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Abstract: Background: Epigenetic factors including DNA methylation contribute to specific pat-
terns of gene expression. Gene–environment interactions can change the methylation status in the
brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a
neurodegenerative disease like Parkinson’s disease, which that is characterised by a late onset in
life. Aims: To determine epigenetic modifications in the brains of Parkinson’s disease patients.
Patients and Methods: DNA methylation patterns were compared in the cortex tissue of 14 male PD
patients and 10 male healthy individuals using the Illumina Methylation 450 K chip. Subsequently,
DNA methylation of candidate genes was evaluated using bisulphite pyrosequencing, and DNA
methylation of cytochrome P450 2E1 (CYP2E1) was characterized in DNA from blood mononuclear
cells (259 PD patients and 182 healthy controls) and skin fibroblasts (10 PD patients and 5 healthy
controls). Protein levels of CYP2E1 were analysed using Western blot in human cortex and knock-out
mice brain samples. Results: We found 35 hypomethylated and 22 hypermethylated genes with a
methylation M-value difference >0.5. Decreased methylation of cytochrome P450 2E1 (CYP2E1) was
associated with increased protein levels in PD brains, but in peripheral tissues, i.e., in blood cells
and skin fibroblasts, DNA methylation of CYP2E1 was unchanged. In CYP2E1 knock-out mice brain
alpha-synuclein (SNCA) protein levels were down-regulated compared to wild-type mice, whereas
treatment with trichloroethylene (TCE) up-regulated CYP2E1 protein in a dose-dependent manner
in cultured cells. We further identified an interconnected group of genes associated with oxidative
stress, such as Methionine sulfoxide reductase A (MSRA) and tumour protein 73 (TP73) in the brain,
which again were not paralleled in other tissues and appeared to indicate brain-specific changes.
Conclusions: Our study revealed surprisingly few dysmethylated genes in a brain region less affected
in PD. We confirmed hypomethylation of CYP2E1.

Keywords: Parkinson’s disease; cortex; epigenetics; DNA methylation

1. Introduction

Epigenetic factors, particularly DNA methylation, modify gene expression and have
been shown to undergo dynamic changes throughout life and in differentiated neurons of
the human brain [1,2]. Methylation changes that occur in response to early developmental
challenges and environmental exposures are carried forward in the cells’ DNA and may be
partially passed on to offspring [3]. Persistent epigenetic differences in men have been ob-
served after prenatal exposure to famine and have been associated with several pathologic
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conditions, including neurodevelopmental disorders [4]. Thus, altered DNA methylation
and consecutively altered gene expression patterns likely contribute to the individual
susceptibility towards neurodegenerative diseases in general and PD in particular [5,6].
However, the DNA methylation levels in the brain when comparing healthy individuals
and PD patients showed no differences in several relevant genes, like UCHL1 (ubiquitin
carboxyl-terminal hydrolase 1 gene), MAPT (microtubule associated protein tau promoter)
and PRKN (parkin) promoter [7,8].

Several huge GWAS in Parkinson’s disease found the SNCA gene as a highly sig-
nificant genetic risk factor (reviewed in [9]). DNA methylation patterns in PD brains of
the CpG islands in intron 1 of SCNA have been investigated, but showed contradictory
results [10–12]. This may be due to cell-type specific differential methylation in different
brain cell populations. Recently, Gu et al. demonstrated DNA hypomethylation in sorted
neuronal nuclei from the PD frontal cortex in comparison to controls, but no difference in
sorted glia nuclei.

We here extended previous studies to a larger sample of cortical tissues from male
PD patients and healthy controls, avoiding a confounding effect of imprinting by sex,
using Illumina 450 K methylation bead arrays. Consistent with our preliminary data,
we identified cytochrome P450 2E1 (CYP2E1) among the most intensely and repetitively
hypomethylated genes. Independent techniques, i.e., bisulphite pyrosequencing (BPS)
at single-base resolution, confirmed CYP2E1 hypomethylated, specifically in the cortex
DNA from PD patients, associated with increased protein levels. In Cyp2e1-null mice, we
observed decreased alpha-synuclein protein, suggesting that CYP2E1 in wild-type mice
(and men) might contribute to increased alpha-synuclein expression.

2. Methods
2.1. Study Population

DNA was extracted from 24 cortex samples from 14 male PD patients (mean age ± SD:
77.7 ± 5.9 years) and 10 male neurologically healthy individuals (mean age ± SD:
76.0 ± 8.75 years) provided by the Brain Bank Munich and by Professor Schulz-Schaeffer.
DNA extraction and bisulphite conversion were performed as described previously [5].

2.2. Epigenome-Wide Methylation Analysis

Four hundred nanograms of bisulphite-treated DNA were analysed using the Infinium
Human Methylation 450 K bead array according to the manufacturer’s instructions. The
Ethics Committee of the Medical Faculty of the University of Bonn approved the study
(No. 51/00, 6 July 2000).

2.3. Statistical Analysis of Normalised Methylation Data

Illumina GenomeStudio® software (version 2011.1) was used for the extraction of
DNA methylation signals as raw signals without background normalization; methylation
data were further processed via the Bioconductor lumi package using shift-scale colour
bias adjustment and quantile normalization as further pre-processing steps implemented in
the lumi package [13]. A detection p-value cut-off of 0.00001 was used to filter out signals
below background, which left 320.898 CpG for testing.

2.4. Pyrosequencing of Cortex Samples

A PyroMark Q24 System (Qiagen) was used for DNA methylation analysis (Primer:
CYP2E1 PCR: PF1_GGGGTTGTTTTTGAGTAGGAGT and PR1_TCAATAAATCTCTTCCCC
CTT C, Pyrosequencing: PS1_TTTTTATTTATGTTGAGG; C21orf55:PF1_TTATGAGGATGA
G ATGATTTATTTG and PR1_Bio_CCCTAACTCCCTACTTCAATTAC; PS1_GAGATGAT
TTATTTGTTGT; TP73: PF1_GGTTTAATAGGGAGTGGTAGTTATTTT and PR1_Bio_A CC-
CACCCTAACACTAACCA, PS1_AGTGGTAGTTATTTTAAAGG). Statistical analysis was
performed using SPSS Statistical software 20.0 (SPSS Inc., Chicago, IL, USA). Values are
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indicated as the mean ± SD, and comparisons between groups were performed using the
Mann–Whitney U test. The level of significance was set at p < 0.05 and <0.01, respectively.

2.5. Pyrosequencing in the Cortex and Peripheral Blood with CYP2E1 Primer 2

The pyrosequencing primer pairs were designed by O. Jiménez-Garza [14].

2.6. Pyrosequencing in Human Peripheral Blood Mononuclear Cells (PBMCs)

Identical primers to those applied for pyrosequencing of cortex samples were used for
blood samples. DNA from 259 PD patients (aged 63.0 ± 10.13 years; 167 male; 92 female)
and 182 healthy controls (aged 58 ± 13.85 years; 123 male; 59 female) was analysed.

2.7. Pyrosequencing in Human Peripheral Blood Mononuclear Cells (PBMCs) Exposed to l-DOPA

The methylation of DNA derived from the pbms of 4 male de novo PD patients
without prior l-DOPA medication (aged 63.2 ± 9.49) was analysed using pyrosequencing
before and after pbms were exposed to 100 µM and 200 µM l-DOPA for 48 h.

In addition, we compared the methylation state of CYP2E1 in DNA from the blood
of PD patients without prior l-DOPA intake (n = 11; mean age: 64.4 years), low l-DOPA
dosage (<300 mg/d; n = 8; mean age: 70.3 years) and high l-DOPA dosage (>1000 mg/d;
n = 16; mean age: 66.5 years).

2.8. Pyrosequencing in Skin Fibroblasts

DNA from cell-cultured skin fibroblasts from 5 healthy probands (3 males; mean age ± SD:
55.3 ± 22.8 years, age and sex missing in 2 samples) and 12 PD-affected patients (10 males,
2 females; mean age ± SD: 67.7 ± 14.84 years) was used for pyrosequencing.

2.9. Western Blot Analysis

Western blot analysis was performed using 50 µg of protein per lane and mouse
monoclonal anti-β-actin (clone AC-15; A5441; Sigma, St. Louis, MO, USA) and rabbit
polyclonal anti-CYP2E1 (ab53945, abcam, Cambridge, MA, USA) antibodies. Densitometric
quantification and normalization to the β-actin levels were performed using LabImage 1D
L340 (Intas Science Imaging; Göttingen, Germany).

2.10. CYP2E1 Knock-Out Mice

CYP2E1-null mice were described previously [15]. We used brains of five CYP2E1-null
mice and four brains of wild-type mice as the control.

3. Results
3.1. Epigenome-Wide DNA Methylation Analysis in Brain

The epigenome-wide methylation analysis revealed 57 differentially methylated genes,
but without reaching the level of significance after p-value adjustment.

We found 35 hypomethylated and 22 hypermethylated in PD, with a methylation
difference >0.5 of the M-value (Table 1). The corresponding segregation of PD patients
and controls is visualized in a heat map plot and hierarchical clustering analysis (Figure 1).
Differentially methylated CpGs were mainly located in gene bodies (66%), and only a few
were found upstream of the transcription start site (TSS 1500; 15%), in the 5′UTR (14%) and
3′UTR (5%).

3.2. Pyrosequencing of Candidate Genes in Brain

To validate the array data, BPS of the respective genes of interest was performed,
confirming that CYP2E1 was significantly hypomethylated in the PD cortex at the CpGs
sites investigated (sum score: control 21.58 ± 8.78; PD 11.98 ± 5.3; p = 0.001; Figure 2A).
These differences were consistently significant also at the level of individual CpG analysis
(p-values = 0.002–0.005).
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Table 1. Differentially methylated genes and CpGs in human cortex comparing PD-affected cases
with healthy individuals.

Rank 1 Target ID 2 Gene 3 Chr. 4 Control 4 PD Difference 5 p-Value Adjusted
p-Value

Genes hypomethylated in PD

1 cg26077133 MSRA 8 1.375 −0.5731 −1.9481 0.0028 0.6990
2 cg21388339 TP73 1 1.4532 −0.4532 −1.9064 0.0006 0.6547
3 cg00424152 B3GNT7 2 1.9356 0.196 −1.7396 0.0046 0.7104
4 cg13573375 PIAS4 19 1.3363 −0.2018 −1.5381 0.0038 0.7041
5 cg13732083 C21orf56 21 −0.3452 −1.7818 −1.4366 0.0066 0.7352
6 cg25708755 PTPRN2 7 3.8666 2.4326 −1.434 0.0002 0.6339
7 cg05896524 C21orf56 21 0.2687 −1.0967 −1.3654 0.0086 0.7445
8 cg10296238 C21orf56 21 1.6757 0.375 −1.3007 0.0036 0.7028
9 cg02898977 TM9SF1 14 3.5181 2.2475 −1.2706 0.0009 0.6608

10 cg11445109 CYP2E1 10 −1.633 −2.8688 −1.2358 0.0042 0.7086
11 cg04563766 PRKACG 9 1.6484 0.4168 −1.2316 0.0033 0.7028
12 cg23400446 CYP2E1 10 −0.7482 −1.978 −1.2298 0.0059 0.7226
13 cg09672255 ZNF879 5 1.9644 0.7365 −1.2279 0.0056 0.7162
14 cg17763566 HLA-DPB2 6 2.9618 1.7579 −1.2039 0.0013 0.6766
15 cg25545878 C21orf56 21 0.3828 −0.8175 −1.2003 0.0046 0.7105
16 cg19299952 MOBKL2A 19 4.3039 3.1272 −1.1767 0.0081 0.7393
17 cg12016809 C21orf56 21 0.3056 −0.8639 −1.1695 0.0061 0.7288
18 cg08925606 BPIL1 20 2.8527 1.6876 −1.1651 0.0007 0.6608
19 cg07747299 C21orf56 21 −0.0209 −1.1486 −1.1277 0.0043 0.7092
20 cg13315147 CYP2E1 10 −0.5431 −1.6485 −1.1054 0.0034 0.7028
21 cg23026554 LOC441666 10 −2.2328 −3.3233 −1.0905 0.0024 0.6948
22 cg18093448 WWC2 4 1.774 0.705 −1.069 0.0004 0.6339
23 cg20965743 ASPG 14 −0.8006 −1.8428 −1.0422 0.0004 0.6065
24 cg24753094 THSD4 15 2.386 1.3613 −1.0247 0.0038 0.7028
25 cg24530264 CYP2E1 10 −1.3224 −2.3267 −1.0043 0.0096 0.7445
26 cg10862468 CYP2E1 10 −0.8401 −1.7957 −0.9556 0.0025 0.6948
27 cg24136292 INSC 11 1.2508 0.3108 −0.94 0.0022 0.6948
28 cg21787989 LGALS8 1 2.5081 1.6097 −0.8984 0.0037 0.7028
29 cg04398451 MYO15A 17 3.0648 2.1705 −0.8943 0.0095 0.7445
30 cg19039925 GVIN1 11 2.9298 2.1079 −0.8219 0.0072 0.7377
31 cg10309386 BEND7 10 0.9543 0.1425 −0.8118 0.0055 0.7153
32 cg00631877 PLXNC1 12 1.7795 1.0282 −0.7513 0.0015 0.6796
33 cg25094735 NAPSB 19 1.8552 1.1323 −0.7229 0.0028 0.6990
34 cg11133658 SCARA5 8 3.6407 2.9677 −0.673 0.0056 0.7165
35 cg24705404 DAB1 1 0.8954 0.3551 −0.5403 0.0055 0.7157

Genes hypermethylated in PD

1 cg07179329 CDH13 16 −1.0161 3.2007 4.2168 2.41 ×
10−6 0.2671

2 cg21498547 DLGAP2 19 −2.498 0.2503 2.7483 0.0055 0.7157
3 cg00713204 BANP 16 −1.6172 0.2791 1.8963 0.0003 0.6339
4 cg06051619 DIP2C 10 −1.0376 0.8079 1.8455 0.0008 0.6608
5 cg05385718 D2HGDH 2 −0.1851 1.6527 1.8378 0.0092 0.7445
6 cg22508145 CPAMD8 19 0.2203 2.0561 1.8358 0.0055 0.7142
7 cg27649396 C11orf53 11 0.3793 2.1594 1.7801 0.0030 0.7000
8 cg11716267 LOC375190 2 −0.9379 0.6719 1.6098 0.0025 0.6948
9 cg24861399 MGAT5 2 −1.1351 0.3973 1.5324 0.0057 0.7197

10 cg02938066 NFKBIL2 8 1.4743 2.954 1.4797 0.0038 0.7028
11 cg23633026 RASL10B 17 1.7681 3.223 1.4549 0.0018 0.6831
12 cg19680693 GPR83 11 −0.5695 0.8113 1.3808 0.0034 0.7028
13 cg10224537 B3GALT1 2 2.1048 3.4393 1.3345 0.0004 0.6339
14 cg25790212 IGSF9B 11 −1.7987 −0.4692 1.3295 0.0005 0.6489
15 cg09746326 DCUN1D2 13 1.559 2.7568 1.1978 0.0061 0.7288
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Table 1. Cont.

Rank 1 Target ID 2 Gene 3 Chr. 4 Control 4 PD Difference 5 p-Value Adjusted
p-Value

16 cg18662228 AGAP1 6 −1.0355 0.1227 1.1582 0.0066 0.7352
17 cg12687426 KCNMB3 3 2.2947 3.3274 1.0327 0.0001 0.6065
18 cg04381873 LOC284412 19 2.0913 2.9199 0.8286 0.0036 0.7028
19 cg11342941 AGPAT4 6 2.9545 3.7636 0.8091 0.0054 0.7142
20 cg06979412 RFC3 13 2.9372 3.6803 0.7431 0.0092 0.7445
21 cg22402398 FGR 1 3.0874 3.8231 0.7357 0.0077 0.7377
22 cg08955548 PTPRN2 7 1.3085 1.9535 0.645 0.0019 0.6845

1 Rank based on decreasing difference between methylation of control to PD group. No. 1–35 are hypomethylated
in PD; No. 1–22 are hypermethylated in PD. 2 Target ID based on the annotation of Illumina’s 450 K methylation
chip. 3 Associated Genes. 4 M-value of CpG methylation. 5 Difference mean methylation of PD group—mean
methylation of control group. Negative sign indicates hypomethylation in PD group. Positive sign indicates
hypermethylation of CpG in PD group.
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Figure 1. Heat map of DNA methylation in cortical samples. The heat map displays highly methy-
lated loci in red and sparsely methylated loci in green. Hierarchical clusterings (average linkage) of
the samples after normalization is based on all CpGs. Hierarchical clustering analysis reveals a clear
separation of the control vs. PD cases.

Two genes were identified with multiple differentially methylated CpGs: CYP2E1
(5 CpGs hypomethylated in PD) and C21ORF56 (6 CpGs hypomethylated in PD). Large
differences regarding the degree of methylation were found again in CYP2E1, but also in
methionine sulfoxide reductase A (MSRA, hypomethylated in PD) and cadherin 13 (CDH13,
hypermethylated in PD) (Table 1).

In addition, we used a second primer pair for pyrosequencing, encompassing the
promoter region of CYP2E1. Using these primer pairs, Jiménez-Garza et al. demonstrated
the up-regulation of CYP2E1 methylation in blood from tannery workers exposed to
toluene [14]. In the PD cortex, we found significant hypomethylation of CYP2E1 in all of
the CpGs analysed (No. 6–10, Figure 2C,D).
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Figure 2. Pyrosequencing and western blots of candidate genes A–H. Evaluation of DNA methylation
using pyrosequencing. We confirmed the methylation status of CYP2E1 (A), TP73 (E) and C21orf56
(G) in cortical samples. In the pbms, no difference in CYP2E1 methylation was observed (B). A
different region (primer pairs of [14] of the CYP2E1 gene was also hypomethylated in the brain
(C) but not in blood monocytes (D). L-DOPA treatment had no obvious effect on CYP2E1 DNA
methylation in PD patient pbms (Pearson coefficient 0.019; p = 0.92) (F). In skin fibroblasts, the
differential methylation was unchanged when comparing cases and controls (H). The underlined
CpGs correspond to the CpG site annotated on the methylation microarray. Using western blot
analysis (I), significantly increased expression levels of CYP2E1 in Parkinson-diseased brains (n = 4)
were found compared with the control (n = 4) (control 0.13 ± 0.07; PD 0.42 ± 0.21; p = 0.042). Equal
loading was controlled by the immunodetection of beta-actin (b-actin). Results were presented as the
mean ± SD of the control and PD groups (* p < 0.05; ** p < 0.01). In cultured Sk-H-SH cells, exposure
to trichloroethylene (TCE) induced CYP2E1 up-regulation in a dose dependent manner (J). In the
brain samples of CYP2E1 null-mice, a-synuclein protein was significantly decreased (K).
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Hypomethylation of TP73 and C21ORF56 was also confirmed by pyrosequencing
(Figure 2B,C); however, for CDH13, only the high methylation level in PD was replicated,
whereas the healthy controls seemingly displayed similar levels of methylation at the
investigated CpG (PD 93.1 ± 7.75; control 93.4 ± 7.31; p = 0.95).

3.3. DNA Methylation of CYP2E1 in Skin Fibroblasts and Blood

To determine whether CYP2E1 methylation might serve as a biomarker in accessible
peripheral tissues, we analysed DNA from blood and skin fibroblasts. However, methy-
lation of CYP2E1 was unchanged when comparing the control and PD in a cohort of
182 vs. 259 samples using primer pairs 1 and 2 (Figure 2B,D). Additional multivariate
regression analysis revealed no correlation of CYPE1 methylation with sex, smoking, or
coffee consumption (data not shown).

Blood samples of another independent cohort were grouped according to the reported
l-DOPA intake. In addition, to evaluate whether l-DOPA might exert an acute effect on
methylation [11], a set of pbms from PD patients never treated with l-DOPA was treated
in vitro with l- or d-DOPA.

The methylation of CYP2E1 DNA was not changed in PD patients treated with different
L-DOPA dose ranges in vivo (Pearson correlation coefficient 0.019, p = 0.92) nor in pbms
treated with l-DOPA in vitro (baseline 22 ± 10%; 100 µM: 24 ± 10%; 200 µM: 22 ± 9%;
Figure 2F).

CYP2E1 was equally methylated in skin fibroblasts derived from PD patients compared
with healthy probands (sum of CpG 1–5 (mean ± SD): control: 16 ± 2% vs. PD: 14 ± 3%;
p-value = 0.8; Figure 2H).

3.4. Protein Expression of CYP2E1 in Cortex

Western blot analysis suggested increased expression of CYP2E1 protein in the brains
of PD patients compared with those of controls (control: 0.13 ± 0.07 vs. PD: 0.42 ± 0.21;
p = 0.042; mean ± SD; Figure 2I).

3.5. Protein Expression of CYP2E1 in TCE Treated in Cultured Cells

Following treatment with trichloroethylene (TCE), which is known to cause PD in par-
ticularly susceptible men, CYP2E1 protein was up-regulated in a dose-dependent manner
(Figure 2J).

3.6. SNCA Protein Levels in CYP2E1-Null Mice

A putative influence of CYP2E1 on SNCA protein levels was tested using CYP2E1-null
and wild-type (WT) mice. In brain tissue, SNCA protein was significantly decreased in the
null mice (p = 0.048; ANOVA; Figure 2K).

4. Discussion

In this genome-wide methylation analysis, we found 57 differentially methylated
CpGs in the cortex of PD patients.

We recently demonstrated hypomethylation of the cytochrome P450 2E1 (CYP2E1)
gene and increased expression of CYP2E1 mRNA in the brains of Parkinson’s disease (PD)
patients in an independent study using the 27 K micro bead array in a more heterogeneous
group of tissues, suggesting that epigenetic variants of this cytochrome (CPY) might
contribute to PD susceptibility [5]. Here, we also corroborated the hypomethylation of
CYP2E1 at the single-base level using bisulphite-pyrosequencing and demonstrated that
the degree of methylation was independent of l-DOPA exposure. CYP2E1 protein was
found to be up-regulated in the PD cortex, indicating that the observed hypomethylation is
correlated with increased protein expression.

Cytochromes have been implicated in PD pathophysiology, primarily as a putative
genetic risk factor [16]. CYP2E1 is of particular interest biochemically and mechanistically
because it is located specifically in dopaminergic neurons and plays a key role in the
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generation of toxic ß-carbolines (1-trichloromethyl-1,2,3,4-tetrahydro-ß-carboline; TaClo)
from aldehydes and dopamine metabolites [16–18].

Interestingly, the lack of CYP2E1 in the null mice was associated with the down-
regulation of alpha-synuclein (SNCA), suggesting that CYP2E1, involved in the metabolism
of xenobiotics such as trichloroethylene (TCE) and SNCA is interconnected and that in-
creased expression of CYP2E1, and consequently SNCA, might cause neuron damage as a
result of exposure to dietary or environmental toxicants that are activated by CYP2E1.

These findings are in line with animal models demonstrating the up-regulation of
SCNA in dopaminergic SN neurons after TCE exposure that might be mediated by CYP2E1
induction [19].

The observed CYP2E1/SNCA interconnection might be induced by a CYP2E1-dependent
increase of oxidative stress, known to cause DNA hypomethylation, including SCNA hy-
pomethylation [20], which was shown previously to result in SCNA protein up-regulation [11].

CYP2E1 is mainly involved in the oxidative metabolism of rather few polar molecules,
mainly ethanol and aldehydes [21]. Except for CYP2E1, which is also expressed in dopamin-
ergic neurons of the substantia nigra [16] the brain lacks functionally relevant ethanol and
aldehyde-degrading enzyme systems.

CYP2E1 has been implicated in PD pathophysiology at several levels. The induction
of CYP2E1 generates reactive oxygen species (ROS) in the substantia nigra of rodents, and
CYP2E1-null mice are protected from MPTP toxicity [22,23]. CYP2E affects dopaminergic
transmission of the substantia nigra [24]. Transfection of a CYP2E1 expression vector into
the macrophage cell lineage sensitized cells to lipopolysaccharide (LPS) stimuli, resulting
in increased TNF-alpha expression and activation of p38 signalling [25]. All of these data
are in line with our findings of increased CYP2E1 in PD brains.

The hypomethylation of the CYP2E1 gene in the brain allows stronger expression of
CYP2E1 in response to a given stimulus, and it was indeed shown that exposure to TCE
causes PD in particularly susceptible men [19,26,27] and nigrostriatal degeneration with
the development of parkinsonian features in animal models [28,29].

Increased CYP2E1 in humans typically results from ethanol consumption, but
trichloroethylene (TCE) is another strong inducer (and preferred substrate) of CYP2E1 [30].
We demonstrated a robust up-regulation of CYP2E1 protein in cultured neuronal cells after
TCE exposure.

We did observe hypomethylation of CYP2E1 in peripheral blood in the present study.
In addition, in an earlier study of methylation in PD peripheral blood, no change was
detected in a cohort of 221 vs. 227 human samples [31]. In another study, allele frequencies—
not DNA methylation—of CYP2E1 in DNA derived from the blood of patients with PD
and controls were screened, and no significant differences were detected [32]. In contrast,
recently, CYP2E1 was found hypermethylated in the peripheral blood of PD patients using
a methylation array, but an independent method like pyrosequencing was not applied to
confirm these results [33]. Five CpG positions of CYP2E1 analysed by Henderson-Smith
were identical to CpGs in our study (Illumina array: cg13315147, cg11445109, cg23400446,
cg25530264, cg10862468). One CpG (cg13315147) was hypomethylated in Parkinson’s
diseased brains in our survey, but hypermethylated in peripheral blood in the study of
Henderson-Smith. The remaining four CpGs were hypomethylated in PD brains (our study)
and unchanged from the control in blood [33]. We cannot explain the conflicting results of
cg13315147, which might be due to different PD medication in both cohorts, but the other
four CpGs also analysed by Henderson-Smith underline our finding of unchanged CYP2E1
methylation status in the peripheral blood of PD patients.

It is uncertain whether the epigenetic dysregulation/hypomethylation of CYP2E1
observed here might represent the epigenetic remnant of an inherited change upon envi-
ronmental exposure of anteceding generations to solvents [34], rendering the actual carriers
of the hypomethylated epigenetic variant of CYP2E1 more vulnerable.

Significant differences were also detected in CpGs related to the MSRA, TP73, and
CDH13 genes. MSRA plays a critical role in the antioxidant response, protecting cells from
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oxidative damage. Cells with increased levels of MSRA are resistant to oxidative stress. It
efficiently reduces oxidized alpha-synuclein, which otherwise tends to form potentially
neurotoxic protofibrils [35]. The CpGs found to be hypomethylated in the present study are
located in the MSRA gene body. Intragenic DNA methylation is generally correlated with
increased transcriptional activity, and hypomethylation can decrease transcription [36].
Thus, we speculate that the observed intragenic hypomethylation may cause decreased
MSRA expression, resulting in reduced antioxidant protection in PD.

Transactivating isoforms of p73 (Tp73) have p53-like pro-apoptotic activities [37].
Hypomethylation of the CpGs located in regulatory elements (TSS1500, CpG island shore)
suggests an epigenetic-driven up-regulation of TP73 expression, potentially resulting in
neuronal cell death.

Cadherin 13 (CDH13) protects vascular endothelial cells from apoptosis due to oxida-
tive stress. While the relevance of our observation to gene expression and its contribution
to PD aetiopathogenesis remains unclear, CDH13 is known to be required for insulin release
and thus contributes to the regulation of insulin secretion [38]. Indeed, the onset of diabetes
before the onset of PD appears to be a risk factor for more severe PD symptoms.

Furthermore, we found C21ORF56, chromosome 21 open reading frame 56, with
several hypomethylated CpGs per gene. C21orf56 is an uncharacterized protein, and data
regarding its gene function do not exist.

5. Conclusions

The brains of PD patients and healthy individuals revealed different methylation
patterns, including those of several candidate genes involved in PD pathology and oxidative
stress (Figure 3). In particular, the dysmethylation of CYP2E1 observed in the brain was not
found in peripheral blood or skin fibroblasts, indicating the tissue specificity of CYP2E1
methylation. Furthermore, we found an association of the expression of SNCA and CYP2E1.
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