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Abstract

Non-ionic deep eutectic solvents (DESs) are non-ionic designer solvents with various applications 

in catalysis, extraction, carbon capture, and pharmaceuticals. However, discovering new DES 

candidates is challenging due to a lack of efficient tools that accurately predict DES formation. 

The search for DES relies heavily on intuition or trial-and-error processes, leading to low success 

rates or missed opportunities. Recognizing that hydrogen bonds (HBs) play a central role in 

DES formation, we aim to identify HB features that distinguish DES from non-DES systems 

and use them to develop machine learning (ML) models to discover new DES systems. We 

first analyze the HB properties of 38 known DES and 111 known non-DES systems using 

their molecular dynamics (MD) simulation trajectories. The analysis reveals that DES systems 

have two unique features compared to non-DES systems: The DESs have ① more imbalance 

between the numbers of the two intra-component HBs and ② more and stronger inter-component 

HBs. Based on these results, we develop 30 ML models using ten algorithms and three types 

of HB-based descriptors. The model performance is first benchmarked using the average and 

minimal receiver operating characteristic (ROC)-area under the curve (AUC) values. We also 

analyze the importance of individual features in the models, and the results are consistent with the 

simulation-based statistical analysis. Finally, we validate the models using the experimental data 

of 34 systems. The extra trees forest model outperforms the other models in the validation, with an 

ROC-AUC of 0.88. Our work illustrates the importance of HBs in DES formation and shows the 

potential of ML in discovering new DESs.
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1. Introduction

Deep eutectic solvents (DESs) are liquid mixtures composed of hydrogen bond acceptors 

(HBAs) and donors (HBDs) that exhibit tunable properties [1–13]. DESs have gained 

attention as sustainable solvents in a number of applications, including carbon capture 

[2,14–16], pharmaceuticals [9,14,15,17–23], material synthesis [8,19,24], electrochemistry 

[9,14,25–37], decontamination [17,18], and extractions [6,8,24,38–41], due to their potential 

for recovery [42] and reuse [43]. Non-ionic DESs have several desirable properties—

including biodegradability, high conductivity, low volatility, and low toxicity—as compared 

with conventional solvents [2,8,38,43,44]. Popularly classified as type V DESs [4,14–16,38], 

non-ionic DES can be made using natural compounds and exhibit low viscosity, making 

them particularly suitable for industrial applications such as liquid–liquid extraction and 

carbon nanomaterial production [12,38,45].

One of the main challenges in the field of DES is the discovery of a large collection of DES 

candidates, which would enable the community to have a vast pool to explore and to search 

for the ones with the desired properties. Numerous experimental and computational studies 

have shown the important role of hydrogen bonds (HBs) in the formation and properties 

of DESs [1,2,4,9,14,15,39,42,46]. Farias et al. [43] carried out an experimental study to 

understand the role of the HBDs of DESs in aqueous biphasic systems. They concluded that 

HBDs with high relative hydrophilicity mainly serve as adjuvants in biphasic systems, while 

HBDs with moderate hydrophilicity control the formation of biphasic systems, and HBDs 

with low hydrophilicity (high hydrophobicity) form aqueous biphasic systems, with the 

HBAs acting as adjuvants in such systems. Abranches et al. [1] investigated the suitability 

of betaine, a molecule with polarity imbalance, as a universal HBA in the formation 

of DESs. Their study used a combination of experiments and density functional theory 

calculations and concluded that betaine is a suitable choice for producing natural DESs due 

to its non-selective nature, low cost, and low toxicity. These fundamental studies highlight 

the important role of HBs in DES formation and properties, indicating that HB-based 

descriptors could serve as suitable inputs to discover new DESs.

Machine learning (ML) models are becoming increasingly popular for predicting the 

physicochemical and thermophysical properties of DESs [17,19,46–51]. A review by 

Hansen et al. [15] summarized studies that developed quantitative structure–property 

relationship models for predicting DES properties [6,15]. Halder et al. [51] used a 

cheminformatics approach to determine the structural attributes of DESs necessary for 

accurate predictions of densities in industrial applications. They utilized a consensus 

modeling approach and concluded that features such as the number of HBDs, lipophilicity, 

polarizability, and van der Waals surface area could be used to obtain highly accurate 

estimates of novel DES densities. Dietz et al. [6] used perturbed-chain statistical association 
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fluid theory (PC-SAFT) modeling to predict the liquid–liquid equilibrium and solid–liquid 

equilibrium of mixtures of hydrophobic DES with water or hydroxymethyl furfural, 

demonstrating the efficacy of this approach for predicting the phase behavior of hydrophobic 

DES mixtures.

Other studies have employed ML algorithms to estimate the densities and viscosities of 

DESs. Abdollahzadeh et al. [19] compared seven ML algorithms and showed that least 

squares support vector regression had the highest accuracy in predicting the densities of 

149 DESs, performing 74.5% better than the best results obtained via empirical correlations. 

Zamora et al. [16] compared the suitability of five ML algorithms, trained on experimental 

data, to predict the densities and viscosities of type V DESs. Their study concluded that 

support vector machines performed best at predicting densities, and Gaussian process 

regression models did best at predicting viscosities. Xu et al. [50] used gradient boosting 

models to predict DES viscosities; their model showed satisfactory results when trained and 

tested on experimental and simulation data. Overall, these studies demonstrate the potential 

of combining ML and molecular simulations to predict the properties of DESs.

In contrast to other studies that focus on predicting the properties of DESs, our work aims 

to use ML models to predict the formation of DES systems. Molecular dynamics (MD) 

simulation has emerged as a valuable technique for determining descriptors to be used 

as inputs for ML models [14,24,46]. We hypothesize that HB properties could serve as 

predictors for the formation of DESs. However, determining the relevant HB properties is 

not trivial. Our previous work [52] classified non-ionic DESs into three groups based on the 

ratio of intra- and inter-component HB numbers. These observations inspired us to explore 

the possibility of developing ML models using HB-based descriptors. To the best of our 

knowledge, our work is the first to use ML models to classify solvents as DES or non-DES.

In ML model training, data is a crucial element. To facilitate our research, we curated a 

library of 38 known DES and 111 non-DES systems from the literature. The construction 

of this library allows us to conduct statistical analysis on molecular simulation data, which 

can be used to develop training and testing datasets for model development. We curated a 

separate library of 34 systems to validate our model performance. Given the size of our 

database, this paper focuses on traditional ML algorithms. We utilized ten ML algorithms; 

however, we acknowledge that deep learning algorithms have emerged as a promising 

technique for designing materials. One obstacle to using deep learning algorithms for 

predicting the formation of DESs is the relative sparsity of experimentally verified DESs 

in the literature. Models such as the one we developed could help speed up the discovery 

of novel DESs by generating solvent mixtures likely to form DESs. The rest of this paper 

is structured as follows: Section 2 provides details on the computational methods, Section 3 

presents the results and discussion, and Section 4 gives our conclusions.

2. Methodology

2.1. Library of DES and non-DES systems

Tables S1–S8 in Appendix A provide detailed information on the 183 systems that were 

simulated in this study. Of these systems, 38 are identified as known DES and 111 are 
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known non-DES systems, as reported in the literature. These comprised our training and 

testing set. Additionally, 34 experimentally verified systems (17 DES and 17 non-DES) 

were reserved for validation. Classification of the DES and non-DES systems is based on 

the experimental results of van Osch et al. [53,54], with only the non-ionic DESs from 

their list being considered. DESs that lacked all three types of HBs (A–A, B–B, and A–B) 

were excluded from this study. The compounds used in the simulation are represented 

using three-letter abbreviations, such as “DEA” for “decanoic acid.” We follow the naming 

conventions from van Osch et al.’s work, in which component A in a system A–B is 

the expected HBD, and compound B is the expected HBA. The systems are denoted by 

the three-letter abbreviations of their compounds and the corresponding molar ratio; for 

example, DEA–MEN11 represents a 1:1 mixture of decanoic acid and menthol. Tables S9–

S11 in Appendix A list the abbreviations used for chemical compounds in this study.

2.2. Molecular simulations

2.2.1. Molecular models—The all-atom optimized potentials for liquid simulations 

(OPLS-AA/M) force field [55] was used to describe the molecules in this study. The 

nonbonded and bonded parameters in the systems were determined based on the OPLS-

AA/M force field, due to its proven ability to accurately model the behavior of organic 

molecules. The force field parameters were generated using the LigParGen [56] web server.

2.2.2. Simulation detail—The simulation systems were created by randomly inserting 

specific numbers (based on the molar ratio) of the chosen organic molecules in a cubic 

box. Fig. 1 shows a snapshot of the THY–MEN11 system generated using visual molecular 

dynamics (VMD) [57].

For each system, the simulation process comprised three steps: ① an energy minimization to 

remove any atomic overlaps; ② a 50 ns isobaric–isothermal (NPT, where N is the number of 

particles, P is pressure (P = 1 atm, 1 atm = 101.325 kPa), and T is the temperature (T = 295 

K)) ensemble MD simulation to enable the system to reach thermodynamic equilibrium; and 

③ a 10 ns canonical (NVT, where V is the system’s volume and T = 295 K) ensemble MD 

simulation to collect the data at a frequency of 10 ps. In step ②, the MD simulation used the 

Berendsen et al.’s method [58] to control the system pressure, while the velocity rescaling 

[59] method was used to control the system temperature.

The short- and long-range nonbonded interactions in the OPLS-AA/M force field were 

calculated using the Lennard–Jones 12–6 and Coulomb potential (E), respectively, using Eq. 

(1).

E = ∑
i

∑
j < i

1
4πε0

qiqje2
rij

+ 4εij
σij
rij

12
− σij

rij

6

(1)

where rij is the distance between atoms i and j; qi and qj are the partial charges of atoms 

i and j, respectively; ε0 is the free space permittivity; and εij and σij are energetic and 

geometric parameters, respectively. The particle mesh Ewald (PME) [60] sum was used 
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to calculate long-range potentials, and the linear constraint solver (LINCS) algorithm [61] 

was used to constrain bonds involving hydrogen atoms. All energy minimization and MD 

simulations were conducted using GROMACS 2021.2 [62].

2.3. Hydrogen bond analysis

We characterized the HBs using the criteria developed by Luzar and Chandler [63]: ① 
the distance between the O(donor) and O(acceptor) is ≤0.35 nm; and ② the O(acceptor)–

H(donor)–O(donor) angle is ≤30°. We calculated the HB lifetime in two steps:

(1) Calculate the correlation function C(t), as shown in Eq. (2):

C t = NHB t
NHB 0

(2)

where NHB 0  is the ensemble average of the number of HBs at the initial status, and 

NHB t  is the ensemble average of the number of HBs still existing at time t. The HBs are 

counted even if they break intermittently, based on Rappaport’s definition [64].

(2) Calculate the lifetime τ by numerically integrating the C(t) curves.

2.4. Machine learning models

The literature-based library introduced in Section 2.1 contains more non-DES than DES 

systems, a data imbalance that may cause bias in model training. To attenuate this potential 

source of artificial effect, we curated a database containing 38 DES and 38 non-DES 

systems dedicated for each round of training during the ML model development. The 38 

non-DES systems were selected randomly from the original 111 non-DES systems in the 

library. We further split this database into a training set consisting of 30 DES and 30 

non-DES systems and a testing set consisting of eight DES and eight non-DES systems. 

We used fixed seeds when sampling from the DES and non-DES sets to ensure that all 

models were evaluated on the same dataset slices. All models were further validated with 

experimentally verified DES and non-DES systems, as described in Section 3.

We trained ten distinct ML algorithms utilizing algorithm implementations provided by 

the scikit-learn [65,66] and XGBoost [67] packages. These algorithms were: ① logistic 

regression, ② decision tree, ③ gradient boost, ④ AdaBoost, ⑤ random forest, ⑥ extra 

trees forest, ⑦ support vector machine, ⑧ k-nearest neighbors, ⑨ XGBoost, and ⑩ 
XGBoost-random forest. Hyperparameter optimization was performed using scikit-learn’s 

grid search method. Each model’s performance was measured via repeated k-fold cross-

validation with six folds and ten repeats, using the receiver operating characteristic (ROC)-

area under the curve (AUC) metric. The model with the highest ROC-AUC value during 

optimization was considered to be the best model. For each ML algorithm, subsequent 

training and testing were only conducted on the best-trained model.

HBs play a determining role in the formation of DESs. To obtain a full picture of the HB 

environment, it is imperative to know how many of the molecules in a system interact to 

Abbas et al. Page 5

Engineering (Beijing). Author manuscript; available in PMC 2024 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



form HBs (i.e., the HB number) and how long these HBs last (i.e., the HB lifetime). All ML 

algorithms consider three types of input features: ① HB numbers alone, ② HB lifetimes 

alone, and ③ HB numbers combined with lifetimes. The input features, generated from MD 

simulations, are shown in Tables S1–S8. A total of 30 models were trained in this study; the 

model hyperparameters are detailed in Tables S12–S14 in Appendix A.

The following Python packages were used to conduct the work presented in this study: 

Python (version 3.10.8), scikit-learn [66] (version 1.2.0), pandas [68] (version 1.5.2), 

NumPy [69] (version 1.22.3), matplotlib [70] (version 3.6.2), SciPy [71] (version 1.7.3), 

and XGBoost [67] (version 1.7.3). All ML work was executed on an 8th Gen Intel core 

i7–8750H processor.

2.5. Experiment

To validate the trained models, we used a list of solvent formulas from our previous study 

[72] to determine whether the formulas could form DESs or not. To prepare the systems, 

two components were mixed at a specific molar ratio, with heating and constant stirring 

to ensure complete mixing. More specifically, the required mass of each component was 

first calculated based on the molar ratio and sequentially weighed out into a glass bottle 

on an analytic balance (VWR-224AC, VWR International, USA). The compounds were 

pre-mixed using a glass rod, and a magnetic stir bar was subsequently added to the bottle. 

The bottle was then sealed and placed in an oil bath for heating. The temperature was 

generally maintained at 80 °C, with constant stirring at 500 r·min−1 for 1 h on a magnetic 

stirrer hotplate (Hei-Tec, Heidolph Instruments, Germany). For combinations that did not 

form a homogeneous liquid at this temperature, higher temperatures of 100 and 120 °C 

were further applied to check whether these combinations could transform into the liquid 

state at elevated temperatures. After the heating process, the mixture was air-cooled to room 

temperature and kept in a desiccator for 24 h. Samples that remained in a liquid form with 

no crystals within the 24 h period were considered to be DES candidates. However, we 

observed that some systems initially exhibited DES-like behavior but eventually formed a 

solid phase after several days. These systems were excluded from this study. Finally, 17 DES 

and 17 non-DES systems were selected.

3. Results and discussion

3.1. Statistical analysis of hydrogen bond features

3.1.1. Hydrogen bond number features—We first analyzed the probability density 

distribution of actual Inter- and intra-component HB numbers for DES and non-DES 

systems. Fig. 2 shows the distribution of the 38 DES and 111 non-DES systems based 

on their average inter- and intra-component HB numbers. The pattern distributions in Fig. 

2 do not show distinct differences. As depicted in Fig. 2(a), the intra-component HB 

numbers (A–A and B–B) for the DESs skew to the left, indicating that most of the DESs 

in our dataset have average HB numbers that are less than 20. The B–B HB numbers 

are concentrated on the lower end of the spectrum compared with the A–A HBs. The 

inter-component HB numbers skew to the right, suggesting that most of the DESs have 

higher inter-component HB numbers compared with intra-component HB numbers. In Fig. 

Abbas et al. Page 6

Engineering (Beijing). Author manuscript; available in PMC 2024 September 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2(b), the intra-component HB numbers for the non-DESs also skew to the left. In addition, 

most of the inter-component HB numbers are skewed to the right. Thus, based on an analysis 

of Fig. 2, the actual number of intra- and inter-component HBs may not be a suitable HB 

feature to differentiate between DES and non-DES systems.

Distinct patterns emerge when plotting the average inter- and intra-component HB numbers 

as boxplots for DES and non-DES systems. As shown in Figs. 3(a) and (b), the DES 

systems present a large difference between the median values for the two intra-component 

HB numbers (A–A vs B–B) compared with the non-DES systems. In addition, the inter-

component HBs in the DES systems exhibit a median value of 56.07, 6%–83% higher than 

the median values of A–A and B–B. For the non-DES systems, the A–B HBs only present a 

median value of 48.36, 55%–59% higher than those of A–A and B–B, respectively. In both 

the DES and non-DES systems, even when the intra-component HB numbers (A–A and B–

B) are summed up, the inter-component HB number (A–B) is still greater. Such differences 

in the median imply that the ratio of the two intra-component and the inter-/intra-component 

HBs may serve as important features for DES and non-DES system classification.

The plot of A–A/B–B and A–B/(A–A + B–B) in Fig. 3(c) further confirms our hypothesis. 

The ratio of inter- to intra-component HB numbers is well above 1.5 for some DESs. On 

average, the inter-component HB numbers are 35% greater than the total intra-component 

HB numbers for DESs. Finally, we looked at the ratio of the intra-component bonds to 

obtain more insight into the magnitudes of their differences. On average, the ratio of A–A to 

B–B HBs is 8.01 for DESs. For non-DESs, the ratio of A–A to B–B HBs falls to 3.44. The 

average intra-component HB numbers (A–A and B–B) for the non-DESs are roughly the 

same (24.31 and 24.08, respectively). The median HB numbers for A–A and B–B are also 

similar in non-DESs, at 20.01 and 21.41, respectively. This finding suggests that there is no 

dominant intra-component HB in non-DESs. This is also shown in Fig. 3(c), in which most 

of the intra-component HB number ratios are clustered around 1.0 for non-DESs, with few 

outliers. For non-DESs, the average inter-component (A–B) HB numbers are close to twice 

(1.93–1.95 times) those of the average intra-component (A–A and B–B) HBs, respectively. 

Relative to DESs, the ratios of intra-component HBs in non-DESs are also smaller. For 

example, in the 25th, 50th, and 75th percentiles, the DESs display A–A/B–B of 1.13, 1.91, 

and 15.51 compared with 0.15, 0.49, and 0.99 for the non-DESs. Tables S15 and S16 in 

Appendix A provide more details.

3.1.2. Hydrogen bond lifetimes—We also analyzed the probability density 

distribution of the inter- and intra-component HB lifetimes of the 38 DES and 111 non-DES 

systems. Across the bins, we observed two distinct scenarios for DESs: ① dominant inter-

component (A–B) HBs; and ② dominant intra-component HBs (A–A or B–B). This finding 

agrees with our previous work, in which we classified several known DESs into inter- or 

intra-dominant groups. In Fig. 4(a), one of the intra-component HB lifetime bonds (A–A) is 

concentrated at 2.0–4.0 ns, while the B–B lifetime is concentrated at 0.25–2.50 ns for DESs. 

The inter-component HB lifetimes (A–B) appear to skew to the right and to last longer than 

the intra-component HB lifetimes.
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Fig. 4(b) shows that one of the intra-component HB lifetimes for non-DESs dominates in 

different bins, but there is no clear trend; for example, B–B dominates at lifetimes less 

than 1.25 ns, but A–A dominates at lifetimes greater than 3.00 ns. In each bin, the A–B 

lifetimes appear to be more dominant than one of the intra-component HB lifetimes, while 

being similar to the other intra-component HB lifetimes. The lack of a clear pattern means 

that actual intra- and inter-component HB lifetime features alone might not be enough to 

differentiate between DES and non-DES systems.

Some differences emerge when we plot the intra- and inter-component HB lifetime 

distributions as boxplots. As shown in Fig. 5(a), the DESs present a small difference 

between the median values for the inter-component (A–B) and one of the intra-component 

(A–A) lifetimes; the difference is wider between the median values of A–B and the other 

intra-component (B–B) lifetimes. The A–B lifetimes have a median of 2.67, 14% and 39% 

greater than those of the A–A and B–B lifetimes, respectively. As shown in Fig. 5(b), 

the non-DESs present a smaller difference between the median values for the inter- and 

intra-component HB lifetime values. The A–B lifetimes have a median of 2.72, which is 

only 3.6% and 14.0% greater than those of the A–A and B–B lifetimes, respectively. These 

differences indicate that the ratios of inter- to intra-component HB lifetimes could be more 

useful as features than the actual lifetimes.

The plot of A–A/B–B versus A–B/(A–A + B–B) in Fig. 5(c) confirms this hypothesis. The 

A–A median lifetimes last about 7% longer than the B–B lifetimes in DESs, compared with 

13% for non-DESs. Even though there are more inter-component HBs than intra-component 

HBs, the intra-component HBs last longer. The median value of A–B/(A–A + B–B) lifetimes 

is 0.63 for DESs and 0.53 for non-DESs. The ratio of inter- to intra-component HB lifetimes 

in DESs varies from 0.5 to 2.0 while most of the non-DESs have ratios of inter- to intra-

component HB lifetimes clustered around 0.5. Similar to the HB numbers, ratios of the HB 

lifetimes might be more useful as features than the actual lifetime values.

3.2. Model development

We trained 30 models with ten algorithms (logistic regression, decision tree, gradient boost, 

AdaBoost, random forest, extra trees forest, support vector machine, k-nearest neighbors, 

XGBoost, and XGBoost-random forest) and three types of input features (HB number, HB 

lifetime, and a combination of HB number and lifetime features) to predict whether a system 

could be a DES. For each type of input feature, we used the five variables mentioned 

in Section 3.1 (A–A, B–B, A–B, A–A/B–B, and A–B/(A–A + B–B)). We trained each 

model for 100 rounds and calculated the average ROC-AUC values from each of the 100 

rounds. The ROC is a probability curve, and the AUC represents the degree or measure 

of separability. The ROC-AUC shows how much the model is capable of distinguishing 

between classes. The higher the AUC, the better the model is at predicting DES classes to 

be DESs and non-DES classes to be non-DESs. For each round, we randomly sampled 38 

(30 for training, eight for testing) entries each from the DES and non-DES datasets. In each 

round, a six-fold grid search cross-validation was used for hyperparameter optimization, 

with the ROC-AUC as a metric. To ensure a fair comparison, each model was trained 
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and tested with the same samples from the DES and non-DES datasets. Figs. S1–S11 in 

Appendix A show the variation in the ROC-AUC for each model during training.

We ranked the models using two criteria: ① average ROC-AUC score (Table 1), and ② 
minimum ROC-AUC score (Table 2).

With an average ROC-AUC score of 0.70, the AdaBoost and extra trees forest classifiers 

were tied for the best performing models when trained with HB lifetime features. When 

trained with HB number features, XGBoost-random forest, random forest, and XGBoost 

were the top-performing models, with an average ROC-AUC of 0.82, 0.81, and 0.81, 

respectively. When HB number and lifetime features were combined, the top-performing 

models were the random forest and XGBoost-random forest classifiers, with both having 

an average ROC-AUC of 0.79. Overall, the top-performing models were the XGBoost-

random forest and extra trees forest, based on the average and minimum ROC-AUC values, 

respectively.

The minimum ROC-AUC score in 100 training rounds could also be used to evaluate 

the performance of a model. Table 2 lists the minimum ROC-AUC scores for the 30 

models. The minimum ROC-AUC scores trained with HB lifetime features alone range from 

0.15 to 0.30, lower than those trained with HB number or the number and lifetime. Such 

observations indicate that the HB lifetime alone might not be sufficient to develop an ML 

model for classifying DES systems. Across all categories, the extra trees forest classifier had 

the highest minimum ROC-AUC score of 0.70 when trained with HB number.

Some algorithms were among the top performers regardless of the criteria used for model 

selection. For models trained with HB numbers, the top-performing model was the extra 

trees forest, based on the minimum ROC-AUC, and this model was only slightly behind the 

XGBoost-random forest when judged by the average ROC-AUC score. For models trained 

with HB lifetime features, the extra trees forest and the AdaBoost were the top performers 

using either the average ROC-AUC scores or the highest minimum ROC-AUC scores. 

Among the models trained with the combined HB number and lifetime features, the extra 

trees forest classifier was the top performer using the highest minimum ROC-AUC score 

or the average ROC-AUC score. However, it should be noted that the stellar performance 

observed during training does not necessarily translate into excellence in the validation 

stage, as will be seen in the next section.

3.3. Model validation with experimental results

We validated the 30 trained models using 34 experimental results (17 DES and 17 non-DES 

systems). The results are presented in Table 3.

For models trained with the HB lifetime features, the XGBoost-random forest, logistic 

regression, and extra trees forest were the top performers, with ROC-AUC values of 0.68, 

0.65, and 0.65, respectively, during validation. Support vector machine, extra trees forest, 

and gradient boost were the top performers, with ROC-AUC values of 0.80, 0.79, and 0.77, 

respectively, when the models were trained with the HB number features. Extra trees forest, 

logistic regression, and gradient boost were the top-performing models, with ROC-AUC 
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values of 0.88, 0.84, and 0.81, respectively, among the models trained with both HB number 

and lifetime. In general, the ensemble algorithms (bagging and boosting) were observed to 

perform well. Bagging algorithms such as random forest, extra trees forest, and decision 

tree build and train independent estimators, and then average the independent predictions of 

these estimators to make a final prediction. This can help reduce variance in predictions and 

increase accuracy. The boosting algorithms (XGBoost, XGBoost-random forest, AdaBoost, 

and gradient boost), on the other hand, train several estimators sequentially. Each estimator 

focuses on reducing the errors of the previous estimator, and this typically reduces bias.

Fig. 6 presents confusion matrices for the top-performing models under each of the three 

input feature categories during validation. The confusion matrices present true positives, 

true negatives, false positives, and false negatives for each model’s predictions. In this 

study, DESs are positives, while non-DESs are negatives. The sensitivity measures how 

many DESs were correctly predicted to be DESs, while the specificity measures how many 

non-DESs were correctly predicted to be non-DESs by a model. Some models were better 

at predicting DESs (high sensitivity), while some were better at predicting non-DESs (high 

specificity).

XGBoost-random forest was the top-performing algorithm among the models trained with 

HB lifetime features. It performed best at predicting which systems were DESs, as shown 

by its high sensitivity of 0.82 (Fig. 6(a)), but it was not good at predicting which systems 

were non-DESs (with a low specificity of 0.47, Fig. 6(a)). Among the models trained 

with HB number features, the support vector machine was the top-performing algorithm. 

It had a specificity of 0.88 (Fig. 6(c)), which means that it performed best at predicting 

which systems were non-DESs. Its low sensitivity of 0.35 (Fig. 6(c)) means that it was 

not good at predicting DESs. When models were trained with combined HB lifetime and 

number features as inputs, the extra trees forest model performed best. It had a sensitivity 

of 0.76 (Fig. 6(e)), indicating it was among the top performers at predicting which systems 

were DESs. It had a specificity of 0.94 (Fig. 6(e)), indicating it was the top performer at 

predicting which systems were non-DESs. Relative to the top-performing models in other 

input feature categories, the extra trees forest algorithm was the best overall at predicting 

DESs and non-DESs. The confusion matrices for all models are shown in Figs. S18–S20 in 

Appendix A.

3.4. Prediction probabilities

‘Prediction probabilities are useful indicators of how well each model separates DESs 

and non-DESs. A model with good separation capability would have all its non-DES 

predictions with the probability of being DES < 0.5 and as close to 0 as possible, and its 

DES predictions with the probability of being DES > 0.5 and as close to 1 as possible. 

Fig. 7 presents the distribution of prediction probabilities for the best models during 

validation. It can be seen from the probabilities in Fig. 7(a) that the predictions of the 

XGBoost-random forest are closely distributed around 0.49 to 0.51, suggesting that there 

is not much separation for models trained with HB lifetime features. Notably, all of the 

XGBoost-random forest’s 14 DES predictions made with confidence > 0.5 were correct. 

The separation improves in Fig. 7(b), with the probabilities distributed around 0.46 to 
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0.54, suggesting that HB number features helped the models detect non-DESs relatively 

better than HB lifetimes alone. This is backed up by the observation that all 15 non-DES 

predictions made by the support vector machine model with the probability of being DES 

< 0.5 were correct. The probabilities are distributed between 0.30 and 0.70 in Fig. 7(c), 

indicating better confidence in the extra trees forest model’s predictions when HB number 

and lifetime features were combined as inputs. The extra trees forest model shows better 

separation in its classifications and is relatively more confident in its non-DES predictions, 

and this is backed up by its specificity of 0.94 (Fig. 6(e)). It got only one non-DES 

prediction wrong. The prediction probabilities for all the other models are shown in Figs. 

S21–S23 in Appendix A.

It is useful to have some insight into which input features carry the most weight when 

the ML models make predictions. Fig. 8 shows how the models ranked the importance of 

input features. Models that were trained with HB lifetime features alone over-whelmingly 

ranked the ratio of inter- to intra-component HB lifetime as the most important feature for 

predictions, followed by the inter-component HB lifetime. When trained with HB numbers 

features alone, the models ranked the inter-component HB numbers as the most important 

feature; however, it should be noted that the ratio of inter- to intra-component HB numbers 

was not far behind in second place. When number and lifetime were combined, the trained 

models ranked the inter-component HB numbers as the most important feature, closely 

followed by the ratio of inter- to intra-component HB lifetimes.

4. Conclusions

We analyzed the HB features of 38 known DES and 111 known non-DES systems using MD 

simulation trajectories. The statistical analysis of inter- and intra-component HB numbers 

and lifetimes revealed two unique features for DES systems in comparison with non-DES 

systems: The DESs exhibited an imbalance between the two intra-component HB numbers, 

and more and stronger inter-component HBs. We then developed 30 ML models by training 

ten algorithms on three types of input features and validated the models using 17 DES and 

17 non-DES systems that had been experimentally verified. Using the two criteria of highest 

average and highest minimum ROC-AUC scores, we found the logistic regression, gradient 

boost, support vector machine, and extra trees forest models among the top performers 

when trained using the HB lifetime, number, and combined lifetime and number features. 

When testing against the experimental validation, the extra trees forest classifier was the 

top-performing model overall, with an ROC-AUC of 0.88 with the HB number and lifetime 

combined as inputs. Intuitively, it makes sense that models would perform better when 

fed information about the population of HB numbers and how long those HBs last. All 

models ranked the inter-component and the ratio of inter- to intra-component HB number 

and lifetime as the most important features for classifying a system as a DES or not.

DESs are promising solvents that hold huge potential. Due to the sheer size of the candidate 

pool, it is important to have models that can accurately predict which compounds will or will 

not form DESs when mixed. The purpose of the ML models developed in this work was to 

determine whether a binary system could be a DES based on MD simulation data. These ML 

models could assist in DES research by accelerating the discovery of new DES candidates. 
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Our work sheds light on which compounds are likely to form DESs but does not suggest 

what their physicochemical properties are likely to be. In the future, more work needs to be 

done to predict which compounds will form DESs with application-specific properties.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
A snapshot of the equilibrated THY–MEN11 system. The molecules are displayed in 

Corey–Pauling–Koltun (CPK) model (color scheme of atoms: C, cyan; O, red; H, white).
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Fig. 2. 
Probability density distribution of average inter-component (A–B) and intra-component (A–

A and B–B) HB numbers: (a) DES systems and (b) non-DES systems.
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Fig. 3. 
HB number features for DESs and non-DESs. (a, b) Distributions of average HB numbers: 

(a) DES systems and (b) non-DES systems. Starting from the bottom whisker, the boxplots 

show the minimum value; the 25th, 50th, and 75th percentile; and the maximum value. (c) 

Ratio of inter- to intra-component HB numbers vs ratio of intra-component HB numbers.
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Fig. 4. 
Probability density distribution of average inter-component (A–B) and intra-component (A–

A and B–B) HB lifetimes: (a) DES systems and (b) non-DES systems.
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Fig. 5. 
HB lifetime features for DESs and non-DESs. (a, b) Distributions of average HB lifetimes: 

(a) DES systems and (b) non-DES systems. Starting from the bottom whisker, the boxplots 

show the minimum value; the 25th, 50th, and 75th percentiles; and maximum value. (c) 

Ratio of inter- to intra-component HB lifetimes vs ratio of intra-component HB lifetimes.
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Fig. 6. 
Confusion matrices for the top-performing models during validation. (a, b) HB lifetime 

features: (a) XGBoost-random forest and (b) logistic regression. (c, d) HB number features: 

(c) support vector machine and (d) extra trees forest. (e, f) Combined HB number and 

lifetime features: (e) extra trees forest and (f) logistic regression. The color bar on the right 

indicates the performance of the models, with white to blue indicating the performance from 

bad to good.
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Fig. 7. 
Distribution of prediction probabilities for the top-performing models during validation: 

(a) XGBoost-random forest model verified with HB lifetime features; (b) support vector 

machine model verified with HB number features; and (c) extra trees forest model verified 

with combined HB number and lifetime features. The number of systems within each bin is 

indicated on the bars. The vertical dashed line indicates the classification threshold. Perfect 

models will have all non-DESs on the left and DESs on the right of the vertical dashed line.
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Fig. 8. 
Important features during training iterations for all models: (a) models trained with HB 

lifetimes; (b) models trained with HB numbers; and (c) models trained with both HB 

numbers and lifetimes. In part (c), the “_n” and “_l” subscripts denote HB number and 

lifetime features, respectively.
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Table 1

Average ROC-AUC values of the 30 models (best values are in bold).

Algorithm Lifetime Number Number + lifetime

Logistic regression 0.68 0.78 0.77

Decision tree 0.63 0.74 0.68

Gradient boost 0.66 0.78 0.76

AdaBoost 0.70 0.78 0.75

Random forest 0.69 0.81 0.79

Extra trees forest 0.70 0.80 0.78

Support vector machine 0.64 0.77 0.77

k-nearest neighbors 0.63 0.77 0.77

XGBoost 0.67 0.81 0.77

XGBoost-random forest 0.62 0.82 0.79
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Table 2

Minimum ROC-AUC scores for the 30 models (best values are in bold).

Algorithm Lifetime Number Number + lifetime

Logistic regression 0.25 0.55 0.50

Decision tree 0.30 0.50 0.45

Gradient boost 0.25 0.50 0.40

AdaBoost 0.30 0.40 0.38

Random forest 0.30 0.45 0.45

Extra trees forest 0.30 0.70 0.55

Support vector machine 0.15 0.10 0.10

k-nearest neighbors 0.30 0.45 0.45

XGBoost 0.20 0.50 0.45

XGBoost-random forest 0.20 0.55 0.45
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Table 3

ROC-AUC values of the trained models when tested with validation data (top-performing model under each 

feature type has its ROC-AUC value in bold).

Algorithm Lifetime Number Number + lifetime

Logistic regression 0.65 0.66 0.84

Decision tree 0.52 0.69 0.65

Gradient boost 0.57 0.77 0.81

AdaBoost 0.61 0.74 0.66

Random forest 0.54 0.76 0.79

Extra trees forest 0.65 0.79 0.88

Support vector machine 0.56 0.80 0.80

k-nearest neighbors 0.47 0.53 0.57

XGBoost 0.61 0.65 0.74

XGBoost-random forest 0.68 0.69 0.79
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