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Abstract

Numerical investigations are an important research tool in quantum information theory.

There already exists a wide range of computational tools for quantum information theory

implemented in various programming languages. However, there is little effort in implement-

ing this kind of tools in the Julia language. Julia is a modern programming language

designed for numerical computation with excellent support for vector and matrix algebra,

extended type system that allows for implementation of elegant application interfaces and

support for parallel and distributed computing. QuantumInformation.jl is a new quan-

tum information theory library implemented in Julia that provides functions for creating

and analyzing quantum states, and for creating quantum operations in various representa-

tions. An additional feature of the library is a collection of functions for sampling random

quantum states and operations such as unitary operations and generic quantum channels.

Introduction

Numerical investigations are prevalent in quantum information theory. Numerical experi-

ments can be used to find counter examples for theorems, to test hypotheses or to gain insight

about quantum objects and operations.

The variety of software that supports investigations in quantum information theory is very

large. Yet there are niches that are not well covered. The purpose of QuantumInforma-
tion.jl library is to provide functions to create quantum states, manipulate them with

quantum channels, calculate functionals on these objects and sample them randomly from var-

ious distributions. QuantumInformation.jl package is available on-line at https://

github.com/ZKSI/QuantumInformation.jl and stored at Zenodo repository [1]. It is published

under GNU General Public License v3.0.

Related work

A comprehensive collection of software related to quantum mechanics, computation and

information can be found at Quantiki [2]—an on-line resource for quantum information
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research community. There exist several notable libraries aimed at numerical and symbolic

computation for quantum information theory. Two Mathemetica libraries—QI [3] and

TRQS [4]—were an inspiration for creation of QuantumInformation.jl. Additionally

the QUANTUM [5] library was implemented in Mathematica. A library called FEYNMAN
implemented in Maple, described in a series of papers [6–10], provides a wide variety of func-

tions. The above-mentioned libraries rely on non-free software and therefore their use can be

very limited as use of this software requires acquiring expensive licenses and its source code

cannot be studied by researchers. Therefore any results obtained using this software rely on

trust to the companies that produced it. Hence non-free software creates barriers for reproduc-

ibility of scientific results [11].

A widely celebrated and used framework QuTiP [12, 13] was written in Python. Python
posses many scientific computation libraries. It is free software and is widely used for scientific

computation. Nevertheless, as a general purpose programming language it has its limits. In

Python, implementations of multidimensional arrays and linear algebra routines are pro-

vided by NumPy [14] and SciPy [15] respectively. Unfortunately, due to low efficiency of

Python, many of the underling functions are implemented in C or Fortran programming

languages. Therefore, study and development of these routines is difficult and requires famil-

iarity with these low-level languages.

Julia [16], being a high-level just-in-time compiled language, is very efficient and there-

fore extremely useful for scientific computing. There are several libraries related to quantum

mechanics and quantum information written in Julia. Those are: QuantumInfo.jl [17],

Quantum.jl [18] and a collection of packages developed as a part of JuliaQuantum proj-

ect [19]. Unfortunately these development efforts stalled a couple of years ago. JuliaQuan-
tum project is very ambitious, but its scope seems to be too large to be implemented fully in a

relatively short amount of time. The only package whose development was successful is Quan-
tumOptics.jl—a Julia framework for simulating open quantum systems [20]. Yet the

applicability scope of this package is different than the one of QuantumInformation.jl.

Design principles

Our goal while designing QuantumInformation.jl library was to follow the principles

presented in the book “Geometry of Quantum States” [21]. We work with column vectors rep-

resenting kets and row vectors representing bras. We fix our basis to the computational one.

Density matrices and quantum channels are represented as two-dimensional arrays in the

same fixed basis. This approach allows us to obtain a low level of complexity of our code, high

flexibility and excellent computational efficiency. The design choices were highly motivated by

the properties of the language in which our library was implemented, namely Julia [22].

Julia is a novel scientific programming language mainly influenced by Python,

Matlab and Lisp programming languages. One of the main concepts widely used in

Julia is multiple dispatch i.e. an ability to dispatch function calls to different methods

depending on the types of all function arguments. The multiple dispatch mechanism together

with a simple yet flexible type system allows to build clean and easy to use programming inter-

faces. Julia is just-in-time compiled to machine code using LLVM [23] therefore, despite

being a high-level programming language, it can reach computation efficiency similar to C or

Fortran. Julia natively supports parallel and distributed computing techniques. Therefore

it is easy to write programs for Monte-Carlo sampling in Julia.

In Julia arrays are first class objects [24], and linear algebra operations are integrated

into the language standard library. The array system in Julia is designed in a way that mini-

mizes the amount of memory copying operations during transformations of arrays. Julia

QuantumInformation.jl—A Julia package for numerical computation in quantum information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0209358 December 26, 2018 2 / 45

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0209358


supports various representations of vectors and matrices. For these reasons a design decision

was made not to create library specific types but to rely on built-in standard library abstract

array types.

The QuantumInformation.jl library was initially developed in Julia 0.6 but then

subsequently it was ported to Julia version 1.0. Part of the functionality of the library,

namely the function that calculates the diamond norm of a quantum channel relies on

Convex.jl library [25]. Partial traces are implemented using TensorOperations.jl
library [26] that provides basic tensor contractions primitives.

Testing

The QuantumInformation.jl library was tested using standard Julia framework.

Tests where performed using three distinct approaches. In case of most of the functions the

basic properties, such as e.g. dimensions, norms, hermititicty, positivity, trace are tested,

where it was appropriate. Additionally some test cases where manually computed and used to

verify the obtained results. In the case of methods generating random objects such as random

matrices statistical properties of results are tested. For example in case of random unitary

matrices sampling we test phases distribution [27] of obtained matrices in order to ensure that

the unitary matrices are drawn according to the Haar measure.

Organization of the paper

In the section Linear algebra in Julia, we describe briefly how the linear algebra routines are

implemented in Julia. Next, in the section States and channels, we introduce the notions of

quantum states and quantum channels and we discuss how we implement these concepts in

Julia. Subsequently, the section Functionals focuses on functionals related with quantum

information processing, i.e. trace norm, diamond norm, entropy, fidelity or the PPT criterion.

Afterward, we show the usage of QuantumInformation.jl for modeling and application

of the quantummeasurements. The section Random quantum objects introduces probabilistic

measures on quatum states and channels and their implementation in Julia. Additionally,

we introduce some common random matrix ensembles. In section Benchmarks we provide a

comparison, in terms of code clarity and execution speed, of our library with the latest version

of QuTiP [12, 13]. Finally, in the section Conclusions and future work we present the final

remarks and outline possible future work.

Linear algebra in Julia

A basic construction of vector in Julia creates a full one-index array containing elements of

a number type as presented below.

julia> x = [0.0, 1.0im]

2-element Array{Complex{Float64},1}:

0.0 + 0.0im

0.0 + 1.0im

A transposition of a column vector returns an object of type LinearAlgebra.Transpose
as shown below
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julia> xt = transpose(x)

1×2 LinearAlgebra.Transpose{Complex{Float64},Array{Complex
{Float64},1}}:

0.0 + 0.0im 0.0 + 1.0im

While a Hermitian conjugate of the same vector returns a LinearAlgebra.Adjoint
parametrized by the type Array:

julia> xc = [0.0, 1.0im]’

1×2 LinearAlgebra.Adjoint{Complex{Float64},Array{Complex
{Float64},1}}:

0.0-0.0im 0.0-1.0im

Values of variables xt and xc are views of the value of variable x. The column and row vectors

behave like bras and kets, for example xc�x denotes the inner product of ‘bra’ xc and ‘ket’ x,

while x�xc denotes their outer product resulting in a two-index array.

The linear algebra library in Julia provides standard operations on matrices and vectors

that are designed to take into account the types of the objects.

States and channels

In this and the following sections we will denote complex Euclidean spaces Cd with X , Y,Z

etc. When needed the dimension of a space X will be denoted dimðXÞ. The set of matrices

transforming vectors from X to Y will be denoted LðX ;YÞ. For simplicity we will write

LðXÞ � LðX ;XÞ.

States

By jci 2 X we denote a normed column vector. Notice that any |ψi can be expressed as

jci ¼
Pn

i¼1
aijii, where

Pn
i¼1
jaij

2
¼ 1 and the set fjiigni¼1

is the computational basis.

julia> ket(1,2)

2-element Array{Complex{Float64},1}:

1.0 + 0.0im

0.0 + 0.0im

julia> (1/sqrt(2)) � (ket(1,2) + ket(2,2))

2-element Array{Complex{Float64},1}:

0.7071067811865475 + 0.0im

0.7071067811865475 + 0.0im
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According to common academic convention, we count the indices of states starting from one.

Following the standard Dirac notation the symbol hψ| denotes the row vector dual to |ψi.
Therefore |ψi = hψ|†, where the symbol † denotes the Hermitian conjugation.

julia> bra(2,3)

1×3 LinearAlgebra.Adjoint{Complex{Float64},Array{Complex
{Float64},1}}:

0.0-0.0im 1.0-0.0im 0.0-0.0im

The inner product of j�i;ci 2 X is denoted by hψ|ϕi and the norm is defined as

kj�ik¼
ffiffiffiffiffiffiffiffiffiffiffi
h�j�i

p
.

julia> ψ = (1/sqrt(2)) � (ket(1,2) + ket(2,2))

2-element Array{Complex{Float64},1}:

0.7071067811865475 + 0.0im

0.7071067811865475 + 0.0im

julia> � = (1/2) � ket(1,2) + (sqrt(3)/2) � ket(2,2)

2-element Array{Complex{Float64},1}:

0.5 + 0.0im

0.8660254037844386 + 0.0im

julia> �’ � ψ

0.9659258262890682 + 0.0im

julia> sqrt(�’ � �)

0.9999999999999999 + 0.0im

The form jcih�j 2 LðX ;YÞ denotes outer product of jci 2 Y and j�i 2 X .

julia> ketbra(2,3,4)

4×4 Array{Complex{Float64},2}:

0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 1.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im

QuantumInformation.jl—A Julia package for numerical computation in quantum information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0209358 December 26, 2018 5 / 45

https://doi.org/10.1371/journal.pone.0209358


Specifically, |ψihψ| is a rank-one projection operator called a pure state. Generally, any quan-
tum state ρ can be expressed as r ¼

Pn
i¼1
qijciihcij, where

Pn
i¼1
qi ¼ 1 and |ψiihψi| are rank-

one projectors. Notice that ρ is a trace-one positive semi-definite linear operator i.e.: ρ = ρ†,

ρ� 0 and trρ = 1.

julia> proj(ψ)

2×2 Array{Complex{Float64},2:

0.5+0.0im 0.5+0.0im

0.5+0.0im 0.5+0.0im

For convenience, the QuantumInformation.jl library provides the implementations

of maximally mixed, maximally entangled and Werner states.

julia> max_entangled(4)

4-element reshape(::Diagonal{Complex{Float64},Array{Complex
{Float64},1}},4)

with eltype {Complex{Float64}:

0.7071067811865475 + 0.0im

0.0 + 0.0im

0.0 + 0.0im

0.7071067811865475 + 0.0im

julia> max_mixed(4)

4×4 Array{Float64,2}:

0.25 0.0 0.0 0.0

0.0 0.25 0.0 0.0

0.0 0.0 0.25 0.0

0.0 0.0 0.0 0.25

julia> werner_state(4, 0.4)

4×4 Array{Complex{Float64},2}:

0.35+0.0im 0.0+0.0im 0.0+0.0im 0.2+0.0im

0.0+0.0im 0.15+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.15+0.0im 0.0+0.0im

0.2+0.0im 0.0+0.0im 0.0+0.0im 0.35+0.0im
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Non-standard matrix transformations

We will now introduce reshaping operators, which map matrices to vectors and vice versa. We

start with the mapping res : LðX ;YÞ ! Y � X , which transforms the matrix ρ into a vector

row by row. More precisely, for dyadic operators |ψihϕ|, where jci 2 Y, j�i 2 X the operation

res is defined as resðjcih�jÞ ¼ jcij��i and can be uniquely extend to the whole space LðX ;YÞ
by linearity.

julia> res(ketbra(1,2,2))

4-element reshape(::LinearAlgebra.Transpose{Complex
{Float64},Array{Complex{Float64},2}}, 4)

with eltype {Complex{Float64}:

0.0 + 0.0im

1.0 + 0.0im

0.0 + 0.0im

0.0 + 0.0im

The inverse operation to res is unres : Y � X ! LðX ;YÞ, which transforms the vector into a

matrix. It is defined as the unique linear mapping satisfying ρ = unres(res(ρ)).

julia> unres(res(ketbra(1,2,2)))

2×2 LinearAlgebra.Transpose{Complex{Float64},Base.Reshape-
dArray{Complex{Float64},2,LinearAlgebra.

Transpose{Complex{Float64},Array{Complex{Float64},2}},

Tuple{Base.MultiplicativeInverses.SignedMultiplicativeIn-
verse{Int64}}}}:

0.0+0.0im 1.0+0.0im

0.0+0.0im 0.0+0.0im

Let us recall that trace is a mapping Tr : LðXÞ ! C; given by Tr : r 7!
PdimðXÞ

i¼1
heijrjeii,

where {|eii} is an orthonormal basis of X . According to this, partial trace is a mapping

TrX : LðX � YÞ ! LðYÞ such that TrX : rA � rB 7!rBTrðrAÞ, where rA 2 LðXÞ, rB 2 LðYÞ.
As this is a linear map, it may be uniquely extended to the case of operators which are not in a

tensor product form.

julia> ρ = [0.25 0.25im; -0.25im 0.75]

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.0+0.25im
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-0.0-0.25im 0.75+0.0im

julia> σ = [0.4 0.1im; -0.1im 0.6]

2×2 Array{Complex{Float64},2:

0.4+0.0im 0.0+0.1im

-0.0-0.1im 0.6+0.0im

julia> ptrace(ρ � σ, [2, 2], [2])

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.0+0.25im

0.0-0.25im 0.75+0.0im

Matrix transposition is a mapping T : LðX ;YÞ ! LðY;XÞ such that (ρT)ij = ρji, where ρij is a i-
th row, j-th column element of matrix ρ. Following this, we may introduce partial transposition
GB : LðXA � XB;YA � YBÞ ! LðXA � YB;YA � XBÞ, which for a product state ρA� ρB is

given by GB : rA � rB 7!rA � r
T
B . The definition of partial transposition can be uniquely

extended for all operators from linearity.

julia> ptranspose(ρ � σ, [2, 2], [1])

4×4 Array{Complex{Float64},2}:

0.1+0.0im 0.0+0.025im 0.0-0.1im 0.025-0.0im

0.0-0.025im 0.15+0.0im -0.025+0.0im 0.0-0.15im

0.0+0.1im -0.025+0.0im 0.3+0.0im 0.0+0.075im

0.025-0.0im 0.0+0.15im 0.0-0.075im 0.45+0.0im

For given multiindexed matrix ρ(m,μ),(n,ν) = hmμ|ρ|nνi, the reshuffle operation is defined as

rR
ðm;mÞ;ðn;nÞ ¼ rðm;nÞ;ðm;nÞ.

julia> reshuffle(ρ � σ)

4×4 Array{Complex{Float64},2}:

0.1+0.0im 0.0+0.025im 0.0-0.025im 0.15+0.0im

0.0+0.1im -0.025+0.0im 0.025-0.0im 0.0+0.15im

0.0-0.1im 0.025-0.0im -0.025+0.0im 0.0-0.15im

0.3+0.0im 0.0+0.075im 0.0-0.075im 0.45+0.0im
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Channels

Physical transformations of quantum states into quantum states are called quantum channels

i.e. linear Completely Positive Trace Preserving (CP-TP) transformations. Probabilistic trans-

formations of quantum states are called quantum operations and mathematically they are

defined as linear Completely Positive Trace Non-increasing (CP-TNI) maps. For the sake of

simplicity we will refer to both CP-TP and CP-TNI maps as quantum channels when it will

not cause confusion.

There exists various representations of quantum channels such as:

• Kraus operators,

• natural representation, also called superoperator representation,

• Stinespring representation,

• Choi-Jamiołkowski matrices, sometimes called dynamical matrices.

Formally, properties of quantum channels can be stated as follows [28]. First, we introduce

the notion of superoperator as a linear mapping acting on linear operators LðXÞ and trans-

forming them into operators acting on LðYÞ. The set of all such mapping will be denoted by

TðX ;YÞ and TðXÞ � TðX ;XÞ. In mathematical terms, a quantum channel is a superoperator

F : LðXÞ ! LðYÞ that is

• trace-preserving (8r 2 LðXÞ TrðFðrÞÞ ¼ TrðrÞ) and

• completely positive (8Z8r 2 LðX � ZÞ; r � 0;F� ILðZÞðrÞ � 0).

The product of superoperators F1 2 TðX 1;Y1Þ,F2 2 TðX 2;Y2Þ is a mapping

F1 � F2 2 TðX 1 � X 2;Y1 � Y2Þ that satisfies (F1� F2)(ρ1� ρ2) = F1(ρ1)� F2(ρ2). For

the operators that are not in a tensor product form this notion can be uniquely extended from

linearity.

According to Kraus’ theorem, any completely positive trace-preserving (CP-TP) map F

can always be written as FðrÞ ¼
Pr

i¼1
KirK

y
i for some set of operators fKig

r
i¼1

satisfying
Pr

i¼1
Kyi Ki ¼ IX , where r is the rank of superoperator F.

Another way to represent the quantum channel is based on Choi-Jamiołkowski

isomorphism. Consider mapping J : TðX ;YÞ ! LðY � XÞ such that

JðFÞ ¼ ðF� ILðXÞÞðresðIXÞresðIXÞ
y
Þ. Equivalently JðFÞ ¼

PdimðXÞ
i;j¼1

FðjiihjjÞ � jiihjj. The action

of a superoperator in the Choi representation is given by FðrÞ ¼ TrXðJðFÞðIY � rTÞÞ.
The natural representation of a quantum channel TðX ;YÞ is a mapping res(ρ) 7! res(F(ρ)).

It is represented by a matrix KðFÞ 2 LðX � X ;Y � YÞ for which the following holds

KðFÞresðrÞ ¼ resðFðrÞÞ; ð1Þ

for all r 2 LðXÞ.
Let X ;Y andZ be a complex Euclidean spaces. The action of the Stinespring representation

of a quantum channel F 2 TðX ;YÞ on a state r 2 LðXÞ is given by

FðrÞ ¼ TrZðArAyÞ; ð2Þ

where A 2 LðX ;Y � ZÞ.
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We now briefly describe the relationships among channel representations [28]. Let

F 2 TðX ;YÞ be a quantum channel which can be written in the Kraus representation as

FðrÞ ¼
Xr

i¼1

KirK
y

i ; ð3Þ

where fKig
r
i¼1

are Kraus operators satisfying
Pr

i¼1
Kyi Ki ¼ IX . According to this assumption, F

can be represented in

• Choi representation as

JðFÞ ¼
Xr

i¼1

resðKiÞresðK
y

i Þ; ð4Þ

• natural representation as

KðFÞ ¼
Xr

i¼1

Ki � K
�

i ; ð5Þ

• Stinespring representation as

FðrÞ ¼ trZðArAyÞ; ð6Þ

where A ¼
Pr

i¼1
Ki � eii and Z ¼ Cr

.

In QuantumInformation.jl states and channels are always represented in the

computational basis therefore channels are stored in the memory as either vectors of matrices

in case of Kraus operators or matrices in other cases. In QuantumInformation.jl
quantum channels are represented by a set of types deriving from an abstract type

AbstractQuantumOperation{T} where type parameter T should inherit from

AbstractMatrix{<:Number}. Every type inheriting from AbstractQuantumO-
peration{T} should contain fields idim and odim representing the dimension of input

and output space of the quantum channel.

Two special types of channels are implemented: UnitaryChannel and Identity-
Channel that can transform ket vectors into ket vectors.

Constructors. Channel objects can be constructed from matrices that represent them, as

shown in the following listing

julia> γ = 0.4

0.4

julia> K0 = Matrix([1 0; 0 sqrt(1-γ)])

2×2 Array{Float64,2}:

1.0 0.0

0.0 0.774597

julia> K1 = Matrix([0 sqrt(γ); 0 0])

2×2 Array{Float64,2}:
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0.0 0.632456

0.0 0.0

julia> Φ = KrausOperators([K0,K1])

KrausOperators{Array{Float64,2}}

dimensions: (2, 2)

[1.0 0.0; 0.0 0.774597]

[0.0 0.632456; 0.0 0.0]

julia> iscptp(Φ)

true

There are no checks whether a matrix represents a valid CP-TP or CP-TNI map, because this

kind of verification is costly and requires potentially expensive numerical computation. Func-

tion such as iscptp(), and iscptni() are provided to test properties of supposed quan-

tum channel or quantum operation.

Conversion. Conversions between all quantum channel types, i.e. these that derive from

AbstractQuantumOperation{T} are implemented. The users are not limited by any

single channel representation and can transform between representations they find the most

efficient or suitable for their purpose.

julia> Ψ1 = convert(SuperOperator{Matrix{ComplexF64}}, Φ)

SuperOperator{Array{Complex{Float64},2}}

dimensions: (2, 2)

Complex{Float64}

[1.0+0.0im 0.0+0.0im 0.0+0.0im 0.4+0.0im;

0.0+0.0im 0.774597+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.774597+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.0+0.0im 0.6+0.0im]

julia> Ψ2 = convert(DynamicalMatrix{Matrix{Float64}}, Φ)

DynamicalMatrix{Array{Float64,2}}

dimensions: (2, 2)

[1.0 0.0 0.0 0.774597;

0.0 0.4 0.0 0.0;

0.0 0.0 0.0 0.0;

0.774597 0.00.0 0.6]

julia> Ψ3 = convert(Stinespring{Matrix{Float64}}, Φ)
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Stinespring{Array{Float64,2}}

dimensions: (2, 2)

[0.0 0.0;

-1.82501e-8 0.0;

. . .;

0.0 0.0;

0.0 -0.774597]

Application. Channels can act on pure and mixed states represented by vectors and

matrices respectively. Channels are callable and therefore mimic application of a function on a

quantum state.

julia> ρ1 = ψ � ψ’

2×2 Array{Complex{Float64},2}:

0.5+0.0im 0.5+0.0im

0.5+0.0im 0.5+0.0im

julia> Φ(ρ1)

2×2 Array{Complex{Float64},2}:

0.7+0.0im 0.387298+0.0im

0.387298+0.0im 0.3+0.0im

julia> Ψ1(ρ1)

2×2 Array{Complex{Float64},2}:

0.7+0.0im 0.387298+0.0im

0.387298+0.0im 0.3+0.0im

julia> Φ(ψ)

2×2 Array{Complex{Float64},2}:

0.7+0.0im 0.387298+0.0im

0.387298+0.0im 0.3+0.0im

Composition. Channels can be composed in parallel or in sequence. Composition in

parallel is done using kron() function or the overloaded� operator. Composition in

sequence can be done in two ways either by using Julia built-in function composition

operator (f � g)(�) = f(g)(�) or by using multiplication of objects inheriting from Abstract-
QuantumOperation{T} abstract type.
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julia> ρ2 = � � �’

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.433013+0.0im

0.433013+0.0im 0.75+0.0im

julia> (Φ � Φ)(ρ1 � ρ2)

4×4 Array{Complex{Float64},2}:

0.385+0.0im 0.234787+0.0im 0.213014+0.0im 0.129904+
0.0im

0.234787+0.0im 0.315+0.0im 0.129904+0.0im 0.174284+
0.0im

0.213014+0.0im 0.129904+0.0im 0.165+0.0im 0.100623+
0.0im

0.129904+0.0im 0.174284+0.0im 0.100623+0.0im 0.135+
0.0im

julia> (Ψ1 � Ψ2)(ρ1)

2×2 Transpose{Complex{Float64},Array{Complex{Float64},2}:

0.82+0.0im 0.3+0.0im

0.3+0.0im 0.18+0.0im

Functionals

Trace norm and distance

Let r; s 2 LðXÞ. The trace norm is defined as k r k1 ¼ Tr
ffiffiffiffiffiffiffi
rry

p
and the trace distance is

defined as D1ðr; sÞ ¼
1

2
k r � s k1.

julia> ψ = (1/sqrt(2)) � (ket(1,2) + ket(2,2))

2-element Array{Complex{Float64},1}:

0.7071067811865475 + 0.0im

0.7071067811865475 + 0.0im

� = (1/2) � ket(1,2) + (sqrt(3)/2) � ket(2,2)

2-element Array{Complex{Float64},1}:

0.5 + 0.0im

0.8660254037844386 + 0.0im

julia> ρ = proj(ψ)

2×2 Array{Complex{Float64},2}:
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0.5+0.0im 0.5+0.0im

0.5+0.0im 0.5+0.0im

julia> σ = proj(�)

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.433013+0.0im

0.433013+0.0im 0.75+0.0im

julia> norm_trace(ρ)

1.0

julia> trace_distance(ρ, σ)

0.2588190451025207 + 0.0im

Hilbert–Schmidt norm and distance

The Hilbert–Schmidt norm and distance defined by k r kHS ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
Trryr

p
and

DHSðr; sÞ ¼
1

2
k r � s kHS, respectively, can be used as follows

julia> norm_hs(ρ)

0.9999999999999998

julia> hs_distance(ρ, σ)

0.36602540378443854

Fidelity and superfidelity

Fidelity is a measure of distance of quantum states. It is an example of a distance measure

which is not a metric on the space of quantum states. The fidelity of two quantum states

r;s 2 LðXÞ is given by Fðr;sÞ ¼k ffiffiffi
r
p ffiffiffi

s
p
k1

julia> fidelity_sqrt(ρ, σ)

0.9659258262890682

julia> fidelity(ρ, σ)

0.9330127018922192

julia> fidelity(ψ, σ)

0.9330127018922191

julia> fidelity(ρ, �)

0.9330127018922191
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julia> fidelity(ψ, �)

0.9330127018922192

Superfidelity is an upper bound on the fidelity of two quantum states It is defined by

Gðr; sÞ ¼ Trrsþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � Trr2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � Trs2
p

.

julia> superfidelity(ρ, σ)

0.9330127018922193

Diamond norm

In order to introduce the diamond norm, we first introduce the notion of the induced

trace norm. Given F 2 TðX ;YÞ we define its induced trace norm as

kFk1 ¼ maxfkFðXÞk1 : X 2 LðXÞ; kXk1 � 1g. The diamond norm of F is defined

as kFk� ¼ kF� ILðYÞ k1. One important property of the diamond norm is that for

Hermiticity-preserving F 2 TðX ;YÞ we obtain

kFk� ¼ maxfkðF� ILðYÞÞðjcihcjÞk1: jci 2 X � Y; hcjci ¼ 1g.

julia> K0 = Matrix([1 0; 0 sqrt(1-γ)])

2×2 Array{Float64,2}:

1.0 0.0

0.0 0.774597

julia> K1 = Matrix([0 sqrt(γ); 0 0])

2×2 Array{Float64,2}:

0.0 0.632456

0.0 0.0

julia> Φ = KrausOperators([K0,K1])

KrausOperators{Array{Float64,2}}

dimensions: (2, 2)

[1.0 0.0; 0.0 0.774597]

[0.0 0.632456; 0.0 0.0]

julia> L0 = Matrix([1 0; 0 sqrt(1-γ)])

2×2 Array{Float64,2}:

1.0 0.0

0.0 0.774597
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julia> L1 = Matrix([0 0; 0 sqrt(γ)])

2×2 Array{Float64,2}:

0.0 0.0

0.0 0.632456

julia> Ψ = KrausOperators([K0,K1])

KrausOperators{Array{Float64,2}}

dimensions: (2, 2)

[1.0 0.0; 0.0 0.774597]

[0.0 0.632456; 0.0 0.0]

julia> norm_diamond(Φ)

1.0000000077706912

julia> diamond_distance(Φ, Ψ)

-5.258429449675825e-7

Diamond norm and diamond distance are implemented using the Convex.jl Julia
package [25].

Shannon entropy and von Neumann entropy

Shannon entropy is defined for a probability vector p as HðpÞ ¼ �
Pn

i¼1
pi log 2pi. We also pro-

vide an implementation for the point Shannon entropy. It is defined as h(a) = −a log a − (1 −
a) log(1 − a).

julia> p = [0.3, 0.2, 0.5]

3-element Array{Float64,1}:

0.3

0.2

0.5

julia> shannon_entropy(p)

1.0296530140645737

julia> shannon_entropy(0.5)

0.6931471805599453

For a quantum system described by a state ρ, the von Neumann entropy is S(ρ) = −trρ log ρ.

Let λi, 0� i< n be the eigenvalues of ρ, then S(ρ) can be written as SðrÞ ¼ �
Pn

i¼1
li logli.
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julia> ρ = [0.25 0.25im; -0.25im 0.75]

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.0+0.25im

1-0.0-0.25im 0.75+0.0im

julia> σ = [0.4 0.1im; -0.1im 0.6]

2×2 Array{Complex{Float64},2}:

0.4+0.0im 0.0+0.1im

-0.0-0.1im 0.6+0.0im

julia> vonneumann_entropy(0.4 � ρ + 0.6 � σ)

0.5869295208554555

Distinguishability between two quantum states

One of the measure of distinguishability between two quantum states is the quantum
relative entropy, called also Kullback–Leibler divergence, defined as S(ρkσ) = −Trρ log σ + Trρ
log ρ

julia> relative_entropy(ρ, σ)

0.11273751829075163

julia> kl_divergence(ρ, σ)

0.11273751829075163

Another type of measure of distinguishability between two quantum state is quantum Jen-
sen–Shannon divergence given by QJSðr;sÞ ¼ S 1

2
rþ 1

2
s

� �
� 1

2
SðrÞ þ 1

2
SðsÞ

� �
.

julia> js_divergence(ρ, σ)

0.1252860912303596

The Bures distance defines an infinitesimal distance between quantum states, and it is

defined as DB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; sÞ

p
Þ

q

. The value related with Bures distance is the Bures angle

DAðr;sÞ ¼ arccos ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðr; sÞ

p
Þ

julia> bures_distance(ρ, σ)

0.24867555729886728
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julia> bures_angle(ρ, σ)

0.2493208055929498

Quantum entanglement

One of the entanglement measures is negativity defined as NðrÞ ¼ krTA k1� 1

2
.

julia> negativity(ρ � σ, [2, 2], 2)

-0.0

julia> negativity(proj((1/sqrt(2)�(ket(1,2) � ket(1,2)-ket
(2,2) � ket(2,2)))), [2, 2], 2)

0.4999999999999999

julia> log negativity(ρ � σ, [2, 2], 2)

-1.1102230246251565e-16

Positive partial transpose (the Peres–Horodecki criterion) is a necessary condition of sepa-

rability of the joint state ρAB. According PPT criterion, if rTB has non negative eigenvalues,

then ρAB is separable.

julia> ppt(ρ � σ, [2, 2], 2)

0.052512626584708365

julia> ppt(proj((1/sqrt(2)�(ket(1,2) � ket(1,2)-ket(2,2) �
ket(2,2)))), [2, 2], 2)

-0.4999999999999999

Another way to quantification of quantum entanglement is Concurrence [29]. Concurrence

of quantum state ρ is a strong separability criterion. For two-qubit systems it is defined as C
(ρ) = max(0, λ1 − λ2 − λ3 − λ4), where λi are decreasing eigenvalues of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
p

~r
ffiffiffi
r
pp

with

~r ¼ ðsy � syÞr
�ðsy � syÞ. If C(ρ) = 0, then ρ is separable.

julia> ρ = [0.25 0.1im; -0.1im 0.75]

2×2 Array{Complex{Float64},2}:

0.25+0.0im 0.0+0.1im

-0.0-0.1im 0.75+0.0im

julia> σ = [0.4 0.1im; -0.1im 0.6]
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2×2 Array{Complex{Float64},2}:

0.4+0.0im 0.0+0.1im

-0.0-0.1im 0.6+0.0im

julia> concurrence(ρ � σ)

0.0

julia> concurrence(proj(max_entangled(4)))

0.9999999999999998

Measurements

Measurements are modeled in two ways:

• as Positive Operator Valued Measures (POVMs),

• measurements with post-selection.

In both cases a measurement is treated as a special case of a quantum channel (operation).

Positive Operator Valued Measure measurement

A POVM measurement is defined as follows. Let m : G! PðXÞ be a mapping from a finite

alphabet of measurement outcomes to the set of linear positive operators. If
P

x2G
mðxÞ ¼ IX

then μ is a POVM measurement. The set of positive semi-definite linear operators is defined as

PðXÞ ¼ fX 2 LðXÞ : hcjXjci � 0 for all jci 2 Xg. POVM measurement models the situa-

tion where a quantum object is destroyed during the measurement process and quantum state

after the measurement does not exists.

We model POVM measurement as a channel y : LðXÞ ! LðYÞ, where Y ¼ spanfxigx2G
such that θ(ρ) = ∑ξ2Γ tr(ρ μ(ξ))|ξihξ|. This channel transforms the measured quantum state

into a classical state (diagonal matrix) containing probabilities of measuring given outcomes.

Note that in QuantumInformation.jl Γ = {1, 2, . . ., |Γ|} and POVM measurements are

represented by the type

POVMMeasurement{T} <: AbstractQuantumOperation{T} where

T<:AbstractMatrix{<:Number}

Predicate function ispovm() verifies whether a list of matrices is a proper POVM.

julia> ρ = proj(1.0/sqrt(2)�(ket(1,3)+ket(3,3)))

3×3 Array{Complex{Float64},2}:

0.5+0.0im 0.0+0.0im 0.5+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im
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0.5+0.0im 0.0+0.0im 0.5+0.0im

julia> E0 = proj(ket(1,3))

3×3 Array{Complex{Float64},2}:

1.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

julia> E1 = proj(ket(2,3))+proj(ket(3,3))

3×3 Array{Complex{Float64},2}:

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 1.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 1.0+0.0im

julia> M = POVMMeasurement([E0,E1])

POVMMeasurement{Array{Complex{Float64},2}}

dimensions: (3, 2)

Complex{Float64}

[1.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.0+0.0im]

Complex{Float64}

[0.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 1.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 1.0+0.0im]

julia> ispovm(M)

true

julia> M(ρ)

2×2 LinearAlgebra.Diagonal{Float64,Array{Float64,1}}:

0.5 .

. 0.5

Measurement with post-selection

When a quantum system after being measured is not destroyed one can be interested in its

state after the measurement. This state depends on the measurement outcome. In this case the

measurement process is defined in the following way.
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Let m : G! LðX ;YÞ be a mapping from a finite set of measurement outcomes to set of lin-

ear operators called effects. If
P

x2G
mðxÞ

y
mðxÞ ¼ IX then μ is a quantum measurement. Given

outcome ξ was obtained, the state before the measurement, ρ, is transformed into sub-normal-

ized quantum state ρξ = μ(ξ)ρμ(ξ)†. The outcome ξ will be obtained with probability tr(ρξ).

julia> PM = PostSelectionMeasurement(E1)

PostSelectionMeasurement{Array{Complex{Float64},2}}

dimensions: (3, 3)

Complex{Float64}

[0.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 1.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 1.0+0.0im]

julia> iseffect(PM)

true

julia> PM(ρ)

3×3 Array{Complex{Float64},2}:

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.5+0.0im

In QuantumInformation.jl this kind of measurement is modeled as CP-TNI map with

a single Kraus operator μ(ξ) and represented as

PostSelectionMeasurement{T} <: AbstractQuantumOperation{T}
where

T<:AbstractMatrix{<:Number}

Measurement types can be composed and converted to Kraus operators, superoperators,

Stinespring representation operators, and dynamical matrices.

julia> α = 0.3

0.3

julia> K0 = ComplexF64[0 0 sqrt(α); 0 1 0; 0 0 0]

3×3 Array{Complex{Float64},2}:

0.0+0.0im 0.0+0.0im 0.547723+0.0im
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0.0+0.0im 1.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

julia> K1 = ComplexF64[1 0 0; 0 0 0; 0 0 sqrt(1 − α)]

3×3 Array{Complex{Float64},2}:

1.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.83666+0.0im

julia> Φ = KrausOperators([K0,K1])

KrausOperators{Array{Complex{Float64},2}}

dimensions: (3, 3)

Complex{Float64}

[0.0+0.0im 0.0+0.0im 0.547723+0.0im;

0.0+0.0im 1.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.0+0.0im]

Complex{Float64}

[1.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.0+0.0im;

0.0+0.0im 0.0+0.0im 0.83666+0.0im]

julia> ρ = proj(1.0/sqrt(2)�(ket(1,3)+ket(3,3)))

3×3 Array{Complex{Float64},2}:

0.5+0.0im 0.0+0.0im 0.5+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.5+0.0im 0.0+0.0im 0.5+0.0im

julia> (PM � Φ)(ρ)

3×3 Array{Complex{Float64},2}:

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.0+0.0im

0.0+0.0im 0.0+0.0im 0.35+0.0im

Random quantum objects

In this section we present the implementation of the sub-package RandomMatrices. The

justification for including these functionalities in our package is twofold. First, the application

of random matrix theory (RMT) in quantum information is a blooming field of research with
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a plethora of interesting results [30–39]. Hence, it is useful to have readily available implemen-

tations of known algorithms of generating random matrices. Secondly, when performing

numerical investigations, we often need “generic” inputs. Generating random matrices with a

known distribution is one of the ways to obtain such generic inputs.

Ginibre matrices

In this section we introduce the Ginibre random matrices ensemble [40]. This ensemble is at

the core of a vast majority of algorithms for generating random matrices presented in later

subsections. Let (Gij)1�i�m,1�j�n be a m × n table of independent identically distributed (i.i.d.)

random variable onK. The fieldK can be either of R,C orQ. With each of the fields we asso-

ciate a Dyson index β equal to 1, 2, or 4 respectively. Let Gij be i.i.d random variables with the

real and imaginary parts sampled independently from the distribution N ð0; 1

b
Þ. Hence,

G 2 LðX ;YÞ,where matrix G is

PðGÞ / expð� TrGGyÞ: ð7Þ

This law is unitarily invariant, meaning that for any unitary matrices U and V, G and UGV are

equally distributed. It can be shown that for β = 2 the eigenvalues of G are uniformly distrib-

uted over the unit disk on the complex plane [41].

In our library the ensemble Ginibre matrices is implemented in the GinibreEnsemble
{β} parametric type. The parameter determines the Dyson index. The following constructors

are provided

julia> GinibreEnsemble{β}(m::Int, n::Int)

julia> GinibreEnsemble{β}(m::Int)

julia> GinibreEnsemble(m::Int, n::Int)

julia> GinibreEnsemble(m::Int)

The parameters n and m determine the dimensions of output and input spaces. The versions

with one argument assume m = n. When the Dyson index is omitted it assumed that β = 2.

Sampling from these distributions can be performed as follows

julia> g = GinibreEnsemble{2}(2,3)

GinibreEnsemble{2}(m = 2, n = 3)

julia> rand(g)

2×3 Array{Complex{Float64},2}:

0.835803+1.10758im -0.622744-0.130165im -0.677944+
0.636562im

1.32826+0.106582im -0.460737-0.531975im -0.656758+
0.0244259im
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The function rand has specialized methods for each possible value of the Dyson index β.

Wishart matrices

Wishart matrices form an ensemble of random positive semidefinite matrices. They are

parametrized by two factors. First is the Dyson index β which is equal to one for real matrices,

two for complex matrices and four for symplectic matrices. The second parameter, K, is

responsible for the rank of the matrices. They are sampled as follows

1. Choose β and K.

2. Sample a Ginibre matrix G 2 LðX ;YÞ with the Dyson index β and dimðXÞ ¼ d and

dimðYÞ ¼ Kd.

3. Return GG†.

In QuantumInformation.jl this is implemented using the type WishartEnsem-
ble{β, K}. We also provide additional constructors for convenience

WishartEnsemble{β}(d::Int) where β = WishartEnsemble{β, 1}
(d)

WishartEnsemble(d::Int) = WishartEnsemble{2}(d)

These can be used in the following way

julia> w = WishartEnsemble{1,0.2}(5)

WishartEnsemble{1,0.2}(d = 5)

julia> z = rand(w)

5×5 Array{Float64,2}:

0.0897637 0.0257443 0.0314593 0.0223569 0.093517

0.0257443 0.00738347 0.00902253 0.00641196 0.0268207

0.0314593 0.00902253 0.0110254 0.00783535 0.0327746

0.0223569 0.00641196 0.00783535 0.00556828 0.0232917

0.093517 0.0268207 0.0327746 0.0232917 0.0974271

julia> eigvals(z)

5-element Array{Float64,1}:

-1.549149323294561e-17

-1.11670454111383e-18

1.5797866551971292e-18

6.408793727745745e-18

0.21116803949130986
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julia> w = WishartEnsemble(3)

WishartEnsemble{2,1}(d = 3)

julia> z = rand(w)

3×3 Array{Complex{Float64},2}:

0.474628+0.0im 0.177244-0.0227445im 0.137337-0.0929298im

0.177244+0.0227445im 0.128676+0.0im 0.0938587-0.165916im

0.137337+ 0.0929298im 0.0938587+0.165916im 0.555453+
0.0im

julia> eigvals(z)

3-element Array{Float64,1}:

0.01707438064450695

0.35884924300093163

0.7828337014291611

Circular ensembles

Circular ensembles are measures on the space of unitary matrices. There are three main circu-

lar ensembles. Each of this ensembles has an associated Dyson index β [42]

• Circular orthogonal ensemble (COE), β = 1.

• Circular unitary ensemble (CUE), β = 2.

• Circular symplectic ensemble (CSE), β = 4.

They can be characterized as follows. The CUE is simply the Haar measure on the unitary

group. Now, if U is an element of CUE then UT U is an element of COE and UR U is an element

CSE. Here

UR ¼

0 � 1

1 0

0 � 1

1 0

. .
.

0 � 1

1 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

UT

0 1

� 1 0

0 1

� 1 0

. .
.

0 1

� 1 0

0

B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
A

: ð8Þ

As can be seen the sampling of Haar unitaries is at the core of sampling these ensembles.

Hence, we will focus on them in the remainder of this section.

There are several possible approaches to generating random unitary matrices according to

the Haar measure. One way is to consider known parametrizations of unitary matrices, such as

the Euler [43] or Jarlskog [44] ones. Sampling these parameters from appropriate distributions

yields a Haar random unitary. The downside is the long computation time, especially for large
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matrices, as this involves a lot of matrix multiplications. We will not go into this further, we

refer the interested reader to the papers on these parametrizations.

Another approach is to consider a Ginibre matrix G 2 LðXÞ and its polar decomposition

G = UP, where U 2 LðXÞ is unitary and P is a positive matrix. The matrix P is unique and

given by
ffiffiffiffiffiffiffiffiffi
GyG
p

. Hence, assuming P is invertible, we could recover U as

U ¼ GðGyGÞ�
1
2: ð9Þ

As this involves the inverse square root of a matrix, this approach can be potentially numeri-

cally unstable.

The optimal approach is to utilize the QR decomposition of G, G = QR, where Q 2 LðXÞ is

unitary and R 2 LðXÞ is upper triangular. This procedure is unique if G is invertible and we

require the diagonal elements of R to be positive. As typical implementations of the QR algo-

rithm do not consider this restriction, we must enforce it ourselves. The algorithm is as follows

1. Generate a Ginibre matrix G 2 LðXÞ, dimðXÞ ¼ d with Dyson index β = 2.

2. Perform the QR decomposition obtaining Q and R.

3. Multiply the ith column of Q by rii/|rii|.

This gives us a Haar distributed random unitary. For detailed analysis of this algorithm see

[27]. This procedure can be generalized in order to obtain a random isometry. The only

required changed is the dimension of G. We simply start with G 2 LðX ;YÞ, where

dim ðXÞ � dim ðYÞ.
Furthermore, we may introduce two additional circular ensembles corresponding to the

Haar measure on the orthogonal and symplectic groups. These are the circular real ensemble

(CRE) and circular quaternion ensemble (CQE). Their sampling is similar to sampling from

CUE. The only difference is the initial Dyson index of the Ginibre matrix. This is set to β = 1

for CRE and β = 4 for CQE.

In QuantumInformation.jl these distributions can be sampled as

julia> c = CircularEnsemble{2}(3)

CircularEnsemble{2}(

d: 3

g: GinibreEnsemble{2}(m = 3, n = 3)

)

julia> u = rand(c)

3×3 Array{Complex{Float64},2}:

0.339685+0.550434im -0.392266-0.3216im -0.53172+
0.203988im

0.515118-0.422262im 0.392165-0.626859im -0.0504431-
0.084009im

0.297203+0.222832im -0.418737-0.143578im 0.607012-
0.545525im

julia> u�u’
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3×3 Array{Complex{Float64},2}:

1.0+0.0im -5.55112e-17-5.55112e-17im -2.77556e-17-
4.16334e-17im

-5.55112e-17+5.55112e-17im 1.0+0.0im -2.498e-16+0.0im

-2.77556e-17+4.16334e-17im -2.498e-16+0.0im 1.0+0.0im

Sampling from the Haar measure on the orthogonal group can be achieved as

julia> c = CircularRealEnsemble(3)

CircularRealEnsemble(

d: 3

g: GinibreEnsemble{1}(m = 3, n = 3)

)

julia> o = rand(c)

3×3 Array{Float64,2}:

0.772464 0.611349 -0.171907

0.0524376 0.208368 0.976644

0.63289 -0.763436 0.128899

julia> o�o’

3×3 Array{Float64,2}:

1.0 -1.38778e-16 -8.67362e-17

-1.38778e-16 1.0 8.32667e-17

-8.67362e-17 8.32667e-17 1.0

For convenience we provide the following type aliases

const COE = CircularEnsemble{1}

const CUE = CircularEnsemble{2}

const CSE = CircularEnsemble{4}

Random quantum states

In this section we discuss the properties and methods of generating random quantum states.

We will treat quantum channels as a special case of quantum states.
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Pure states. Pure states are elements of the unit sphere in X . Thus it is straightforward to

generate them randomly. We start with a vector of dim ðXÞ independent complex numbers

sampled from the standard normal distribution. What remains is to normalize the length of

this vector to unity.

This is implemented using the HaarKet{β} type. The value β = 1 corresponds to the

Haar measure on the unit sphere in Rd, while β = 2 corresponds to the Haar measure on the

unit sphere in Cd. The usage is as follows

julia> h = HaarKet{2}(3)

HaarKet{2}(d = 3)

julia> ψ = rand(h)

3-element Array{Complex{Float64},1}:

0.1687649644765863 − 0.3201009507269653im

0.7187423269572294 − 0.39405022770434767im

0.1342475675218075 + 0.42327915636096036im

julia> norm(ψ)

1.0

For convenience we provide the following constructor

HaarKet(d::Int) = HaarKet{2}(d)

as the majority of uses cases require sampling complex states.

Mixed states. Random mixed states can be generated in one of two equivalent ways. The

first one comes from the partial trace of random pure states. Suppose we have a pure state

ci 2 X � Y. Then we can obtain a random mixed as

r ¼ trYjcihcj: ð10Þ

Note that in the case dim ðXÞ ¼ dim ðYÞ we recover the (flat) Hilbert-Schmidt distribution

on the set of quantum states.

An alternative approach is to start with a Ginibre matrix G 2 LðX ;YÞ. We obtain a random

quantum state ρ as

r ¼ GGy=TrðGGyÞ: ð11Þ

It can be easily verified that this approach is equivalent to the one utilizing random pure states.

First, note that in both cases we start with dim ðXÞ dim ðYÞ complex random numbers sam-

pled from the standard normal distribution. Next, we only need to note that taking the partial

trace of a pure state |ψi is equivalent to calculating AA† where A is a matrix obtained from

reshaping |ψi.

QuantumInformation.jl—A Julia package for numerical computation in quantum information theory

PLOS ONE | https://doi.org/10.1371/journal.pone.0209358 December 26, 2018 28 / 45

https://doi.org/10.1371/journal.pone.0209358


The properties of these states have been extensively studied. We will omit stating all the

properties here and refer the reader to [31–36].

Sampling random mixed states is implemented using the HilbertSchmidtStates
{β, K} type. The meaning of the type parameters is the same as in the Wishart matrices case.

We provide additional constructors which set the default values of the parameters

HilbertSchmidtStates{β}(d::Int) where β = HilbertSchmidt-
States{β, 1}(d)

HilbertSchmidtStates(d::Int) = HilbertSchmidtStates{2, 1}(d)

The latter one is the most frequent use case. Here is an example

julia> h = HilbertSchmidtStates(3)

HilbertSchmidtStates{2,1}(WishartEnsemble{2,1}(d = 3), 3)

julia> ρ = rand(h)

3×3 Array{Complex{Float64},2}:

0.335603+0.0im 0.0696096+0.0606972im 0.0373103+
0.0853966im

0.0696096-0.0606972im 0.209561+0.0im -0.000865656+
0.0129982im

0.0373103-0.0853966im -0.000865656-0.0129982im 0.454836+
0.0im

julia> tr(ρ)

1.0 + 0.0im

julia> eigvals(ρ)

3-element Array{Float64,1}:

0.15460054248543945

0.3306739537037592

0.5147255038108014

Random quantum channels

Quantum channels are a special subclass of quantum states with constraints imposed on their

partial trace as well as trace. Formally, we start with a Ginibre matrix G 2 LðX � Y;ZÞ. We

obtain a random Choi-Jamiołkowski matrix JF corresponding to a channel F as

JF ¼ ðIX � ðTrXGGyÞ
� 1=2
ÞGGyðIX � ðTrXGGyÞ

� 1=2
Þ: ð12Þ

When dim ðZÞ ¼ dimðXÞdimðYÞ this is known to generate a uniform distribution over the

set of quantum channels [37, 38].
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The implementation uses the type ChoiJamiolkowskiMatrices{β, K}. The

parameters β and K have the same meaning as in the Wishart matrix case. Additionally here,

the constructor

ChoiJamiolkowskiMatrices{β, K}(idim::Int, odim::Int) where
{β, K}

takes two parameters—the input and output dimension of the channel. As in the previous

cases we provide some additional constructors for convenience

function ChoiJamiolkowskiMatrices{β}(idim::Int, odim::Int)
where β

ChoiJamiolkowskiMatrices{β, 1}(idim, odim)

end

function ChoiJamiolkowskiMatrices{β}(d::Int) where β

ChoiJamiolkowskiMatrices{β}(d, d)

end

function ChoiJamiolkowskiMatrices(idim::Int, odim::Int)

ChoiJamiolkowskiMatrices{2}(idim, odim)

end

function ChoiJamiolkowskiMatrices(d::Int)

ChoiJamiolkowskiMatrices(d, d)

end

Here is an example of usage

julia> c = ChoiJamiolkowskiMatrices(2, 3)

ChoiJamiolkowskiMatrices{2,1}(WishartEnsemble{2,1}(d = 6),
2, 3)

julia> Φ = rand(c)

DynamicalMatrix{Array{Complex{Float64},2}}

dimensions: (2, 3)

Complex{Float64}

[0.307971-4.98733e-18im -0.00411588+0.0368471im. . .

-0.0676732+0.024328im 0.0860858+0.00302876im;
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-0.00411588-0.0368471im 0.167651+2.1684e-19im. . .

-0.0428561+0.0266119im 0.0191888+0.0101013im;

. . . ;

-0.0676732-0.024328im -0.0428561 − 0.0266119im. . .

0.210419+0.0im -0.103401 − 0.142753im;

0.0860858-0.00302876im 0.0191888 − 0.0101013im. . .

-0.103401+0.142753im 0.411068+0.0im]

julia> ptrace(Φ.matrix, [3, 2],[1])

2×2 Array{Complex{Float64},2}:

1.0 − 1.53957e-17im − 1.38778e-17 − 3.05311e-16im

1.38778e-17 + 3.05311e-16im 1.0 + 2.1684e-19im

Note that the resulting sample is of type DynamicalMatrix.

Example

As an example we provide the teleportation protocol in the presence of noise. Imagine we have

an entangled pair of particles in the state

jci ¼
1
ffiffiffi
2
p j00i þ j11ið Þ: ð13Þ

One of the particles stays with Alice and another is sent through a noisy channel to Bob. As a

noise model we chose the amplitude damping channel given by the Kraus operators

K0 ¼
1 0

0
ffiffiffiffiffiffiffiffiffiffiffi
1 � g
p

 !

K1 ¼
0

ffiffiffi
g
p

0 0

 !

: ð14Þ

The channel has one parameter γ 2 [0, 1] modeling the strength of the noise. Assume that Alice

possesses a random pure state |ϕi that she teleports to Bob. The protocol is shown in Fig 1.

Our examples show the fidelity of the final state at Bob’s site averaged over 100 random

pure initial states. We also check how the parameter γ influences this fidelity.

using QuantumInformation

steps = 100

haar = HaarKet(2)

ψ = (ket(0, 4) + ket(3, 4))/sqrt(2)

γs = 0.0:0.01:1.0

Φ = KrausOperators([[1 0; 0 sqrt(1-γ)], [0 sqrt(γ); 0
0]])
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post = [PostSelectionMeasurement(proj(ket(i, 4)) � eye(2))
for i = 0:3]

rots = [UnitaryChannel(eye(2)), UnitaryChannel(sx), Unitary-
Channel(sz),

UnitaryChannel(sx�sz)]

had = UnitaryChannel{Matrix{ComplexF64}}(hadamard(2))

cnot = UnitaryChannel{Matrix{ComplexF64}}([1 0 0 0; 0
1 0 0; 0 0 0 1; 0 0 1 0])

r = zeros(steps, length(γs), 4);

for (k, γ) in enumerate(γs)

for i = 1:steps

� = rand(haar)

ξ = � � ψ

ρ = ((had � IdentityChannel(4))�(cnot �

IdentityChannel(2))�(IdentityChannel(4) � Φ))(ξ)

for j = 1:4

σ = rots[j](ptrace(post[j](ρ), [2, 2, 2], [1, 2]))

r[i, k, j] = fidelity(�, σ/tr(σ))

end

end

end

mean(r, 1)

Fig 1. Schematic depiction of the teleportation protocol. Squiggly line represents the maximally entangled state, and boxF represents the noise operator.

https://doi.org/10.1371/journal.pone.0209358.g001
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Benchmarks

In the benchmarks we compare our library to the state-of-the-art Python library, QuTiP
[12, 13]. We perform the following tests:

1. sampling a random unitary matrix,

2. sampling a random pure state,

3. sampling a random mixed state,

4. sampling a random channel,

5. calculating the trace distance of a random mixed state from the maximally mixed state,

6. calculating the trace distance between two random mixed states,

7. calculating the entropy of the stationary state of a random channel.

The latter is done as follows. First we sample a random quantum channel. Next, we apply

the reshuffle operation and calculate its eigenvectors and eigenvalues. We take the state

corresponding to the eigenvalue equal to one and calculate its von Neumann entropy. All tests

are performed 1000 times and an average time of computation from these samples is calcu-

lated. In the case of Julia code we ensure all functions are compiled prior to testing. The

tests are performed for dimensions 4, 16, 64, 256, 1024. In the next subsections we present and

discuss results for all the aforementioned cases.

The tests were performed on a machine equipped with Intel Core i7-6800K and 64 GB of

RAM. The libraries installed on the system were

julia> versioninfo()

julia Version 1.0.0

Platform Info:

OS: Linux (x86_64-redhat-linux)

CPU: Intel(R) Core(TM) i7-6800K CPU @ 3.40GHz

WORD_SIZE: 64

LIBM: libopenlibm

LLVM: libLLVM − 6.0.0 (ORCJIT, broadwell)

julia> LAPACK.version()

v“3.7.0”

julia> BLAS.vendor()

:openblas

julia> BLAS.openblas_get_config()

“DYNAMIC_ARCH_NO_AFFINITY Haswell”

The Python libraries were
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In [1]: import numpy as np

In [2]: np.__version__

Out[2]: ‘1.7.1’

In [3]: np.__config__.show()

Out[3]:

blas_mkl_info:

NOT AVAILABLE

blis_info:

NOT AVAILABLE

openblas_info:

libraries = [‘openblas’, ‘openblas’]

library_dirs = [‘/home/user/anaconda3/lib’]

language = c

define_macros = [(‘HAVE CBLAS’, None)]

blas_opt_info:

libraries = [‘openblas’, ‘openblas’]

library_dirs = [‘/home/user/anaconda3/lib’]

language = c

define_macros = [(‘HAVE CBLAS’, None)]

lapack_mkl_info:

NOT AVAILABLE

openblas_lapack_info:

libraries = [‘openblas’, ‘openblas’]

library_dirs = [‘/home/user/anaconda3/lib’]

language = c

define_macros = [(‘HAVE CBLAS’, None)]

lapack_opt_info:

libraries = [‘openblas’, ‘openblas’]

library_dirs = [‘/home/user/anaconda3/lib’]

language = c

define_macros = [(‘HAVE CBLAS’, None)]
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Sampling a random unitary matrix

The Julia code for this test is

using QuantumInformation

function random_unitary(steps::Int, d::Int)

dist = CUE(d)

for i = 1:steps U = rand(dist) end

end

The Python implementation reads

import qutip as q

def random_unitary(steps, d):

for _ in range(steps):

q.rand_unitary_haar(d)

The benchmark results are presented in Fig 2. Note that, as advertised, our implementation is

faster and the gap gets bigger as the dimension of the input system increases.

Sampling a random pure state

The Julia code for this test is

using QuantumInformation

function random_pure_state(steps::Int, d::Int)

dist = HaarKet(d)

for i = 1:steps ψ = rand(dist) end

end

The Python implementation reads

import qutip as q

def random_pure_state(steps, d):

for _ in range(steps):

q.rand_ket_haar(d)
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The benchmark results are presented in Fig 3. In this case we get a huge difference in the com-

putation times. This is due to the fact that QuTiP first samples an entire random unitary

matrix and returns its first column as the sampled state. On the other hand our implementa-

tion samples only one vector.

Sampling a random mixed state

The Julia code for this test is

using QuantumInformation

function random_mixed_state(steps::Int, d::Int)

dist = HilbertSchmidtStates(d)

for i = 1:steps ρ = rand(dist) end

end

Fig 2. Benchmark results for sampling random unitary matrices in QuantumInformation.jl and Python.

https://doi.org/10.1371/journal.pone.0209358.g002
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The Python implementation reads

import qutip as q

def random_mixed_state(steps, d):

for _ in range(steps):

q.rand_dm_hs(d)

The benchmark results are presented in Fig 4. Again, our package is faster compared to

QuTiP.

Fig 3. Benchmark results for sampling random pure states in QuantumInformation.jl and Python.

https://doi.org/10.1371/journal.pone.0209358.g003
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Sampling a random channel

The Julia code for this test is

using QuantumInformation

function random_channel(steps::Int, d::Int)

dist = ChoiJamiolkowskiMatrices(round(Int, sqrt(d)))

for i = 1:steps Φ = convert(SuperOperator{Matrix{Com-
plexF64}}, rand(dist)) end

end

The Python implementation reads

Fig 4. Benchmark results for sampling random mixed state in QuantumInformation.jl and Python.

https://doi.org/10.1371/journal.pone.0209358.g004
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import qutip as q

def random_channel(steps, d):

for _ in range(steps):

q.rand_super_bcsz(int(np.sqrt(d)))

Note the conversion to SuperOperator in the benchmark. This is to mimic

QuTiP’s behavior which returns a superoperator. The benchmark results are presented

in Fig 5.

Fig 5. Benchmark results for sampling random quantum channels in QuantumInformation.jl and Python.

https://doi.org/10.1371/journal.pone.0209358.g005
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Calculating the trace distance form the maximally mixed state

The Julia code for this test is

using QuantumInformation

function trace_distance_max_mixed(steps::Int, d::Int)

dist = HilbertSchmidtStates(d)

r ¼ IðdÞ=d

for i = 1:steps trace distance(rand(dist), ρ) end

end

The Python implementation reads

import qutip as q

def trace_distance_max_mixed(steps, d):

rho = q.Qobj(np.eye(d) / d)

for _ in range(steps):

q.metrics.tracedist(q.rand_dm_hs(d), rho)

The benchmark results are presented in Fig 6. Again, for all studied dimensions, our imple-

mentation is faster compared to Python.

Calculating the trace distance between two random mixed states

The Julia code for this test is

using QuantumInformation

function trace_distance_random(steps::Int, d::Int)

dist = HilbertSchmidtStates(d)

for i = 1:steps trace_distance(rand(dist), rand(dist)) end

end

The Python implementation reads

import qutip as q

def trace_distance_random(steps, d):

for _ in range(steps):

q.metrics.tracedist(q.rand_dm_hs(d), q.rand_dm_hs(d))
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The benchmark results are presented in Fig 7.

Calculating the entropy of the stationary state of a random channel

The Julia code for this test is

using QuantumInformation

function random_unitary(steps::Int, d::Int)

dist = CUE(d)

for i = 1:steps U = rand(dist) end

end

Fig 6. Benchmark results for calculating the trace distance between a randommixed state and the maximally mixed in QuantumInformation.jl and

Python.

https://doi.org/10.1371/journal.pone.0209358.g006
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The Python implementation reads

import qutip as q

def random_unitary(steps, d):

for _ in range(steps):

q.rand_unitary_haar(d)

The benchmark results are presented in Fig 8.

Conclusions and future work

Numerical investigations are important part of research in many fields of science, especially in

quantum information. The Julia language is a modern programming language, which

Fig 7. Benchmark results for calculating the trace distance between two random mixed states in QuantumInformation.jl and Python.

https://doi.org/10.1371/journal.pone.0209358.g007
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provides strong support for linear algebra and posses an extensive type system. One of the

important feature of Julia is high performance approaching statically-compiled languages

like C or Fortran. Those were the reasons why we created the QuantumInformation.
jl library in Julia.

We performed benchmark comparisons of QuantumInformation.jl with QuTiP.

They clearly state that our library is faster compared to the current state of the art. As the core

numerical libraries were the same for both tested packages, we conclude that this speedup is

due to the advantages offered by Julia.

Future work will consists of optimization of numerical code, extending the type system,

developing further functionals, better integration with Convex.jl package. Additional work

will also include parallelization of the code and support for writing quantum circuits in more

intuitive manner.
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