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Asthma is commonly recognized as a heterogeneous condition with a complex
pathophysiology. With advances in the development of multiple medications for
patients with asthma, most asthma symptoms are well managed. Nevertheless,
5% to 10% of adult asthmatic patients (called severe asthma) are in uncontrolled
or partially controlled status despite intensive treatment. Especially, severe eo-
sinophilic asthma is one of the severe asthma phenotypes characterized by eo-
sinophilia in sputum/blood driven by type 2 immune responses. Eosinophils
have been widely accepted as a central effector cell in the lungs. Some evidence
has demonstrated that persistent eosinophilia in upper and lower airway mucosa
contributes to asthma severity by producing various mediators including cyto-
kines, chemokines and granule proteins. Moreover, extracellular traps released
from eosinophils have been revealed to enhance type 2 inflammation in patients
with severe asthma. These novel molecules have the ability to induce airway
inflammation and hyperresponsiveness through enhancing innate and type 2
immune responses. In this review, we highlight recent insight into the function
of eosinophil extracellular traps in patients with severe asthma. In addition, the
role of eosinophil extracellular vesicles in severe asthma is also proposed. Finally,
current biologics are suggested as a potential strategy for effective management
of severe eosinophilic asthma.
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INTRODUCTION

logical mechanisms [5,6]. Although the identification of
asthma subtypes based on clinical, functional and molec-

Asthma is a complicated inflammatory disease in the low-
er airways presenting diverse pathophysiological charac-
teristics [1]. To understand the key features of asthma,
several studies have attempted to classify patients accord-
ing to asthma phenotypes (clinical presentations) and
endotypes (molecular pathways) [2,3]. Asthma was once
divided into non-atopic (intrinsic) and atopic (extrinsic)
asthma; however, this classification had limitations in
distinguishing between groups [4]. Recently, asthma has
commonly been classified as type 2 (eosinophilic) or non-
type 2 (non-eosinophilic) phenotype based on their bio-
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ular parameters becomes mandatory in the management
of asthma, 5% to 10% of the adult asthmatics still remain
refractory to current medications [7]. Among them, some
are suffering from more severe asthma symptoms and
frequent exacerbations with poor quality of life due to lo-
cal and systemic eosinophilia [8]. Emerging evidence has
revealed the importance of eosinophils in both patho-
genesis and treatment of severe asthma [9]. This review
summarizes (1) the characteristics of severe asthma based
on phenotypes and endotypes, (2) the distinct function of
eosinophils, and (3) current biologics for better symptom
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control in severe eosinophilic asthma.

CHARACTERISTICS OF SEVERE ASTHMA

To date, several studies have deepened our understand-
ing of the clinical characteristics of severe asthma. Most
patients with severe asthma have consistent features such
as frequent/severe asthma exacerbations and progressive
lung function decline [10-12], require high-dose inhaled
corticosteroids (ICSs) with an additional controller and/
or systemic corticosteroids, but their symptoms are not
fully controlled with currently available medications
[13,14]. Severe asthma is composed of diverse phenotypes
according to distinct pathophysiological processes; how-
ever, these phenotypes overlap in terms of clinical/phys-
iological outcome and response to treatment [15]. Severe
eosinophilic asthma is different from non-severe eosino-
philic asthma, although these 2 phenotypes share similar
characteristics of eosinophilia in asthmatic airways [16].
It is shown that patients with severe eosinophilic asthma
are older, and present higher peripheral/airway eosino-
philia, higher fractional exhaled nitric oxide levels and
frequent exacerbations, whereas those with non-severe
eosinophilic asthma are younger and present higher se-
rum total/specific IgE levels which can be suppressed by
anti-inflammatory agents [17-19]. Moreover, persistent
airflow limitation and higher prevalence of upper airway
pathologies such as chronic rhinosinusitis (CRS)/nasal
polyposis (NPs) (with mucosal eosinophilia), are com-
monly noted [20]. In addition, there is a special phenotype
of severe eosinophilic asthma called aspirin-exacerbated
respiratory disease (AERD) which is characterized by (1)
nonsteroidal anti-inflammatory drug hypersensitivity, (2)
moderate to severe persistent asthma, and (3) higher prev-
alence of CRS/NPs (where intense eosinophilia is noted in
upper and lower airway mucosa) and commonly found in
middle-aged females. Major pathogenic mechanisms are
activated type 2 responses/eosinophils and overproduc-
tion of cysteinyl leukotrienes [21]. Furthermore, recent
studies have highlighted the role of epithelial cells inter-
acting with eosinophils (via activated surfactant protein
D or folliculin) [22-25). Therefore, further understandings
about distinct functions of eosinophils may provide the
right targets and biologics in the management of severe
eosinophilic asthma.
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CLINICAL SIGNIFICANCE OF EOSINOPHILS IN
SEVERE ASTHMA

Eosinophils have been highlighted as the hallmark of
severe eosinophilic asthma. They are major effector cells
contributing to the pathogenesis of asthma by inducing
type 2 inflammation and airway hyperresponsiveness
(AHR) [26]. It has also been well demonstrated that eo-
sinophils enhance type 2 immune responses by releas-
ing several molecules such as cytokines, chemokines
and granule proteins in response to parasitic helminth,
bacterial, fungal and viral infection as well as allergens
[27]. Persistent airway inflammation induced by eosin-
ophils leads to constant tissue damage, resulting in
smooth muscle thickening, goblet cell hyperplasia and
extracellular matrix protein deposition called airway
remodeling [28]. In inflammatory conditions, eosino-
phils produce cytokines (interleukin 2 [IL-2], IL-4, IL-5,
IL-10, IL-12, IL-13, IL-16, IL-18, tumor necrosis factor-o
[TNF-0, and transforming growth factor-o/f), chemo-
kines (macrophage inflammatory protein 1 alpha [MIP-
10, regulated upon activation, normal T cell expressed
and secreted [RANTES], and eotaxin-1) and other factors
(vascular endothelial cell growth factor and metallopro-
teinases), and release granule proteins including major
basic protein (MBP), eosinophil cationic protein (ECP),
eosinophil peroxidase (EPO), and eosinophil-derived
neurotoxin (EDN) which were proven to damage airway
tissues in various ways [29]. Our recent study demon-
strated significantly elevated levels of serum EDN in
patients with severe asthma [30], suggesting that EDN,
an indicator of eosinophils degranulation, is closely as-
sociated with asthma severity. In addition, emerging ev-
idence has revealed that activated eosinophils produce
novel molecules, such as extracellular traps or extracel-
lular vesicles (EVs), which will be discussed in the fol-
lowing paragraphs.

Interactions between eosinophils and other immune
cells exacerbate asthma symptoms (Fig. 1). Eosinophils
certainly respond to IL-5 produced by T cells [31-33]. In
the lungs, T cells are the main source of IL-5, which is
critical for the recruitment, proliferation, survival and
activation of eosinophils. Moreover, neutrophils are
involved in eosinophil stimulation to induce airway in-
flammation by producing extracellular traps in severe
asthma [34]. An important role of neutrophils interacting
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Figure 1. Interactions between eosinophils and various immune cells contributing to airway inflammation in severe asth-
ma with a type 2 phenotype. PAMP, pathogen-associated molecular pattern; DAMP, damage-associated molecular pattern;
Thi/2/17, type 1/2/17 T helper cells; ILC2, type 2 innate lymphoid cell; M¢, macrophage; DC, dendritic cell; GM-CSF, granu-
locyte-macrophage colony-stimulating factor; ECP, eosinophil cationic protein; EPO, eosinophil peroxidase; EDN, eosino-
phil-derived neurotoxin; TSLP, thymic stromal lymphopoietin; NET, neutrophil extracellular traps; EET, eosinophil extracel-
lular traps; CysLT, cysteinyl leukotriene; PGD2, prostaglandin D2; TNF-q, tumor necrosis factor-a; IFN-y, interferon-gamma;

1L, interleukin.

with eosinophils has also been suggested in occupation-
al asthma [35]. Dendritic cell activation and migration
could be promoted by EDN released from eosinophils
[36]. Furthermore, eosinophils extensively communicate
with tissue-resident mast cells [37]. Thus, activation, de-
granulation, interaction, survival and migration of eo-
sinophils should be suppressed for the management of
patients with severe asthma.

ROLE OF EOSINOPHIL EXTRACELLULAR TRAPS
IN SEVERE ASTHMA

Immune function (innate and adaptive immunity) is
classically defined as a host defense to recognize and
eliminate pathogens. In innate immunity, neutrophils
have been intensively studied as the first line of barrier
against pathogen invasion. Neutrophil phagocytosis is a
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well characterized innate immune mechanism; howev-
er, an unexpected phenomenon has been also observed
that neutrophil-forming extracellular DNA fibers bind
to pathogens during host defense. These web-like chro-
matin structures were firstly found in neutrophils and
termed neutrophil extracellular traps (NETS) [38]. NET's
have been demonstrated to be implicated in multiple
diseases along with several immune-modulatory func-
tions [34,39,40]. Similar to neutrophils, extracellular
traps have subsequently been observed from other cells
including mast cells, monocytes, macrophages, and eo-
sinophils [41-44].

Eosinophils release web-like chromosomes upon ap-
propriate stimulation. DNA presented in extracellular
traps was shown to be of mitochondrial origin, and mul-
tiple granule proteins were co-localized in DNA strands
[45]. In addition, recent findings have suggested that
most extracellular traps are composed of histone-bound
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DNA that is nuclear in its origins [46]. The formation of
eosinophil extracellular traps (EETs) was once thought
to be processed by the non-apoptotic cell death path-
way [47,48] but these molecules were also found to be
released from activated eosinophils independently of
cellular cytoskeletal remodeling [49]. Moreover, EET
formation was induced by nicotinamide adenine dinu-
cleotide phosphate in an oxidase-dependent manner,
which is distinct from apoptosis and necrosis [46].

Although EETSs play an important role in innate
immunity against extracellular pathogens, they have
been related to host tissue damage, contributing to the
pathogenesis of allergic diseases [50]. Previous studies
have shown that EETS are often associated with blood
and tissue eosinophilia [45,51]. Harmful effects of EET's
on the airways of patients with asthma have also been
demonstrated [44,47]. Furthermore, the proportion of
eosinophils releasing extracellular traps was more ele-
vated under the condition of severe airway inflamma-
tion [52,53]. Although the mechanisms by which EETs
disturb immune responses have not been fully under-
stood, our recent study demonstrated that peripheral
EET-forming eosinophil and group 2 innate lymphoid
cell (ILC2) counts are elevated in severe asthmatics com-
pared to non-severe asthmatics, with a positive correla-
tion between them and higher levels of peripheral/lung
IL-33 and thymic stromal lymphopoietin (T'SLP) [54,55)-
An in vivo experiment showed that EETs could activate
ILC2s in lung tissues through stimulation of airway
epithelium to produce IL-33 and TSLP [54], which was
attenuated by anti-IL-33 antibody treatment, suggesting
that EET's play a crucial role in perpetuating type 2 air-
way inflammation in severe eosinophilic asthma. These
findings suggest that biologics targeting epithelial cy-
tokines may be beneficial in patients with severe eosin-
ophilic asthma (with steroid resistance) via suppressive
effects of the EET-ILC axis.

EOSINOPHIL EXTRACELLULAR VESICLES IN
SEVERE ASTHMA

In the past, EVs were thought to be cell debris, but now
it is certain that they are important mediators produced
by cellular processes [56]. EVs are small membranous
particles made up oflipid bilayers that contain biological
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information. Indeed, EVs are composed of a wide spec-
trum of molecules such as lipids, proteins, and nucleic
acids. In terms of a heterogeneous collection of mem-
brane-bound carriers, the function of EVs in cell-to-cell
communication has been emphasized [57]. In addition,
accumulating evidence supports that EVs are involved
in pathophysiological processes of chronic inflamma-
tory diseases such as cancer, metabolic disorders, and
allergic disease [58-61]. EVs can promote airway inflam-
mation through regulating recruitment, activation, and
differentiation of immune cells and structural cells. Al-
though every cell secretes EVs, especially eosinophils
from patients with asthma have been shown to release
larger amounts of EVs compared to those released from
eosinophils of healthy subjects. The higher levels of EVs
in asthmatic patients could lead to more serious symp-
toms when the EVs are stimulated to release their con-
tents [62,63). Furthermore, EV production was increased
when eosinophils were stimulated with eotaxin-1 or
TNF-a [64]. EVs derived from eosinophils contain the
components of granule proteins such as MBP, ECP, and
EPO; therefore, they similarly contribute to the patho-
genesis of asthma. Moreover, EVs released from patients
with asthma have been demonstrated to enhance eosin-
ophil migration by up-regulating the expression of ad-
hesion molecules [63]. A recent study has suggested that
EVs drive the progression of severe asthma [65]. Diverse
miRNAs in EVs have been proposed to be associated
with asthma severity [66]. Despite growing interest, the
exact mechanism of EVs in the pathogenesis of asthma
or any applicable therapy has not yet been found. Fur-
ther studies are needed to understand the role of eosin-
ophil-derived EVs, which enables us to understand the
complicated functions of eosinophils in asthmatic air-
ways. It is suggested that EVs derived from eosinophils
may be a potential biomarker for diagnosing asthma
and classifying its phenotypes, especially severe eosin-
ophilic asthma.

MANAGEMENT OF SEVERE ASTHMA

According to the Global Initiative for Asthma 2019
guidelines, severe asthma is defined as uncontrolled
asthma despite proper adherence to optimized step 4/5
therapy and treatment of contributory factors, or asth-
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ma which worsens when doses of anti-asthmatic medi-
cations are decreased [67]. As severe asthma is associated
with significant morbidity and mortality, several medi-
cations have been developed and used (Table 1). Conven-
tionally, ICSs with long-acting beta-agonists (LABAs) are
regarded as the first-line therapy for most patients with
severe asthma [68]. In addition, systemic corticosteroids
can often be administered as an add-on therapy to pre-
vent asthma exacerbation [11,13]. ICSs, known as gluco-
corticoids, are known to directly or indirectly suppress
various immune/structural cells and cytokines involved
in airway inflammation [69]. At the gene expression lev-
el, they increase or decrease various transcription fac-
tors related to airway inflammation [70]. They could in-
crease anti-inflammatory cytokines as well as decrease
inflammatory cytokines, chemokines, inflammatory
enzymes and adhesion molecules. At the cellular level,
corticosteroids inhibit survival or recruitment of vari-
ous inflammatory cells (such as eosinophils, T cells, and
mast cells) and structural cells including epithelial cells
in asthmatic airways [71]. Thus, ICS treatment could re-
duce the number of airway eosinophils and the recov-
ery of epithelial cell injury, improving AHR/lung func-
tions [72,73], and reducing asthma exacerbations [74].
Although an anti-inflammatory eftect of corticosteroids
is widely accepted, their use in clinical practice is still
limited because adverse effects of corticosteroids (in a
high-dose or long-term usage of systemic steroids) and
decreased responsiveness to corticosteroids (insensi-
tivity or steroid-dependence) have been found in some
patients with severe eosinophilic asthma [12,75,76]. Also,
since the dose-response curve of ICSs is flat, several add-
on therapies need to be included for the management
of patients with severe asthma who are not effectively
controlled with conventional anti-inflammatory medi-
cations such as medium-to-high doses of ICSs-LABAs
and additional anti-leukotrienes (LTRAs) [77]. Several
studies have shown that additional use of LABAs with
ICSs is more effective than escalating the dose of ICSs
in improving lung function and symptoms control [7§]
and in reducing the frequency of asthma exacerbations
[79,80]. However, there is the possibility that regular use
of LABAs could increase underlying inflammation in
asthma, such as delays in eosinophil apoptosis [81] or
blockade of apoptosis induced by corticosteroids [82].
LTRAs decrease eosinophil counts in blood and airways
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by blocking the cysteinyl leukotriene receptor 1 (cysL-
T1R) [83,84] and reduce exacerbations when combined
with ICSs [84]. CysLT's are important pro-inflammatory
mediators in asthma via increasing bronchoconstric-
tion, AHR, vascular permeability and inflammatory cell
recruitment [85]. Especially, CysLTs play important roles
in the survival, maturation and differentiation of eosin-
ophils as well as the release of IL-4, ECP, and EDN. Also,
eosinophils are major sources of CysLT by autocrine or
paracrine stimulation [86]. Recently, it has been reported
that human ILC2s express CysLT receptors; thus, Cys-
LTs are involved in ILC2 activation [87]. Corticosteroids
do not effectively inhibit the CysLT synthesis pathway
[71]. LTRAs do not completely suppress excessive CysLT
release in severe eosinophilic asthma or AERD [88]. It is
controversial whether LTRAs have an anti-inflammato-
ry effect on eosinophils and ILC2s especially in relation
to EETS, granule proteins, cytokines, and mediators.
Therefore, there are unmet needs to develop alternative
or additional medications for better control of eosino-
phils and severe asthma.

Many studies have been attempted to block the in-
teraction between IL-5 and its receptor in eosinophilic
inflammation because IL-5 is a key cytokine involved in
eosinophil growth, maturation, activation and surviv-
al. Benralizumab is a monoclonal antibody against the
alpha subunit of the IL-5 receptor. This antibody pro-
vides a potential benefit in decreasing exacerbation and
improving lung function in uncontrolled severe asth-
ma with elevated blood eosinophil counts by inducing
antibody-dependent cell-mediated cytotoxicity [89-91].
Mepolizumab and reslizumab, humanized monoclo-
nal antibodies against IL-5, neutralize circulating IL-5
and decrease the number of eosinophils in sputum and
blood [92-95], leading to improvement in lung function
in patients with severe eosinophilic asthma. IL-4 has
also been suggested to play an important role in the
differentiation and proliferation of type 2 helper T cells
and B cells [96,97]. Dupilumab, a human monoclonal
antibody against the alpha subunit of the IL-4 receptor
(an overlapping receptor of IL-4 and IL-13), is regard-
ed as a therapeutic agent of disease mediated by type 2
helper T cells. When this antibody was administered to
patients with persistently elevated eosinophil levels, a
significant decline in the frequency of severe exacerba-
tion was observed [98,99]. Recently, our data has shown
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that anti-IL-33 antibody reduces AHR and decreases
type 2 cytokine levels in an EET-induced inflammation
model in vivo [54]. Considering the critical role of EET's
in the pathogenesis of severe eosinophilic asthma, bi-
ologics targeting epithelial cytokines, especially IL-33,
may provide a potential benefit.

Eosinophilic inflammation is strongly associated
with type 2 cytokines, as well as allergen-specific IgE.
In addition, alarmin-like cytokines such as IL-33 and
TSLP, which are mainly released from airway epitheli-
um, are involved in the development of severe asthma
[55,100]. IL-33 activates myeloid and lymphoid innate
cells to exacerbate airway inflammation but stimulates
eosinophils as well [101]. TSLP is regarded as an IL-7-
like cytokine known to be important for inducing type 2
cytokine production, leading to the activation of eosin-
ophils [102]. In a previous study, the efficacy of human
monoclonal anti-TSLP antibody in patients with aller-
gic asthma was tested; a potential benefit in attenuating
airway inflammation was suggested [103]. Moreover, the
effect of anti-IL-33 or anti-T'SLP antibody on reduction
in AHR was demonstrated in vivo models [54]. Although
antibodies against IL-33 and TSLP are under clinical tri-
al, they can be a promising treatment for patients with
severe type 2 asthma.

Although various pharmacotherapy and biologics have
been approved for the management of severe asthma,
there remain unresolved issues about selecting proper
targets and patients for effective treatment, depending
on its phenotypes/endotypes. Further studies are need-
ed to find potential biomarkers for various phenotypes
and endotypes to implement precision medicine.

CONCLUSIONS

Accumulating evidence strongly supports heterogeneity
in severe asthma with distinct subtypes. Especially, an
important role of eosinophils in type 2 severe asthma
has been widely accepted as sputum/blood eosinophil-
ia is associated with more severe symptoms, more fre-
quent exacerbations and lower response to anti-inflam-
matory medications. Recent studies suggest that novel
molecules, including extracellular traps and vesicles re-
leased from eosinophils, could enhance type 2 immune
responses interacting with airway epithelium in the
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pathogenesis of severe eosinophilic asthma. However,
current anti-asthmatic medications have limitations in
completely controlling severe eosinophilic asthma; in-
stead, new biologics targeting eosinophils or epithelial
cells can provide potential benefits with some limita-
tions. The development of effective biologics in terms of
eosinophil function is essential for better management
of severe asthma.
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