, which are reduced when FGFR4 is deleted or 
pharmacologically inhibited (163). As discussed for the heart, 
hepatocyte-specific deletion of FGFR4 will be necessary to 
determine whether direct actions of the FGF23/FGFR4 signal-
ing system on the liver contribute to systemic inflammation, 
and thereby to inflammatory injury in different tissues. Since 
studies in CKD patients have shown that higher serum FGF23 
levels are associated with increased circulating concentrations 
of inflammatory cytokines, such as CRP, IL-6, IL-12, and tumor 
necrosis factor α (TNFα) (206–209), and that an elevation in 
these cytokines is a strong predictor of poor clinical outcome 
(210–213), the direct hepatic actions of FGF23/FGFR4 might 
serve as a novel pathomechanism that links CKD with systemic 
inflammation and contributes to morbidity and mortality 
(Figure  1). If hepatocytes and/or other cell types of the liver 
directly respond to FGF23 needs to be further investigated. 
Primary hepatocyte cultures are not absolutely pure and contain 
other cell types, such as Kupffer cells, which are specialized 
macrophages that release cytokines, such as IL-6 and TNFα, to 
communicate with hepatocytes (214). Since it has been shown 
that FGF23 can directly target other macrophage populations 
(215, 216), it is possible that FGF23 induces IL-6 production in 
Kupffer cells, which then indirectly affects hepatocytes.

In the described animal models with FGF23 excess, elevations 
in the hepatic production of inflammatory cytokines occur in the 
absence of increased liver enzymes (163). To date, no cell culture 
or animal studies have reported damaging actions of FGF23 on 
liver cells, which is consistent with the clinical observation that 
the presence of CKD per se does not promote liver injury despite 
marked increases in serum FGF23 levels. As discussed for cardiac 
hypertrophy, it is possible that FGF23-induced expression of 
inflammatory cytokines is not pathological, at least not initially, 
but has protective functions. Kupffer cell-derived IL-6 is a major 
regulator of hepatocyte proliferation and survival and thereby 
promotes liver regeneration (214). The hypothesis that FGF23/
FGFR4 might act as a hepato-protective signaling pathway is 
supported by the finding that mice lacking FGFR4 are more sen-
sitive to carbon tetrachloride-induced liver injury (217) and fail 
to restore liver mass after partial hepatectomy (218). Other FGF 
family members, such as paracrine FGF7 and FGF9, have been 
shown to mediate repair in response to liver injury (219). Further 
research is needed to determine whether physiologic concentra-
tions or only high levels of FGF23, as observed in advanced CKD, 
can stimulate hepatic cytokine expression, and whether FGF23-
induced cytokines have physiologic functions or mediate global 
tissue injury.

It is likely that FGF23 can stimulate inflammatory cytokine 
expression and secretion from other known reservoirs. This is 
supported by a genome-wide analysis of FGF23-regulated genes 
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in a mouse model of CKD that suggested inflammatory cytokine 
genes as general FGF23 targets (220), and by studies in which 
FGF23 stimulated TNFα expression in macrophages (215, 216) 
and in the spleen (221). Furthermore, NFAT activation induces 
the expression of a variety of cytokines, such as IL-2, IL-4, IL-6, 
and TNFα, in different cells types, including T  cells and mast 
cells (222). Therefore, it is possible that by activating klotho-
independent calcineurin/NFAT signaling in other cell types, 
FGF23 induces the production of inflammatory cytokines in 
multiple tissues contributing to systemic elevations of inflamma-
tory mediators as well as tissue injury (223).

Several factors that are dysregulated in CKD associate with 
elevations in inflammatory cytokines and might contribute to 
inflammatory tissue damage, including increased serum phos-
phate levels (224, 225). However, since only some of the studied 
animal models with elevated FGF23 develop kidney injury or 
hyperphosphatemia, while all of them show increases in serum 
concentrations of inflammatory cytokines (163), it is possible 
that FGF23 acts as a major driver of inflammation in CKD. 
Associations between serum levels of FGF23 and inflammatory 
cytokines have been also reported in adults without CKD and 
in the elderly, despite their significantly lower FGF23 levels 
relative to patients with CKD (226–228). This suggests a general 
pro-inflammatory role of FGF23 that is independent of reduced 
kidney function, and that FGFR4 blockade might be effective in 
reducing chronic inflammation. In CKD, several liver-controlled 
mechanisms, such as iron and lipid metabolism or detoxifica-
tion, are out of order. Whether FGF23-mediated activation of 
FGFR4 in hepatocytes can also regulate these facets of liver func-
tion needs to be investigated. Klotho is not expressed in the liver  
(75, 163), and to date direct effects of sKL on the liver have not 
been reported. However, since a reduction in global klotho expres-
sion in rodents (163, 221, 229, 230) and humans (209) has been 
associated with systemic elevations of inflammatory cytokines, 
it is tempting to speculate that sKL’s anti-inflammatory effects 
are—at least partially—due to its inhibitory actions toward the 
FGF23-mediated production of inflammatory cytokines. While 
such a mechanism has been described in cultured endothelial 
cells where FGF23-induced expression of IL-1 is inhibited by 
sKL (231), it was not found in cultured spleen cells, where the 
FGF23-induced production of TNFα is not reduced in the pres-
ence of sKL (221).

eFFeCTS OF FGF23 ON LeUKOCYTeS

Chronic kidney disease is a state of acquired immune deficiency 
involving cellular and humoral immunity (232). The incidence 
of bacterial infections in CKD patients is higher than in the 
general population, and acute infections with bacteria, viruses, 
and fungi substantially contribute to the high hospitalization 
rates and mortality (233–235). As described above, the pro-
inflammatory CKD environment is most likely caused by a vari-
ety of sources, including activated immune cells, and vice versa 
systemic inflammation is associated with an impaired function 
of the immune system. Since in CKD patients elevated serum 
FGF23 levels are independently associated with the incidence 
of infections (175, 236, 237), a role of FGF23 not only in the 

regulation of the inflammatory response, but also in the associ-
ated host defense is plausible (223).

The pathomechanism underlying the impaired host defense 
in CKD is not well understood. The innate immune response 
requires the recruitment and activation of immune cells to the 
site of infection, and neutrophils are among the most prominent 
leukocyte subsets during this process. Neutrophils from CKD 
patients are unresponsive to further stimulation and activation, 
indicating that CKD-associated factors might contribute to 
defects in the host defense by inducing neutrophil dysfunction 
(238–240). A recent experimental study has shown that by 
directly targeting neutrophils, FGF23 can inhibit neutrophil 
recruitment and thereby impair the host defense (241) (Figure 1). 
Mechanistically, FGF23 blocks chemokine- and selectin- 
mediated β2-integrin activation on neutrophils, thereby prevent-
ing the interaction between β2-integrin and intracellular adhe-
sion molecule-1 on endothelial cells, neutrophil arrest on the 
endothelium and trans-endothelial neutrophil migration. This 
FGF23 effect appears to be klotho-independent and requires 
FGFR activity. Since neutrophils only express FGFR2 on the cell 
surface, while FGFR1 and FGFR4 are localized in the cytoplasm 
(242), one can assume that FGF23 targets neutrophils via FGFR2. 
FGF23 actions on neutrophils seem to be dose-dependent and 
only occur at high FGF23 concentrations, which result in the 
activation of protein kinase A (PKA), subsequent inhibition 
of the signal mediator Rap1, and eventually deactivation of β2-
integrin. This pathomechanism can be translated into humans, 
as leukocytes isolated from CKD patients show increased rolling 
velocity which can be reduced by pharmacologic FGFR inhibi-
tion, and vice versa, FGF23 treatment of leukocytes isolated from 
healthy subjects elevates rolling velocity (241). Furthermore, 
two more recent studies show that FGF23 treatment of isolated 
human leukocytes reduces expression levels of CD11b integrin 
(208) and weakens chemotaxis (243). Combined, these findings  
suggest direct inhibitory actions of FGF23 on integrin activa-
tion in leukocytes, resulting in reduced leukocyte adhesion 
and migration which might serve as a pathomechanism that 
causatively links increase in serum FGF23 levels with impaired 
host defense in CKD. Since integrin inactivation occurs rapidly 
following FGF23 treatment (241), this effect appears to be direct. 
However, the analysis of rodent models with cell type-specific 
deletion of FGFR2 will be required to determine whether FGF23 
can indeed directly target neutrophils.

Direct effects of FGF23 have been also described for other 
leukocyte populations suggesting a broader role of FGF23 in the 
regulation of the immunological and inflammatory response. 
For example, FGF23 might alter monocyte function by inhibit-
ing 1-α-hydroxylase and thereby 1,25D synthesis (244, 245). 
Furthermore, FGF23 can stimulate TNFα expression in mac-
rophages (215, 216) (Figure 1). FGF23 effects on monocytes and 
macrophages seem to be mediated by Ras/MAPK signaling and 
occur in the absence of klotho (215, 244). FGFR1 is expressed at 
highest levels in these cells (216, 244) and, therefore, FGFR1 might 
mediate FGF23 effects. However, animal studies with monocyte/
macrophage-specific deletion of FGFR1 will be necessary in 
order to determine if FGF23 can directly target these leukocyte 
populations. Since 1,25D can inhibit FGF23-induced TNFα in 
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macrophages (215), it is interesting to speculate that FGF23’s 
inhibitory actions on the innate immunity can be counter-
regulated by 1,25D (246), which would explain the stimulating 
effects of 1,25D on antibacterial macrophage response (247).

iNDiCATiONS THAT FGF23 MiGHT 
AFFeCT A vARieTY OF OTHeR TiSSUeS 
AND CeLL TYPeS

While the effects of klotho and sKL on the central nervous system 
have been extensively studied, as reviewed elsewhere (77, 248), it 
is less clear whether FGF23 can directly target neurons. A study 
in hippocampal neuron cultures isolated from mice shows that 
FGF23 treatment reduces the complex cell morphology and 
enhances synaptic density (106). This effect occurs in the absence 
of klotho that is not expressed in hippocampal neurons, requires 
FGFR activity and involves PLCγ signaling. Co-treatment with 
sKL inhibits the FGF23 effect and causes an activation of Akt 
signaling (106). As Akt can be activated via FRS2α, this finding 
supports the hypothesis described earlier, that sKL might modify 
FGF23-induced downstream signaling (Figure  3). By directly 
targeting hippocampal neurons, FGF23 might contribute to 
learning and memory deficits which are observed in many 
patients with CKD, especially in children (249–251). Indeed, 
it has been reported that elevations in serum FGF23 levels are 
associated with cognitive impairment in CKD patients (252). 
Furthermore, transgenic mice overexpressing cleavage-resistant 
FGF23 resulting in elevated serum FGF23 levels show reduced 
long-term potentiation in the hippocampus and impaired spatial 
learning and memory (253). However, since administration of a 
high phosphate diet ameliorates this phenotype, FGF23-induced 
hypophosphatemia rather than direct FGF23 actions on the 
brain might be involved. Clearly, more detailed in  vitro and 
in vivo experiments are necessary to test the existence of direct 
pathologic actions of FGF23 on neurons as well as other cell types 
in the central nervous systems.

Since FGF23 can directly induce injury of the heart muscle, 
it is tempting to speculate that FGF23 might also contribute to 
skeletal muscle dysfunction and atrophy that is found in many 
patients with CKD (254). Interestingly, animal models for ARHR 
and XLH with primary FGF23 elevations show deficiencies in 
skeletal muscle fiber contraction and develop muscle weakness, 
which is ameliorated after injections of an FGF23-blocking 
antibody (196, 255). FGF23 might also have beneficial effects 
on skeletal muscle, as elevations of circulating FGF23 by 
intraperitoneal injections of recombinant FGF23 in wild-type 
mice extends exercise performance (256). Similar to cardiac 
myocytes, skeletal muscle cells express FGFR4, but lack klotho 
(205), and it has been shown that FGFR4 is a key regulator of 
myogenic differentiation and muscle regeneration after injury 
(257, 258). Furthermore, activating FGFR4 mutations contribute 
to rhabdomyosarcoma, a childhood cancer originating from 
skeletal muscle (259). However, a recent study shows that acute 
and prolonged FGF23 treatments have no effect on the function 
of isolated mouse skeletal muscle fibers or on an established cell 
culture model for myoblasts and myotubes (260).

Several types of lung injury are associated with CKD (261, 
262), raising the question whether serum FGF23 can directly 
target and damage the lung. Since kidney, lung, and heart are 
in close interactions with each other (263), it is possible that 
FGF23 serves as one of the many pathophysiologic factors 
that can impact the balance between the three organs. The 
lung expresses all four FGFR isoforms (198), and like the liver, 
the lung has high levels of FGFR4 (264). However, as global 
FGFR4 knockout mice do not develop a lung phenotype (198), 
the role of FGFR4 in the regulation of lung development and 
function is unclear. Furthermore, analyses of klotho expres-
sion in the lung have provided conflicting results (65, 75,  
205, 265), and, therefore, it is unclear whether direct FGF23 
actions would be klotho-dependent and/or klotho-independent.  
So far only one mechanistic study has aimed to analyze poten-
tial direct effects of FGF23 on lung cells (265). FGF23 can 
target bronchial epithelial cells via FGFR1 and klotho to induce 
Ras/MAPK signaling and the expression of the inflammatory 
cytokine IL-8, which occurs in concert with TGFβ signaling 
that potentiates FGF23 effects by elevating FGFR1 expression. 
Addition of sKL attenuates FGF23 actions (265), indicating 
that membrane-bound klotho and sKL have opposite effects 
in this scenario and again pointing toward counterbalancing 
protective effects of sKL in regards to FGF23’s pathologic 
actions. Interestingly, the FGF23 effect only occurs in bronchial 
epithelial cells isolated from patients with cystic fibrosis (265), 
suggesting that the priming of cells by disease-specific stimuli 
might be necessary for FGF23 responsiveness. Since patients 
with cystic fibrosis have elevated serum FGF23 levels (265), it 
is possible that by targeting the lung and other tissues, such as 
the liver (163), FGF23 contributes to the systemic inflammation 
that is common in this disease (266). It has also been speculated 
that FGF23 might serve as a biomarker for chronic obstructive 
pulmonary disease (267), and smokers have elevated serum 
FGF23 levels (268, 269), indicating that FGF23 might be involved 
in a wider spectrum of chronic lung disorders. Of note, mice 
with global FGF23 deletion develop lung emphysema, which 
can be partially rescued by the deletion of NaPi-2a resulting in 
a normalization of phosphate metabolism (270). This finding 
indicates that in this animal model lung injury might be caused 
by hyperphosphatemia and FGF23, suggesting important physi-
ologic actions of FGF23 on the lung. While to date only little 
is known about potential effects of FGF23 on the lung, several 
human, and experimental studies have reported reductions in 
levels of klotho and sKL in a variety of lung disease, indicating 
cell-protective effects of sKL, as reviewed elsewhere (271, 272). 
Furthermore, mice globally lacking klotho develop pulmonary 
emphysema (65, 273, 274).

Whether the endothelium expresses klotho, or not, is cur-
rently under debate (275), and, therefore, it is unclear if FGF23 
could have klotho-independent actions on blood vessels. Studies 
in cultured endothelial cells have shown that FGF23 can promote 
oxidative stress (92) and induce the expression of cell adhesion 
proteins (231), suggesting that FGF23 might contribute to 
endothelial dysfunction. However, clinical and experimental 
studies have shown that FGF23 does not associate with and 
contribute to vascular calcification in CKD (276), where rather 
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elevations in serum phosphate levels act as the major culprit (177). 
Whether FGF23 affects other aspects of vascular injury associated 
with CKD and might directly target different cell types in blood 
vessels, such as vascular smooth muscle cells, needs to be deter-
mined. Similarly, it is currently investigated, whether FGF23 can 
directly affect bone cells in a paracrine manner, and if so, whether 
this effect requires klotho or not. Interestingly, it has been shown 
that FGF23 can directly target chondrocytes which lack klotho, 
and thereby suppress proliferation and induce hypertrophy and 
differentiation (159, 277, 278). As briefly mentioned before, also 
macrophages and monocytes (215, 216, 244, 245) as well as cells 
in the spleen (221) can respond to FGF23. Furthermore, FGF23 
has been shown to increase proliferation of prostate cancer cell 
lines (279).

It has been shown that “classic” FGF23 target organs which 
express klotho under normal conditions can also respond to 
FGF23 in a klotho-independent manner. For example, FGF23 
effects in the parathyroid gland are mediated by FGFR1 and 
klotho, resulting in FRS2α/Ras/MAPK signaling and reduced 
PTH secretion (15, 154) (Figure 1). Interestingly, in mice lack-
ing klotho specifically in the parathyroid gland, FGF23 retains 
its inhibitory actions on PTH secretion, but activates calcineu-
rin/NFAT instead of Ras/MAPK signaling (16). This animal 
model supports the hypothesis discussed above, that klotho 
determines the branch of FGF23-mediated downstream signal-
ing (Figure  3). However, since both, klotho-dependent and 
klotho-independent signaling, have the same physiologic effect, 
i.e., to reduce PTH secretion, the biological relevance of klotho-
independent signaling is unclear, but it might act as back-up 
mechanism to ensure FGF23 responsiveness of the parathyroid 
gland in  situations of klotho deficiency. FGF23 seems to also 
affect the kidney in a klotho-independent manner, at least in the 
scenario of kidney injury. It has been shown in an animal model 
of acute tubulointerstitial injury that FGF23 contributes to 
fibrosis (190, 280) (Figure 1). However, FGF23 can only directly 
target fibroblasts that are derived from an injured kidney (190), 
indicating that pathologic actions of FGF23 depend on the con-
text and the presence of other pathologic stimuli. FGF23 effects 
on injury-primed fibroblasts are mediated by FGFR4 and cal-
cineurin/NFAT signaling and result in an upregulation of TGFβ 
production, which then carries the pro-fibrotic signal forward to 
induce extensive fibrosis and tissue injury (191). Since neither 
healthy nor injured renal fibroblast express klotho (190), this 
pathologic effect of FGF23 appears to be klotho-independent. 
Interestingly, the introduction of klotho expression or treatment 
with sKL causes a switch from calcineurin/NFAT to Ras/MAPK 
signaling in isolated injured renal fibroblasts and attenuates 
FGF23’s pro-fibrotic actions (191). Overall, this study supports 
the hypothesis that sKL can counterbalance FGF23’s pathologic 
effects by inducing a switch in FGF23-induced downstream 
signaling toward the FRS2α/Ras/MAPK cascade (Figure  3). 
Whether FGF23 can induce renal injury by targeting other cell 
types than fibroblasts as well as the spectrum of renal diseases 
that might involve FGF23 as a causative kidney-damaging factor 
remains to be established. Furthermore, it needs to be studied 
whether in “classic” FGF23 target organs, klotho-independent 
signaling only occurs in the situation of klotho reduction or 

absence, or can also co-exist in the same tissue or even cell in 
parallel to klotho-mediated signaling events and might, there-
fore, have physiologically relevant functions.

CONCLUSiON AND OUTLOOK

FGF23 can directly affect several cell types and tissues. Depen-
ding on the target, FGF23 actions occur in the presence or 
absence of klotho, require different FGFR isoforms and are 
mediated by different signal transduction cascades. The variety 
of molecular pathways that can be activated by FGF23 in a cell 
type-specific context ensures that FGF23 has numerous effects 
that differ among tissues, and can include changes in the cellular 
uptake and secretion of other factors as well as modifications of 
cell growth and migration. Klotho-independent FGF23 actions 
might be more widespread than originally thought. However, 
based on the diverse nature of FGF23-induced signaling events 
and effects, traditional read-outs to detect FGF23 responsiveness 
are not adaptable to every potential target tissue, thereby com-
plicating the identification of novel FGF23 actions. Furthermore, 
in vitro studies that are necessary to determine potential direct 
effects of FGF23 on a defined cell type, are hindered by the fact 
that FGF23 requires specific signaling receptors and mediators 
whose expression levels, localization, or activity might change 
when cells are isolated and kept in culture over time. Current 
findings indicate that klotho-independent actions of FGF23 
might be exclusively pathological. However, more animal 
experiments analyzing FGF23 effects in a concentration- and 
time-dependent manner are needed to confirm this view.  
It is also possible that such studies will reveal that initial FGF23 
effects are cell protective and meant to compensate for tissue 
injury. Most likely, FGF23’s pathologic actions occur in combina-
tion with other injury and stress stimuli, whose presence might 
alter the “molecular make-up” of cells and thereby increase their 
FGF23 responsiveness. However, it will be challenging to mimic 
such a multifactorial scenario in cultured cells in order to test 
this hypothesis.

Besides osteocytes in the bone, several other tissues and cell 
types have been reported to produce FGF23. The original studies 
reporting the cloning of FGF23 include FGF23 expression analy-
ses of selected human and mouse tissues by reverse transcription 
PCR, showing signals for heart, liver, brain, small intestine, 
lymph node, and thymus (10, 18). This outcome overlaps with 
more comprehensive qPCR-based tissue screens in mice, report-
ing that besides these tissues also spleen, lung, skeletal muscle, 
and stomach contain FGF23 mRNA (205, 281). More detailed 
analyses of tissues and cultured cells by qPCR, immunoblotting, 
and immunohistochemistry, have confirmed and extended the 
findings of these screening studies, showing FGF23 expression 
in the heart (184, 185, 192, 193, 282), liver (283, 284), kidney 
(190, 285–287), spleen (216, 288, 289), brain (18), skeletal 
muscle (256), bone marrow (216, 290–293), and macrophages  
(215, 294). Also certain types of tumors have been shown to pro-
duce FGF23 (10, 279). Combined with the various FGF23 effects, 
as described above, these findings indicate that FGF23 might 
not only act as a hormone, but also functions as a paracrine 
factor. Furthermore, FGF23 might play important roles during 
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embryonic development. In zebrafish embryos, FGF23 expres-
sion is confined to the cells of the corpuscles of Stannius which 
regulate mineral ion homeostasis in advanced bony fish, also 
called teleosts (295). During embryonic mouse development, 
FGF23 is predominantly expressed in somites, heart, and liver 
(296). Although global FGF23 knockout mice are born at normal 
Mendelian ratios and do not develop an obvious phenotype before 
10 days after birth (296), indicating that FGF23 is not essential for 
embryonic development, it is still possible that FGF23 contributes 
to proper organogenesis.

FGF23 expression often seems to occur in the context of patho-
logic stimuli or tissue damage, suggesting that either FGF23  
contributes to the injury process or is induced to protect from 
injury. Tissue-specific knockout studies will be required to 
analyze the role of locally produced FGF23 in comparison to 
bone-derived, circulating FGF23. Furthermore, it needs to be 
determined whether the mechanisms that regulate FGF23 syn-
thesis as well as posttranslational modifications and processing 

in the bone are also active in other FGF23 producing organs, or 
whether FGF23’s precise form and modifications and, therefore, 
bioactivity varies and depends on the source. Clearly, a key 
open question that needs to be answered is whether the N- and 
C-terminal FGF23 cleavage fragments have a biological func-
tion, and if so, whether this is different from the role of intact 
FGF23.
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