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Introduction: Neuropilin-1(NRP1) is a cofactor that enhances SARS-CoV-2 coronavirus
cell infectivity when co-expressed with angiotensin-converting enzyme 2(ACE2). The
Renin-Angiotensin System (RAS) is activated in type 2 diabetes (T2D); therefore, the aim
of this study was to determine if hypoglycaemia-induced stress in T2D would potentiate
serum NRP1(sNRP1) levels, reflecting an increased risk for SARS-CoV-2 infection.

Methods: A case-control study of aged-matched T2D (n = 23) and control (n = 23)
subjects who underwent a hyperinsulinemic clamp over 1-hour to hypoglycemia(<40mg/
dl) with subsequent timecourse of 4-hours and 24-hours. Slow Off-rate Modified Aptamer
(SOMA)-scan plasma protein measurement determined RAS-related proteins: renin
(REN), angiotensinogen (AGT), ACE2, soluble NRP1(sNRP1), NRP1 ligands (Vascular
endothelial growth factor, VEGF and Class 3 Semaphorins, SEM3A) and NRP1 proteolytic
enzyme (A Disintegrin and Metalloproteinase 9, ADAM9).

Results: Baseline RAS overactivity was present with REN elevated and AGT decreased in
T2D (p<0.05); ACE2 was unchanged. Baseline sNRP1, VEGF and ADAM9 did not differ
between T2D and controls and remained unchanged in response to hypoglycaemia.
However, 4-hours post-hypoglycemia, sNRP1, VEGF and ADAM9 were elevated in T2D
(p<0.05). SEMA3A was not different at baseline; at hypoglycemia, SEMA3A decreased in
controls only. Post-hypoglycemia, SEMA3A levels were higher in T2D versus controls.
sNRP1 did not correlate with ACE2, REN or AGT. T2D subjects stratified according to
ACE inhibitor (ACEi) therapies showed no difference in sNRP1 levels at either glucose
normalization or hypoglycaemia.
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Conclusion: Hypoglycemia potentiated both plasma sNRP1 level elevation and its
ligands VEGF and SEMA3A, likely through an ADAM9-mediated mechanism that was
not associated with RAS overactivity or ACEi therapy; however, whether this is protective
or promotes increased risk for SARS-CoV-2 infection in T2D is unclear.

Clinical Trial Registration: https://clinicaltrials.gov, identifier NCT03102801.
Keywords: Neuropilin-1, type 2 diabetes, COVID-19, SARS-CoV-2, ACE inhibitors, ADAM9
INTRODUCTION

Neuropilin-1 (NRP1) is a cofactor that enhances SARS-CoV-2
coronavirus cell infectivity when co-expressed with ACE2 (1).
SARS-CoV-2 uses the spike protein for cell entry, and its
cleavage facilitates attachment to NRP1; therefore, tissues with
increased membrane NRP1 have increased infectivity risk (1)
and increased circulating NRP1 expression may raise infection
risk. NRP1 is a 120–130 kDa surface-expressed glycoprotein,
initially characterized as a neuronal receptor for specific secreted
members of the semaphorin family (SEMA3) involved in axon
repulsion (2). NRP-1 also serves as a receptor for a number of
isoforms of vascular endothelial growth factor (VEGF). Soluble
isoforms of NRP1 (sNRP1) also exist without transmembrane or
cytoplasmic domains and function as natural ligand sequesters,
inhibiting the interaction of VEGF-A or other growth factors
with their specific receptors and with membrane-bound NRP1
(3). The generation of sNRP1 is mediated via proteolytic cleavage
by a disintegrin or metalloproteinase-9 or 10 (ADAM9 or
ADAM10) (4). NRP1 interacts with the RAS, a risk factor for
COVID-19 disease (5), contributing to protection from
angiotensin II-induced hypertension (6).

T2D is associated with high risk for acquiring SARS-Cov-2
infection, severe disease, acute respiratory distress syndrome and
increased mortality (7). Diabetic patients have an overactive RAS
with ACE2 being overexpressed in kidney (8) and the circulation
(9), and ACE2 expression may be increased in lungs that is
thought to increase susceptibility and severity to SARS-Cov-2
infection. Furthermore, patients with T2D exist in a state of
chronic low-grade inflammation (10); both hypoglycaemia and
hyperglycemia compound the risk of worse outcomes in
hospitalized T2D patients with COVID-19 (11), likely due to the
increase in inflammatory mediators that further promote risk for
an acute cardiovascular event and/or multi-organ failure (12, 13).

Here, we hypothesized that underlying RAS activation may
potentiate the levels of sNRP1 and its ligands (VEGF and
SEMA3A) in hypoglycaemia-induced stress in type 2 diabetes
(T2D), reflecting an increased risk for SARS-CoV-2 infection.
MATERIALS AND METHODS

Study Design
This prospective parallel study was performed in 46 subjects,
adult T2D (n=23) and control (n=23). The duration of diabetes
was <10 years and all T2D subjects were on a stable dose of
medication (metformin, statin and/or angiotensin converting
n.org 2
enzyme inhibitor/angiotensin receptor blocker) over the prior
3 months. For those with T2D, no medications for glycemic
control except metformin were allowed. The study was
performed at the Diabetes Centre at Hull Royal Infirmary.
All participants provided written informed consent. The trial
was approved by the North West-Greater Manchester East
Research Ethics Committee (REC number:16/NW/0518),
registered at www.clinicaltrials.gov (NCT03102801) and
conducted according to the Declaration of Helsinki.

Hyperinsulinemic Clamp
The method for performing the insulin clamp has been published
previously (14). A schematic diagram of the insulin clamp study,
showing the intervention and blood sampling time points has
been outlined in Figure 1. Briefly, after an overnight fast,
bilateral ante-cubital fossa indwelling cannulae were inserted
30 to 60 minutes prior to the commencement of the clamp (8:30
AM). To induce hypoglycemia, soluble intravenous insulin
(Humulin S; Eli Lilly, Liverpool. UK) was given in a pump
starting at a dose of 2.5 mU/Kg body weight (BW)/min, with an
increment of 2.5mU/Kg BW/min every 15 minutes until two
readings of venous blood glucose measured by a glucose analyser
(HemoCue glucose 201+, Sweden) of 2.2 mmol/L (<40 mg/dl) or
a single reading of 2.0 mmol/L (36 mg/dL) was obtained (14).
The blood sample schedule was timed subsequently with respect
to the time point when hypoglycemia occurred (Figure 1).
Following the identification of hypoglycemia, intravenous
glucose was given in the form of 150 mL of 10% dextrose and
repeat blood glucose checks were performed after 5 minutes if
blood glucose was still <4.0 mmol/L. All patients achieved a
blood glucose of 2.0 mmol/L (36 mg/dL) at the point
of hypoglycemia.

Blood Sample Preparation and
Biochemical Marker Analyses
Venous blood samples collected during the screening visit were
analysed for serum insulin, total cholesterol, triglycerides,
HDL cholesterol, C-reactive protein (CRP) and glycated
haemoglobin (HbA1C).

Blood samples were separated immediately by centrifugation at
3500g for 15 minutes at 4°C, and the aliquots were stored at –80°C,
within 30-minutes of blood collection, until batch analysis. Serum
insulin was assayed using a competitive chemiluminescent
immunoassay performed on the manufacturer’s DPC Immulite
2000 analyser (Euro/DPC, Llanberies, UK), with a coefficient of
variation of 6 and no stated cross-reactivity with proinsulin.
June 2021 | Volume 12 | Article 665134
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Fasting plasma glucose (FPG), total serum cholesterol,
triglycerides, and high-density lipoprotein (HDL) cholesterol
levels were measured enzymatically using a Beckman AU
5800 analyser (Beckman-Coulter, High Wycombe, UK). LDL
cholesterol was calculated using the Friedewald equation. Plasma
whole blood samples were analysed for HbA1C on a Menarini
Diagnostics HB9210 premier (A. Menarini Diagnostics Ltd,
Winnersh-Wokingham, UK).

SOMA-Scan Assay
The SOMAscan assay used to quantify proteins was performed on
an in-house Tecan Freedom EVO liquid handling system (Tecan
Group, Maennedorf, Switzerland) utilizing buffers and
SOMAmers from the SOMAscan HTS Assay 1.3K plasma kit
(SomaLogic, Boulder, CO) according to manufacturer’s
instructions and as described previously (15–17). Initial Relative
Fluorescent Units (RFUs) were obtained from microarray
intensity images using the Agilent Feature Extraction Software
(Agilent, Santa Clara, CA). Raw RFUs were normalized and
calibrated using the software pipeline provided by SomaLogic.

Statistical analyses were performed on log2 RFU values using
R version 3.5.2 (R Foundation for Statistical Computing, Vienna,
Austria) including base R package. Data handling and differential
protein expression were analyzed using the autonomics and
limma (18) packages. For differential protein analysis we
applied limma models containing contrasts between
timepoints, as well as contrasts between healthy and patients
with diabetes at single timepoints. In both models, blocking by
patient ID was performed to account for random effects. Batch
effect correction was performed by adding batch as a covariate to
the model. Limma obtained P values were corrected using the
Benjamini-Hochberg method (19).

Statistical Analysis
There are no studies detailing the changes in NRP1 proteins in
response to hypoglycaemia on which to base a power calculation.
Frontiers in Endocrinology | www.frontiersin.org 3
Sample size for pilot studies has been reviewed by Birkett and
Day (20). They concluded that a minimum of 20 degrees-of-
freedom was required to estimate effect size and variability.
Hence, we needed to analyse the samples from a minimum of
20 patients per group. Data trends were visually evaluated for
each parameter and non-parametric tests were applied on data
that violated the assumptions of normality when tested using the
Kolmogorov-Smirnov Test. Comparison between groups was
performed at each timepoint using Student’s t-test. A p-value
of <0.05 was considered statistically significant. Statistical
analysis was performed using Graphpad Prism (San Diego,
CA, USA).
RESULTS

Study Participants
T2D (n=23) and control (n=23) subjects were matched for age
(p=ns); T2D had higher BMI (p=0.0012); duration of disease was
4.5 ± 2.9 years (Table 1). Nine T2D subjects were treated with
ACE inhibitor (ACEi) therapy. Systolic and diastolic blood
pressure were higher in T2D (p<0.001). Renin was elevated
and angiotensinogen decreased in T2D (p<0.05), indicating
RAS overactivity; ACE2 was unchanged (Table 2) (5).

Changes of Plasma sNRP1 Levels in
Response to Glucose Normalization
and Hypoglycemia
Baseline levels of sNRP1 did not differ between T2D and controls
(2298 ± 385 vs 2279 ± 488 RFU, T2D vs control, p=ns);
normalization of glucose in T2D did not alter sNRP1 (2298.1 ±
80.3 vs 2279.1 ± 101.6 RFU of NRP1, T2D vs control, p=ns)
(Figure 2A), and levels were unchanged in response to insulin
induced normalization of glycemia (in T2D) (Figure 2A) and
hypoglycaemia (both in control and in T2D) (Figure 2B).
However, 4-hours post-hypoglycemia, NRP1 was elevated in
FIGURE 1 | Schematic diagram of the insulin clamp study, showing the intervention and blood sampling time points.
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T2D (2476 ± 117 vs 2216 ± 94 RFU, T2D vs control, p=0.04)
(Figure 2B). When T2D subjects were stratified according to
ACE inhibitor (ACEi) therapies, there was no difference in
sNRP1 levels in subgroups at either glucose normalization or
hypoglycaemia (Figure 2C). sNRP1 did not correlate with any of
the renin angiotensin system (RAS) proteins measured here:
ACE2, REN or AGT (Figure 3).

Changes of Plasma Levels of NRP1
Proteolytic Enzyme ADAM9 in Response
to Hypoglycemia in T2D
A Disintegrin and Metalloproteinase 9 (ADAM9) has been
reported to be involved in proteolysis of NRP1 in human
endothelial cells and that this process was stimulated by vascular
endothelial growth factor (VEGF) (4). Therefore, plasma ADAM9
levels were determined and showed that ADAM9 did not differ at
baseline between control and T2D subjects (1107 ± 60 vs 1255 ± 81
RFU of ADAM9, T2D vs control, p=ns) but were decreased
following hypoglycaemia in T2D (1h and 2h post-hypoglycemia)
Frontiers in Endocrinology | www.frontiersin.org 4
(Figure 4A). Interestingly, in T2D, ADAM9 levels increased
sharply 4-hours post-hypoglycemia compared to either the 2h
post-hypoglycemia timepoint (1356 ± 81 vs 1019 ± 68 RFU
of ADAM9 4h post-hypo vs 2h post-hypo, p<0.01) or baseline
(1356 ± 81 vs 1107 ± 60 RFU of ADAM9 4h post-hypo vs
baseline, p<0.05) (Figure 4A). Elevated ADAM9 levels were also
observed 24h post-hypoglycemia both in control and T2D
subjects (Figure 4A).

Changes of NRP1 Ligands (VEGFA and
SEMA3A) in Response to Hypoglycaemia
in T2D
Soluble isoforms of NRP1 (sNRP1) also exist without
transmembrane or cytoplasmic domains, expressing only the
extracellular domains which allow them to bind NRP1 ligands
(21); therefore, the plasma levels of NRP1 ligands (VEGFA and
SEMA3A) were determined in response to insulin-induced
hypoglycemia. Neither VEGFA nor SEMA3A was different at
baseline in T2D compared to controls (9037 ± 188 vs 9113 ± 212
RFU of VEGF, T2D vs control, p=ns; 970 ± 43 vs 935 ± 45 RFU of
SEMA3A, T2D vs control, p=ns). Normalization of
hyperglycemia did not alter plasma VEGF or SEMA3A levels
in T2D (9145 ± 275 vs 9037 ± 188 RFU of VEGF, euglycemia vs
baseline in T2D, p=ns; 965 ± 51 vs 970 ± 43, RFU of SEMA3A,
euglycemia vs baseline in T2D, p=ns). While insulin-induced
hypoglycemia did not alter plasma VEGF levels in either control
or T2D subjects (Figure 4B), plasma SEMA3A levels
significantly decreased at hypoglycemia in control cases
compared to baseline (799 ± 27 vs 935 ± 45 RFU of SEMA3A
in control, hypoglycemia vs baseline, p=0.01) (Figure 4C). Post-
hypoglycemic SEMA3A levels (from 0.5h post-hypo to 24h post-
hypo) did not differ from baseline or hypoglycemia in either
controls or T2D; however, SEMA3A levels were generally
elevated in T2D, showing significance at 0.5h, 2h and 4h post-
hypoglycemia (p<0.05) compared to controls (Figure 4C).
Interestingly, in a similar manner to ADAM9, VEGF levels
also increased sharply 4-hours post-hypoglycemia compared to
the 2h post-hypoglycemia, hypoglycemia or baseline timepoints
(4h vs 2h: 9947 ± 225 vs 9026 ± 185 RFU of VEGF, p=0.002; 4h vs
hypoglycemia: 9947 ± 225 vs 8894 ± 208 RFU of VEGF, p=0.001;
TABLE 2 | Circulating levels of renin angiotensin system (RAS)-related proteins at baseline and in response to hypoglycemia in control subjects and in subjects with T2D.

T2D subjects
Renin (RFU) Angiotensinogen (RFU) ACE2 (RFU)

Baseline (BL) Hypoglycemia (H) Baseline (BL) Hypoglycemia (H) Baseline (BL) Hypoglycemia (H)
1730 ± 566 1601 ± 511 3786 ± 174 4027 ± 261 285 ± 29 286 ± 29
P=0.5 (BL vs H in T2D) P=0.7 (BL vs H in T2D) P=0.9 (BL vs H in T2D)

Control subjects

Renin (RFU) Angiotensinogen (RFU) ACE2 (RFU)

Baseline (BL) Hypoglycemia (H) Baseline (BL) Hypoglycemia (H) Baseline (BL) Hypoglycemia (H)
675 ± 71 666 ± 70 5005 ± 573 5248 ± 558 281 ± 18 277 ± 17
P=0.5 (BL vs H in control) P=0.5 (BL vs H in control) P=0.8 (BL vs H in control)
P=0.02 (T2D vs control at BL) P=0.04 (T2D vs control at BL) P=0.7 (T2D vs control)
June 2021 | Volume 12
Data is expressed as Mean ± SEM. RFU, relative fluorescent units; BL, baseline; H, hypoglycemia.
TABLE 1 | Demographic and clinical characteristics of the study participants.

Baseline Type 2 Diabetes
(n = 23)

Controls
(n = 23)

p-value

Age (years) 64 ± 8 60 ± 10 <0.0001
Sex (M/F) 12/11 11/12 0.77
Weight (kg) 90.9 ± 11.1 79.5 ± 8.8 <0.0001
Height (cm) 167 ± 14 169 ± 5 0.64
BMI (kg/m2) 32 ± 4 28 ± 3 <0.0001
Systolic BP (mmHg) 132 ± 8 122 ± 8 0.001
Diastolic BP (mmHg) 81 ± 7 75 ± 6 0.003
Duration of diabetes
(years)

4.5 ± 2.2 N/A

HbA1c (mmol/mol) 51.2 ± 11.4 37.2 ± 2.2 <0.0001
HbA1c (%) 6.8 ± 1.0 5.6 ± 0.2 <0.0001
Total cholesterol (mmol/l) 4.2 ± 1.01.0 4.8 ± 0.77 0.02
Triglyceride (mmol/l) 1.7 ± 0.7 1.34 ± 0.6 0.06
HDL-cholesterol (mmol/l) 1.1 ± 0.3 1.5 ± 0.4 0.001
LDL-cholesterol (mmol/l) 2.23 ± 0.8 2.7 ± 0.87 0.051
CRP (mg/l) 3.10 ± 2.87 5.30 ± 1110.03 0.66
BMI, Body mass index; BP, Blood pressure; HDL-cholesterol, High density lipoprotein
cholesterol; LDL-cholesterol, Low density lipoprotein cholesterol; CRP, C-reactive protein;
HbA1c, Hemoglobin A1c.
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4h vs baseline: 9947 ± 225 vs 9037 ± 188 RFU of VEGF,
p=0.003) (Figure 4B).

Plasma RAS and sNRP1 Related Proteins
in Response to Hyperglycemia in T2D
To determine whether hyperglycemia affects the levels of RAS or
sNRP1 associated proteins, we performed correlation analysis
between the change in blood glucose from hyperglycemia
(baseline) to normoglycemia with basal levels of plasma
Frontiers in Endocrinology | www.frontiersin.org 5
RAS-related proteins (Renin, ANG and ACE2) (Supplementary
Figure 1A) and plasma sNRP1 related proteins (sNRP1, VEGF,
SEMA3A and ADAM17) (Supplementary Figure 1B). Our data
indicate that none of the proteins differed in response to
hyperglycemia in T2D.

Gender Stratification
We next sought to determine whether sNRP1 related proteins
differ between males and females in response to changes in
A B C

FIGURE 3 | Correlation of plasma levels of soluble NRP1 (sNRP1) with basal levels of renin angiotensinogen system (RAS) proteins. Correlation of soluble NRP1
(sNRP1) with Renin (A), angiotensinogen (ANG) (B) and angiotensin-converting enzyme 2 (ACE2) (C). No correlation of sNRP1 with these RAS proteins was found in
either T2D or control subjects. Control subjects, open black circles; T2D subjects, solid blue squares; ns, not significant.
A B

C

FIGURE 2 | Circulatory levels of Neuropilin-1 (soluble neuropilin-1, sNRP1) in plasma before, during and after iatrogenic induction of hypoglycemia. Blood sampling
was performed at baseline (BL), euglycemia (30 min before hypoglycemia in type 2 diabetes (T2D) only), at hypoglycemia (0 min) and post-hypoglycemia (30 minutes,
1-hour, 2-hours, 4-hours and 24-hours). At baseline (BL), blood glucose (BG) was 7.6 ± 0.4 mmol/L (for T2D) and 5.0 ± 0.1 mmol/L (for control, C). At glucose
normalization, BG was 4.5 ± 0.07 mmol/L (for T2D). At the point of hypoglycemia, BG was 2.0 ± 0.03 mmol/L (for T2D) and 1.8 ± 0.05 mmol/L (for control).
(A) Effect of glucose normalization on plasma sNRP1 levels in T2D (black squares) and control (open squares) subjects. (B), Changes in sNRP1 levels in response to
hypoglycaemia and post-hypoglycemic timepoints in control (white circles) and in T2D (black squares) subjects. (C), Effect of glucose normalization and
hypoglycaemia on plasma levels of sNRP1 in T2D patients who were treated with ACE inhibitors (ACEi) (black squares) and those without ACEi therapy (white
squares). *p < 0.05, T2D vs control; Hypo, hypoglycaemia; RFU, relative fluorescent units; ns, not significant.
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Moin et al. Neuropilin-1 in T2D
glycemia. Stratification of plasma levels of sNRP1, VEGF,
SEMA3A and ADAM17 based on gender demonstrated no
significant differences in their levels at baseline or hypoglycemia
in control subjects (Supplementary Figures 2A, B); nor at
baseline, normoglycemia, or hypoglycemia in T2D subjects
(Supplementary Figures 2C–E).
DISCUSSION

Here we report the levels of soluble neuropilin-1 (sNRP1), NRP1
proteolytic enzyme ADAM9 and NRP1 ligands, VEGF and
SEMA3A, in response to insulin-induced hypoglycemia in
obese patients with T2D. Our data demonstrate that soluble
sNRP1, VEGF or SEMA3A and ADAM9 levels did not differ
from control subjects in the basal condition in obese T2D;
however, an alteration of their levels was observed in response
to insulin-induced hypoglycemia. An elevation of sNRP1 levels
in association with its proteolytic enzyme as well as ligands post-
hypoglycemia suggests the possible connection of glycemic
control with NRP1 cleavage in obese T2D subjects.

NRP1, a transmembrane glycoprotein, was initially identified
as a receptor for class 3 semaphorins (SEMA3A), which are
negative mediators of neuronal guidance (2, 22). NRP1 also
functions as a high-affinity co-receptor for a number of vascular
endothelial growth factor (VEGF) isoforms, in particular
VEGF165, and enhances its activity in functions such as
endothelial cell migration (23, 24). NRP1 is a single spanning
transmembrane glycoprotein consisting of a large extracellular
domain, a very short transmembrane domain and a short
cytoplasmic domain. The NRP1 extracellular domain is divided
into: (i) an A domain consisting of two a-domain repeats (a1a2)
homologous to the complement proteins C1r and C1s, (ii) a B
domain consisting of two b-domain repeats (b1b2) (25). In
addition to the membrane form, a naturally occurring soluble
NRP-1 protein (sNRP1) containing only the extracellular a1/a2
and b1/b2 domains is generated by alternative splicing of the
Frontiers in Endocrinology | www.frontiersin.org 6
NRP-1 gene (26) and this is capable of binding VEGF165 and
SEMA3A (27). Therefore, sNRP1 is thought to function as a
natural inhibitor of the membrane NRP1 by sequestering its
ligands (3). Our data also demonstrate a simultaneous increase
of sNRP1 and VEGF (4h post-hypoglycemia), suggesting a
possible sNRP1 and VEGF interaction after the induction of
hypoglycemia in obese T2D. sNRP1-induced ligand sequestration
(by binding with VEGF) may block the interaction of VEGF and
membrane-bound NRP1 (21); therefore, this action may reduce
angiogenesis in severe COVID-19 disease and decrease the risk of
SARS-CoV-2 cellular infectivity. Additionally, akin to sNRP1
antagonism of VEGF165 as an antiangiogenic agent (3), sNRP1
may bind to SARS-CoV-2 virus, preventing its binding to tissue
NRP1 thus hindering or preventing its tissue entry.

There is evidence to suggest that increased sNRP1, seen here
following insulin-induced transient hypoglycaemia but also as a
consequence of strict glycemic control, might offer protection
against COVID-19 disease severity. Optimizing glycemic control
during hospitalization has been associated with a reduction in the
risk of severe disease and death in patients with COVID-19 (28).
Moreover, in a subset comparison of age and risk-matched
COVID-19 patients with pre-existing T2D and poor glucose
control (blood glucose >10.0 mmol/L), there was a reduction in
mortality from 11.1% to 1.1% with significantly lower d-dimer, C-
reactive protein (CRP) and interleukin 6 (IL6) when glucose was
maintained in a range of 3.9-10 mmol/L (29). Since our data also
demonstrated an increased plasma sNRP1 level 4-h post insulin-
induced hypoglycaemia, it is highly likely that glycemic control-
mediated improvement of severity in COVID-19 patients is
associated with elevated sNRP1. However, further studies with
blood sampling from COVID-19 patients should be performed to
measure sNRP1 levels and to study the correlation between sNRP1
and COVID-19 risk factors (for example, CRP, d-dimer and IL6) in
response to glycemic control in order to elucidate the mechanism.

The mechanism increasing sNRP1 levels in obese T2D in
response to hypoglycemia is unclear; however, post-
hypoglycemic ADAM9 levels were also higher at similar
A B C

FIGURE 4 | Plasma levels of A Disintegrin and Metalloproteinase 9 (ADAM9), class 3 semaphorins (SEMA3A) and vascular endothelial growth factor (VEGF) before,
during and after iatrogenic induction of hypoglycemia. Changes in plasma ADAM9 (A), VEGF (B) and SEMA3A (C) levels in response to hypoglycaemia and post-
hypoglycemic timepoints in control (white circles) and T2D (black squares) subjects. *p < 0.05, **p < 0.01, control vs T2D; ^p < 0.05, control hypoglycaemia vs
control post-hypoglycemia timepoints; &p < 0.05, &&p < 0.01, T2D hypoglycaemia vs T2D post-hypoglycemia timepoints; ##p < 0.01, T2D 2-h post-hypoglycemia vs
T2D 4-h post-hypoglycemia. Hypo, hypoglycemia; RFU, relative fluorescent units.
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timepoints as the elevated sNRP1 levels in T2D cases. ADAM9 is
a disintegrin and metalloproteinase involved in a wide array of
cellular processes, especially those involving cell to cell
interactions, adhesion, cell-matrix interactions, growth factor
and cytokine signalling (30–32). Membrane-bound NRP1 is
proteolytically cleaved by ADAM9 (or ADAM10) to produce
its soluble form, sNRP1 (4). Here, ADAM9 was increased at 4-
hours post-hypoglycemia in T2D and at 24-hours post-
hypoglycemia in both T2D and control subjects. This suggests
that ADAM9-mediated shedding of membrane bound NRP1
may potentiate elevated levels of sNRP1 over a prolonged period
of time following a hypoglycaemic event.

Our data also demonstrate post-hypoglycemic elevation of
plasma SEMA3A in T2D. SEMA3A levels have been reported to
be significantly elevated in the vitreous fluid of patients with
diabetic macular edema (33) and proliferative diabetic retinopathy
(PDR) (34) via NRP1. Serum SEMA3A levels have also correlated
with the phenotypes of diabetic retinopathy (35). Since secreted
semaphorins (SEMA3 class) generally require NRPs as obligate
co-receptors to interact with their surface receptors (36), it is likely
that sNRP1 would also interact with SEMA3A in obese T2D in
response to hypoglycemia. Thus, hypoglycemia-induced sNRP1
may pose a risk for diabetic microvascular complications which, in
turn, may enhance the poor outcome of COVID19 severity in
obese patients with T2D. However, apart from the connection of
sNRP1 and risk of SARS-Cov-2, hypoglycemia-induced elevation
in sNRP1 might also indicate a possible link between glucose
counter-regulation and VEGF-NRP1 signalling in liver and kidney
in T2D because sNRP1, but not NRP1, mRNA is expressed in liver
hepatocytes and kidney distal and proximal tubules. On the other
hand, NRP1 but not sNRP1, is expressed in liver veins and
glomerular capillaries (3).

This study further showed that, whilst plasma renin was
elevated, and angiotensinogen suppressed in T2D (5), that
there were comparable levels of ACE2 and sNRP1 proteins
between T2D and control subjects. In T2D, the sNRP1 levels
did not change in response to normoglycemia or hypoglycemia
regardless of whether or not the T2D subjects were on
antihypertensive medication (ACEi). This suggests that there is
RAS overactivation in T2D, and this was not affected by either
acute normoglycemia or hypoglycaemia. However, sNRP1 levels
were elevated post-hypoglycemia in T2D, suggesting that this
hypoglycemic insult may result in a delayed but increased SARS-
CoV-2 susceptibility. However, it is not precisely known how
long that potential susceptibility window may last as blood
sampling was not undertaken between the 4-hour and 24-hour
post-hypoglycemia timepoints.

Whilst hyperglycemia may lead to more severe COVID-19
disease, the risk of hypoglycemia has also been shown to be
increased during the COVID-19 pandemic, especially for those
patients on the hypoglycemic agents sulphonylureas and insulin
(37) and, paradoxically, that may mean that those T2D patients
with the tightest, most optimal control (but with greater risk of
hypoglycaemia) may be at higher risk of infection.
Hydroxychloroquine may induce hypoglycemia in subjects with
and without diabetes (38) and it has been shown that prophylactic
hydroxychloroquine (HCQ) increases hypoglycemia in T2D (37);
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this may, therefore, conversely increase the subsequent risk of
SARS-CoV-2 susceptibility. Moreover, an Indian study of patients
with T2D revealed that the COVID-19 lockdown has been shown
to increase the risk of hypoglycemia in patients with T2D,
especially those receiving sulfonylureas (SU), insulin and HCQ,
and especially in patients with associated co-morbidities (37).
Notably, diabetic kidney disease (DKD), a co-morbidity
already associated with increased risk of hypoglycaemia in non-
COVID-19 infected patients due to factors such as reduced insulin
clearance and degradation (39, 40), was the co-morbidity most
frequently associated with hypoglycaemia during lockdown (37).

Study strengths include that these T2D subjects had a short
disease duration and were relatively medication naïve. Study
limitations include the small population under study and that
measurement of circulating sNRP1, ADAM9, VEGF and
SEMA3A may not reflect tissue levels; also, correlation of
sNRP1 was with renin proteins rather than renin activity. In
addition, the SOMAscan assay is designed as a discovery
platform and measures relative protein concentrations using
only external controls. Without internal controls and standard
curves, it remains unclear which measurements are within the
linear dynamic range (41); therefore, from a population point of
view the same trends and associations will be present, but
validation would be needed to individualise the results for
treatment that was not done for the proteins reported here.

In conclusion, this data shows that strict blood glucose
control associated with increased hypoglycemia potentiates
sNRP1 levels via a mechanism involving ADAM9-mediated
proteolytic cleavage of NRP1 that may continue to enhance
sNRP1 levels following the hypoglycemic episode, independent
of RAS activation or ACEi therapy. This post-hypoglycemia
elevation of plasma sNRP1 may place patients with pre-
existing obesity and T2D at increased risk for severe COVID19
disease; however, studies to clarify the role of sNRP1 in
COVID19 patients are needed to determine if it promotes risk
or affords protection for SARS-CoV-2 infection in T2D.
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Supplementary Figure 1 | Correlation of change of blood glucose from
normoglycemia to hyperglycemia with basal levels of renin angiotensinogen system
(RAS) proteins, Renin, angiotensinogen (ANG) and angiotensin-converting enzyme
2 (ACE2) (A) and sNRP1 related proteins, sNRP1, VEGF, SEMA3A and ADAM17
(B) in T2D. No correlation of hyperglycemia with those proteins was found T2D
subjects. Part A: Renin, open black circles; angiotensinogen (ANG), open blue
squares; ACE2, open red diamonds. Part B: NRP1, open black circles; SEMA3A,
open blue squares; ADAM9, open red diamonds; VEGF, open green triangles.

Supplementary Figure 2 | Gender stratification of RAS proteins or sNRP1
related proteins at baseline or at hypoglycemia. No significant differences between
male and female in the levels of sNRP1, VEGF, SEMA3A or ADAM17 at baseline and
hypoglycemia in control (A, B); and at baseline, normoglycemia and hypoglycemia
in T2D (C–E).
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