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Review

Introduction

The world-wide demand for recombinant therapeutic and diag-
nostic proteins requires exploring plant-based protein expression 
platforms supplementing existing prokaryotic production systems.1 
A number of valuable human recombinant proteins have already 
been successfully produced in plant-based systems,2-5 ranging from 
soil-grown plants to plant cells grown in a bioreactor. Cells may be 
used to transiently express the protein over a relatively short time 
period or be genetically engineered to stably express any recom-
binant protein. Plants offer the general advantage of a high plant 
biomass, the ability to perform post-translational modifications 
on complex proteins when passed through the secretory pathway, 
correctly folding and assembling complex proteins as well as being 
relatively safe due to the absence of human pathogens.6

Several approaches with various non-food or non-feed plant 
species, such as tobacco, are currently used for recombinant pro-
tein production. In particular, vacuum infiltration as well as infil-
tration of the tobacco leaf surface with Agrobacterium cells using a 
syringe were recently introduced as more effortless techniques for 
protein production. This avoids bio-safety concerns of genetically 
engineered transgenic plants and lengthy plant transformation 
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Plants are increasingly used as alternative expression hosts for the 
production of recombinant proteins offering many advantages 
including higher biomass and the ability to perform post-
translational modifications on complex proteins. Key challenges 
for optimized accumulation of recombinant proteins in a plant 
system still remain, including endogenous plant proteolytic 
activity, which may severely compromise recombinant protein 
stability. Several strategies have recently been applied to improve 
protein stability by limiting protease action such as recombinant 
protein production in various sub-cellular compartments or 
application of protease inhibitors to limit protease action. A 
short update on the current strategies applied is provided here, 
with particular focus on sub-cellular sites previously selected 
for recombinant protein production and the co-expression of 
protease inhibitors to limit protease activity.
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and selection procedures. These two transient expression tech-
niques are also better suited to satisfy any short-term demand 
for a recombinant protein with leaf harvest occurring within 
days.7,8 With these transient techniques the recombinant protein 
is expressed in leaves after infection with Agrobacterium cells car-
rying the protein coding sequence for the recombinant protein. 
An appropriate signal sequence may direct protein accumulation 
to a particular cellular compartment, which influences protein 
post-translational modifications and protein yield, depending on 
the resident proteases. Proteolysis may occur in planta or dur-
ing protein extraction and harvesting, often requiring protease 
inhibitors to be added to the extraction buffer to improve protein 
stability and yield.9 However, this strategy is expensive and is sel-
dom economically viable with regards to large scale extractions.

The purpose of this short review is to give an overview on 
the current knowledge of protease action on recombinant pro-
teins produced in plants and to provide an update of some cur-
rent strategies applied to improve recombinant protein stability 
in plant-based production systems.

Proteases Act on Recombinant Proteins

Protease abundance in plant tissues represents a severe bur-
den to effective recombinant protein production.10 The degree of 
proteolysis, either partial or complete, depends on the amino acid 
sequence of the recombinant protein, susceptibility of sites to pro-
teolytic action and also the number of protease-susceptible sites. 
Studies on plant proteases have advanced substantially and a more 
detailed understanding of the role of proteases, particularly in 
growth, development and pest resistance, is emerging. Hundreds 
of plant genes encode for proteins involved in proteolysis. In the 
model plant Arabidopsis, about 1900 genes involved in peptide 
bond hydrolysis have already been identified, but only a small 
number of proteases has so far been characterized, with the biologi-
cal function of only around 40 proteases elucidated.11,12 Plants with 
larger genomes are likely to also have a higher number of proteases 
with highly polymorphic activity profiles in different plant species. 
Protease functions include assembling and disassembling proteins 
as well as removing damaged, mis-folded or potentially harmful 
proteins.13,14 Based on their active site residues for catalysis, most 
proteases can be distinguished as serine, cysteine, aspartic, and 
metallo-types14 with serine proteases consisting of about 200 mem-
bers, and the cysteine, aspartic, and metallo-type proteases about 
100 members in each class (http://merops.sanger.ac.uk).15
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the apoplast to which recombinant proteins can be secreted. For 
secretion, proteins travel from the endoplasmic reticulum (ER) 
through the Golgi apparatus to the cell surface.

The cytosol and the vacuoles
Undesired protein modifications changing protein structure 

folding may occur in the cytosol.23 The cytosolic ubiquitin-pro-
teasome proteolytic pathway further degrades any improperly 
folded protein.24 Recombinant proteins are generally poorly accu-
mulated when expressed in the cytosol,25 and this compartment 
is often regarded as unsuitable for effective recombinant protein 
production.

Lytic vacuoles are also unsuitable for recombinant protein 
deposition due to their high protease content. Protein storage 
vacuoles, abundant in seeds, are more suitable for protein accu-
mulation. Targeting proteins to the storage vacuoles is achieved 
by a specific amino acids sequence, or sorting signal, within the 
primary sequence of the protein.26 An example of vacuolar accu-
mulation of recombinant proteins achieved through vacuolar-
targeting can be found in the case of dog gastric lipase produced 
in transgenic tobacco plants.27

The ER and the Golgi
The ER has been the production site for several recombinant 

proteins of industrial and pharmaceutical value. Directing a 

In Nicotiana species, often used for recombinant protein 
production, the majority of proteases are of aspartic or cysteine 
type (papain-like cysteine proteases) and to a lesser extent serine 
and metallo-type.16-18 When recombinantly expressing proteins 
in Nicotiana, the leaves of N. benthamiana is considered to con-
tain lower protease activity compared with leaves of N. tabacum, 
consisting mostly of cathepsin L- and legumain-like cysteine 
proteases.19 Table 1 outlines the type of proteases and their local-
izations so far identified in the different plant species previously 
used for recombinant protein production.

Selecting the Cellular Compartment  
for Recombinant Production

A cellular localization with limited proteolytic activity may be 
interesting for recombinant protein stability and ultimately yield. 
Protease activity is pH dependent and proteases therefore reside in 
different cellular compartments favorable for their respective activ-
ities. These enzymes are found in various cellular compartments 
including the cytosol, the vacuole, the chloroplast, the mitochon-
dria, and the lysosome.19-22 Figure 1 provides an overview of the 
different classes of proteases active in the different compartments 
of a plant cell. A number of proteases are extracellular, residing in 

Table 1. Cellular locations for recombinant protein production in various plant host and types of proteases identified at these locations

Host Protein Compartment Protease References

Solanum tuberosum cv 
Desireé

Sea anemone equistatin
Secretory pathway, lytic 

vacuole, eR
Arginine/lysine-specific, legumain-type 

Asn-specific cysteine
1

Nicotiana tabacum cv 
Samsun NN

Monoclonal mouse igG1 Apoplast Cysteine, aspartic 2

Nicotiana tabacum L. Cv. 
Samsun

Glutathione reductase Cytosol Cysteine 3

Solanum tuberosum plantlets, 
cv Kennebec

human α1-antichymotrypsin Cytosol Aspartic, serine 4

Oryza sativa L. cv Dongin
Human granulocyte–macrophage 

colony stimulating factor
Secretory pathway Cysteine 5

Oryza sativa L. cv Dongin
Synthetic serine proteinase inhibi-

tor ii gene
extracellular Serine 6

Oryza sativa L. cv Dongin
Human granulocyte–macrophage 

colony stimulating factor
extracellular Serine 7

Solanum tuberosum L., cv 
Kennebec

Bovine aprotinin Cytosol, eR, apoplast Serine 8

Nicotiana tabacum cv BY-2 Human α1−antichymotrypsin
eR, Golgi, apoplast, 

extracellular
Serine 9

Nicotiana tabacum L. Oryzacystatin−1 eR, chloroplast Cysteine 10

Nicotiana tabacum (var. 
xanthi)

Human igG1κ antibody Apoplast Cysteine, aspartic, serine 11 and 12

Solanum tuberosum L., cv 
Kennebec

Tomato cathepsin D inhibitor (CDi), 
Bovine aprotinin

Cytosol, eR Serine 13

Nicotiana tabacum cv “81v9” Spider dragline silk eR Serine 14

Solanum tuberosum L., cv 
Kennebec

Tomato cathepsin D inhibitor 
(SlCDi)

Cytosol Aspartic, serine 15

Nicotiana tabacum Monoclonal antibodies Secretory pathway Serine 16

Solanum lycopersium var PeD Human α1−proteinase inhibitor
eR, apoplast, vacuole, 

cytosol
Serine 17
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proteases act in the secretory pathway with pepsin-like (A1), 
papain-like (C1), trypsin chymotrypsin-like (S1), subtilisin-like 
(S8), and serine carboxypeptidase-like (S10), the most repre-
sented protease families.19 Unintended processing of recombi-
nant proteins along this pathway by resident proteases has been 
reported by several research groups.35-37 Some examples include 
the systematic processing of mammalian antibodies and the par-
tial trimming of the anti-inflammatory bovine aprotinin protein 
at the C-and N-termini when retained in the ER.37,38 Cleavage 
of the C-terminal region of the human α1-anti-chymotrypsin by 
intracellular and apoplastic proteases when targeted to the secre-
tory pathway of BY-2 tobacco cells and subsequently detected in 
the culture medium is another example of unintended processing 
that may occur.36

The apoplast and the chloroplast
A number of recombinant proteins have been successfully 

expressed in the apoplast with expression of the human inter-
leukin 6 in N. benthamiana recently reported as an excellent 
example.39 However, abundance and poor specificity of pro-
teolytic enzymes in the apoplast is still a major obstacle.10,17,32,35 
Intact bovine aprotinin was for instance detected in the apoplast 
of transgenic potato leaves, but final yields in planta were much 
lower when compared with retaining the protein in the ER. In 
the apoplast proteins are generally exposed to a large number of 
proteases. The apoplast of N. tabacum leaves primarily contains 

protein toward the ER results in greater protein yield and lower 
proteolysis when compared with the cytosol.10 The value of ER 
retention has been previously demonstrated where a ER retention 
signal increased human anti-HIV 2G12 levels in N. benthamiana 
plants.28 Higher expression of ER-retained proteins has also been 
demonstrated for a structural poly-protein, P1–2A, as well as for 
a 3C protease from FMDV serotype O when stably expressed 
in foliar tomato extract.29 In contrast, when a signal peptide 
such as the CTB signal peptide is absent, expression of the viral 
protein is not detectable possibly due to degradation within the 
cytoplasm during, or immediately after, synthesis.30 Proteins that 
are retained in the ER may also reside in protein bodies enhanc-
ing post-translational stability.31 Greater yield in the ER is very 
likely due to the action of chaperone proteins supporting proper 
protein folding.32 Folding and/or post-translational modification 
of recombinant proteins can however differ if post-translational 
processing occurs in the Golgi apparatus downstream of the 
ER.30 Recombinant proteins may be directed to this organelle via 
KDEL or HDEL signal peptides, however this may also result in 
undesired, structurally distinct, proteins due to non-native amino 
acid additions or non-authentic protein glycosylation patterns.32,33

The disadvantage of ER retention is the existence of ER pro-
teolytic pathways acting on misfolded proteins. Misfolded pro-
teins are in some cases re-translocated into the cytosol by the 
ER machinery for proteasomal degradation.34 Several classes of 

Figure 1. Protease locations within plant cell subcellular compartments.
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trypsin inhibitor stabilized recombinant antibodies secreted by 
transgenic tobacco roots.49 The introduction of a synthetic serine 
protease inhibitor II gene further decreased protease activity in 
transgenic rice callus, indicating its potential as a “companion” 
inhibitor for higher accumulation of a recombinant human gran-
ulocyte–macrophage colony stimulating factor.50 Human inter-
leukin 2, a pharmaceutically important cytokine, was also found 
to be protected against proteolytic action when a trypsin inhibi-
tor I and silk protease inhibitors were co-expressed in transgenic 
tobacco plants.51 The potential of a tomato cathepsin D inhibitor 
as an “in-built” stabilizing agent for recombinant proteins in situ 
and during the recovery process was further reported for trans-
genic potato plants.9,18 In addition, the in vivo expression of a 
tomato cathepsin D inhibitor (SlCDI) resulted in an increase in 
leaf protein content with transient expression of human AACT 
(α

1
-anti-chymotrypsin) significantly higher in transgenic lines 

expressing the SlCDI inhibitor.9 Co-expression of an aspartic/
serine “companion” inhibitor also greatly increased leaf apoplast 
protein content with more murine diagnostic antibody (C5–1) 
co-secreted in the apoplast.19

There is still very limited knowledge on cysteine protease 
inhibitors as “companions” possibly due to observations that 
less activity has been found in plant systems for cysteine prote-
ases when compared with serine proteases. In a first attempt to 
demonstrate potential of such strategy, co-expression of the rice 
cystatin OC-I decreased cysteine protease activity resulting in a 
stabilizing effect on isolated Rubisco.9 SlCYS9, an inhibitor of 
papain- and legumain-like cysteine proteases, had no impact on 
apoplast-based production, but stabilized the C5–1 antibody in 
planta, presumably upstream in the secretory pathway.19 In our 
group, we investigated the use of an “in-built” protein stabiliz-
ing agent in genetically engineered tobacco plants expressing 
OC-I in the cytosol.52 Constitutively expressing the rice cystatin 
in tobacco leaves lowered overall cysteine protease activity and 
increased the amounts produced of enzymatically active recom-
binant glutathione reductase, which was used as a model enzyme, 
when the enzyme was transiently produced in transgenic tobacco 
leaves after agroinfiltration.

Challenges Ahead

Proteolysis caused by plant endogenous proteases is still 
a key challenge severely compromising recombinant protein 
yield. However, there is a constant search for new production 
systems not only to ease purification but also to limit proteoly-
sis. Targeting recombinant proteins either to oil bodies or roots 
for rhizo-secretion are recent attractive new strategies for easier 
purification as well as to limit proteolysis.53,54 The advantage 
of rhizo-secretion to leaf based-production is that after secre-
tion the hydroponic culture medium has lower and less complex 
levels of proteolytic enzymes when compared with leaf extracts. 
Engineered carnivorous plants have also recently been suggested 
as production platform systems.55 Carnivorous plants express and 
transport digestive enzymes into the traps, where any enzymes 
would be directly accessible for purification in a viscous and 
sticky liquid without plant destruction allowing continuous 

aspartic-, cysteine- and serine-type proteases17 while the apoplast 
in N. benthamiana leaves show preferential activity of aspartic- 
and serine-type proteases.19

A fairly new strategy to improve recombinant protein stabil-
ity and achieve of higher yields is production in the chloroplast 
compartment of genetically engineered plants.40 Chloroplast 
engineering has several advantages including uniform protein 
expression rates, multiple copies of an integrated transgene and 
low gene silencing. High plastid number per cell and maternal 
inheritance of chloroplast DNA leading to minimal transgene 
escape are also among the advantages.40 Examples of chloroplast-
based production of a recombinant protein include production 
of a cholera toxin B-pro-insulin fusion in transgenic lettuce and 
tobacco41 and production of the VP1 structural protein from the 
foot-and-mouth disease virus in tobacco chloroplasts.42 It was 
also recently reported that a chloroplast-derived vaccine candi-
date was stable at room temperature for 20 months.43 Despite this 
success, the inability to perform more complex post-translational 
modifications, such as glycosylation, or to perform protein sub-
unit assembly and proper protein folding, are disadvantages in 
a chloroplast-based production system. In addition, endogenous 
proteases are present in the chloroplast that may compromise 
recombinant protein accumulation. For instance, high protein 
accumulation of the rotavirus VP6 protein was found in young 
tobacco leaves whereas in older leaves the amount of VP6 protein 
decreased possibly due to proteolytic degradation.44

Preventing Protease Action

Different strategies have been proposed to minimize unintended 
proteolysis in planta.10,32 Some strategies involve the targeting of 
recombinant proteins to specific cellular locations using peptide 
sorting signals45 or the addition of a stabilizing fusion partner to the 
protein of interest. Elastin-like peptide (ELP) fusions for instance 
improved the stability of a recombinant antibody and affinity-puri-
fied antibodies had kinetic binding parameters identical to an ELP-
free antibody produced in Chinese hamster ovary cells.46

An interesting, relatively new strategy is to minimize prote-
olysis by co-expression of a recombinant “companion” protease 
inhibitor in a transgenic plant or in plants transiently expressing 
recombinant proteins.18 Recombinant protease inhibitors have 
been previously applied as anti-digestive compounds for crop 
protection against insect herbivory or pathogenic infection.47 
Pleiotropic effects for these proteins have also been reported 
in planta causing altered growth characteristics and protec-
tion against abiotic stresses.47,48 Co-expression of a “compan-
ion” might also be an economically viable option to replace the 
costly addition of protease inhibitors during recombinant pro-
tein recovery and the protein purification process. Knowledge 
of individual characteristics of each recombinant protein and 
its sensitivity to proteases is, however, required to decide which 
inhibitor, or combination of inhibitors, might work best. Since 
serine protease activity is a major protease activity in plant cells, 
work has in the past been predominantly focused on serine prote-
ase inhibitors active against chymotrypsin and trypsin-like prote-
ases. Co-expression and co-secretion of a soybean Bowman–Birk 
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of cysteine protease expression.57 However, identification of par-
ticular proteases involved in recombinant protein degradation is 
required to avoid any protease involved in vital cellular processes 
required for growth and development from being targeted.

Future research might also focus on identifying the specific 
inhibitors of proteases involved in recombinant protein degrada-
tion. A better understanding of the exact nature of these inhibi-
tors would allow the design of more active inhibitors. Design by 
amino acid mutagenesis would optimize their inhibitory activity 
for application as a “companion” protease inhibitor in either tran-
sient or stable expression of a recombinant protein via genetically 
engineered plants where proteins and the inhibitor are targeted to 
cellular compartments high in protein production.19 Application 
of transgenic plant material expressing a recombinant protein 
in addition to co-expressing a “companion” protease inhibitor 
is, however, rather complex due to pleiotropic effects caused by 
inhibitor expression affecting plant growth and development.48 
There is so far only limited knowledge about these protease 
inhibitor actions. Such a strategy might also be problematic when 
inhibition involves targeting proteases in the secretory pathway.38 
Although such an inhibitor approach might be a major obstacle 
in a transgenic plant and/or seed approach, this might possibly 
be less problematic in short-term transient expression of a recom-
binant protein, which lasts only a few days.

Recent genomic and proteomic approaches have allowed 
the large-scale identification of proteases and the elucidation 
of their particular roles in cellular metabolism. This expanding 
knowledge will certainly help, in forthcoming years, to develop 
new techniques for high-throughput analysis of protease activ-
ity and identification of target proteins. This will also advance 
our knowledge on recombinant protein stability and application 
of this knowledge in the future will be critical to significantly 
improving plant-based recombinant protein production.
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harvest. The limitation of this system is the presence of prote-
ases in the juice which might affect recombinant protein stability. 
However, all these recent new technologies, although interesting, 
have so far resulted in insufficient protein yields to be considered 
commercially viable and the search for new innovative produc-
tion systems for stable recombinant protein production should 
therefore be an ongoing activity.

Searching for plant species with low proteolytic activity pro-
viding better recombinant protein stability should also be relevant 
in future activities. In comparison to prokaryotic systems, pro-
tease-deficient mutant plants do not exist for plant species cur-
rently used for recombinant production. More intense screening 
of plant species useful for recombinant protein production for low 
protease activity is therefore urgently required. This is in addition 
to detailed studies on identifying plant endogenous proteases and 
investigating their expression profiles in various cellular locations. 
Better knowledge of protease involvement in senescence processes 
might be particularly helpful to improve protein stability in any 
transient expression system, as almost all protease families have 
been associated with some aspects of plant senescence.56 There 
is evidence that leaf infiltration with Agrobacterium cells causes 
leaf senescence resulting in the expression of senescence-related 
proteases including cysteine proteases.52 Senescence, the final 
developmental stage of every plant organ, leads to cell death and 
senescence-associated proteolysis naturally enables the remobiliza-
tion of nutrients but might also degrade recombinant proteins.

Strategies for protein stabilization might also include applica-
tion of inducible promoters for induced synthesis of inhibitors or 
induced downregulation of proteases. In this regard, antisense or 
RNA silencing approaches could be of interest to contain prote-
olysis in the plant host. Indeed, first evidence that such a strategy 
might be successful has been recently demonstrated with rice cells 
where application of the RNA interference technology using a gene 
to express ihpRNA of α-amylase and cysteine protease resulted in 
a 2.4-fold increase in the production of human granulocyte-macro-
phage colony-stimulating factor (hGM-CSF) after downregulation 
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