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Purpose: To compare a new parallel imaging (PI) method for
multislice proton magnetic resonance spectroscopic imaging
(1H-MRSI), termed (2þ1)D-CAIPIRINHA, with two standard PI

methods: 2D-GRAPPA and 2D-CAIPIRINHA at 7 Tesla (T).
Methods: (2þ1)D-CAIPIRINHA is a combination of 2D-

CAIPIRINHA and slice-CAIPIRINHA. Eight healthy volunteers
were measured on a 7T MR scanner using a 32-channel head
coil. The best undersampling patterns were estimated for all

three PI methods. The artifact powers, g-factors, Cram�er–Rao
lower bounds (CRLB), and root mean square errors (RMSE)

were compared quantitatively among the three PI methods.
Metabolic maps and spectra were compared qualitatively.
Results: (2þ1)D-CAIPIRINHA allows acceleration in three spa-

tial dimensions in contrast to 2D-GRAPPA and 2D-CAIPIRINHA.
Thus, this sequence significantly decreased the RMSE of the

metabolic maps by 12.1 and 6.9%, on average, for 4<R<11,
compared with 2D-GRAPPA and 2D-CAIPIRINHA, respectively.
The artifact power was 22.6 and 8.4% lower, and the CRLB

were 3.4 and 0.6% lower, respectively.
Conclusion: (2þ1)-CAIPIRINHA can be implemented for multi-
slice MRSI in the brain, enabling higher accelerations than pos-

sible with two-dimensional (2D) parallel imaging methods. An
eight-fold acceleration was still feasible in vivo with negligible PI

artifacts with lipid decontamination, thus decreasing the mea-
surement time from 120 to 15 min for a 64�64�4 matrix.
Magn Reson Med 78:429–440, 2017. VC 2016 The Authors
Magnetic Resonance in Medicine published by Wiley Peri-
odicals, Inc. on behalf of International Society for Magnetic
Resonance in Medicine. This is an open access article
under the terms of the Creative Commons Attribution
License, which permits use, distribution and reproduction
in any medium, provided the original work is properly cited.

Key words: CAIPIRINHA; parallel imaging; magnetic reso-
nance spectroscopic imaging; brain MRSI; CSI; 7 Tesla

INTRODUCTION

Proton magnetic resonance spectroscopic imaging (1H-
MRSI) can aid in the diagnosis of several brain diseases,
such as tumors (1,2), multiple sclerosis (3,4), or mild trau-
matic brain injuries (5). Yet, the long measurement times
and low signal-to-noise ratio per unit time (SNR/t) in vivo
prevent its widespread acceptance in the clinical routine.

The SNR/t can be improved in several ways, among
which are the use of high magnetic fields (6), array coils
(AC) (7), an optimal coil combination that includes noise
decorrelation (8), short echo times (TE) (6), efficient
sequences, and short repetition times (TR) (9). The excess
SNR can then be traded off for a reduced acquisition time
through i) measuring several k-space points within each
spectral dwell time (ie, spatio-spectral encoding (SSE)) (9);
ii) reducing the number of sampled k-space points (ie, par-
tial Fourier, compressed sensing, parallel imaging (PI))
(10); or iii) reducing the TR (ie, steady-state free precession
sequences) (11).

SSE in MR spectroscopic imaging (MRSI) was pro-
posed with several different gradient trajectories, eg, spi-
ral (12), echo-planar spectroscopic imaging (13,14),
proton echo-planar spectroscopic imaging (15,16), rosette
(17), and CONCEPT (18). SSE spectroscopy techniques
often have high-gradient hardware requirements (19).
Otherwise, SSE sequences are very well suited for accel-
erating MRSI, but even more promising is the combina-
tion of SSE techniques with PI or compressed sensing
(20).

PI techniques were shown to be versatile tools for accel-
erating phase-encoding (21–23), as well as slice encoding
in multislice sequences (24). For GRAPPA and SENSE,
whole k-space lines are omitted, whereas, for 2D-
CAIPIRINHA, k-space points are skipped in arbitrary pat-
terns. The missing data are then reconstructed with the
aid of the intrinsic signal localization of the individual AC
elements, ie, different sensitivity profiles for different AC
elements, and additional calibration data. This recon-
struction can be performed either in k-space (GRAPPA) or
in the image domain (SENSE). In slice-CAIPIRINHA, sev-
eral slices are excited at once with a variable field of view
(FOV) shift between the slices; thus, this is also termed
simultaneous multislice (SMS) acquisition (25). The indi-
vidual slices are then aliased on top of each other in the
measured data and have to be unfolded using concepts
similar to those used in phase-encoding PI.

Special care must be taken with subcutaneous lipids
when applying PI in brain MRSI. If subcutaneous lipids
cannot be fully unaliased, this signal can contaminate
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voxels within the brain and can even superimpose the
main metabolite resonance in the brain, N-acetyl-
aspartate (NAA), when strong B0 inhomogeneities are
present (26). Apart from this, PI in MRSI has many
advantages. PI in MRI is a versatile tool, yet, in 1H-
MRSI, the efficiency is even higher, because the ratio
between the actual scan time and the calibration scan
time is better than in conventional MRI. In addition, PI
in n-dimensional, phase-encoded MRSI can be per-
formed along more spatial dimensions than in n-
dimensional, Cartesian MRI, as conventional MRSI has
no frequency-encoding direction. The performance of PI
was shown to improve with the magnetic field strength
(27), whereas some ultra-high-resolution SSE MRSI
sequences are slightly less efficient at very high magnetic
fields (9). However, the efficiency loss is negligible for
voxel sizes� 200/32 mm, or at field strengths� 3 T.

Several groups have implemented different versions of
PI in MRSI, such as one-dimensional (1D) SENSE in
combination with SSE (28–33), two-dimensional (2D)
SENSE (34–39), 1D-GRAPPA in combination with SSE
(14,29,40,41), and 2D-GRAPPA (42). To our knowledge,
no group has presented any slice-PI method in MRSI as
of yet.

PI is available along potentially three spatial dimen-
sions in MRSI. The performance of PI was shown to
increase with the number of spatial dimensions (43).
Therefore, we propose (2þ 1)D-CAIPIRINHA as a combi-
nation of 2D-CAIPIRINHA along the two axial phase-
encoding directions, and slice-CAIPIRINHA along the
slice-encoded third dimension, to accelerate multislice
1H-MRSI acquisitions. A similar method can be used for
three-dimensional (3D) 1H-MRSI.

METHODS

Description of (2þ 1)D-CAIPIRINHA

(2þ 1)D-CAIPIRINHA is a combination of 2D-

CAIPIRINHA (23) and the original “slice” CAIPIRINHA

(24), both by Breuer et al. In slice-CAIPIRINHA, a num-

ber of different slices are excited at once (Fig. 1a, top).

These slices are aliased and can be shifted in-plane with

respect to each other to enhance the reconstruction qual-

ity (Fig. 1a, bottom). The in-plane shift is indicated by

the transparency of the k-space points, showing the line-

ar phase along the phase-encoding axes. Figure 1b

depicts 2D-CAIPIRINHA. The combination of both meth-

ods is shown in Figure 1c, resulting in (2þ 1)D-CAIPIRI-

NHA. This combination offers an increased encoding

freedom, namely, the 2D-CAIPIRINHA pattern, and the

two FOV shifts in both phase-encoding directions.

In contrast, 3D-CAIPIRINHA would be an extension of

2D-CAIPIRINHA to three phase-encoded spatial dimen-

sions. As far as we know, 3D-CAIPIRINHA has not yet

been proposed, but similar concepts were proposed by

Bilgic et al (44) and Breuer et al (45) for MRI.
In both cases, (2þ1)D- and 3D-CAIPIRINHA, the sensi-

tivity variations of the AC are exploited in all three spa-

tial dimensions.

Subjects and Hardware

Eight healthy volunteers were measured on a 7 Tesla (T)

whole-body MR scanner (Magnetom, Siemens Health-

care, Erlangen, Germany) with a 32-channel AC for

FIG. 1. Illustration of three different methods by which to accelerate MRSI data. Each sphere represents a k-space point in an 8�8�4 k-

space, while the gray boxes represent slices. The different colors represent different slices. (a) 1D-CAIPIRINHA: Four different slices are excited
in 1D-CAIPIRINHA, and Slices 1 and 3, and Slices 2 and 4 are aliased on top of each other during measurement, as depicted in the bottom. The

transparency of the spheres represents the linear phase shift, causing an FOV shift between the aliased slices. (b) 2D-CAIPIRINHA: Four slices
are measured with 2D-CAIPIRINHA. Each slice/partition is independently measured and undersampled with the same 2D pattern. (c) (2þ1)D-
CAIPIRINHA: The combination of slice-CAIPIRINHA and 2D-CAIPIRINHA leads to (2þ1)D-CAIPIRINHA, in which Slices 1 and 3, and Slices 2

and 4 are aliased on top of each other with an FOV shift between them; each slice is also undersampled with a 2D-CAIPIRINHA pattern.
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signal reception, and a volume coil for signal transmis-

sion (Nova Medical, Wilmington, Massachusetts, U.S.A.).

Two measurements had to be excluded as a result of

motion artifacts caused by the long measurement time

(see subsequently). The remaining six data sets were fur-

ther processed. The local institutional review board

approved this study, and written, informed consent was

obtained from all volunteers.

Data Acquisition

As an anatomical reference, a 3D T1-weighted

magnetization-prepared 2 rapid acquisition gradient echoes

(MP2RAGE) sequence was acquired (46). The sequence

parameters were as follows: TE¼ 2.96 ms; TR¼ 4.2 s; inver-

sion time 1¼0.85 s; inversion time 2¼ 3.4 s; GRAPPA

factor 3; matrix size 256�256� 160; and nominal

voxel size 0.9�0.9�1.1 mm3. A Bþ1 map was acquired

with a presaturation turboFLASH-based B1 mapping

sequence (47,48) to adjust the intended average flip

angle of 45 � in the MRSI sequence. The shim volume

was carefully placed to cover the whole head in the

transverse planes, including the subcutaneous fat

around the brain, to avoid remaining lipids from

unshimmed regions superimposing NAA. To check the

shimming quality, a B0 field map was acquired with a

double gradient echo sequence.
To enable a retrospective comparison of different PI

approaches in simulations, elliptically weighted, fully

sampled MRSI data had to be acquired without any accel-

eration, which could then be used as the reference stan-

dard. The different acceleration methods were simulated

in postprocessing. Due to time restrictions, only two slices

were fully sampled to show the feasibility of slice acceler-

ation. The two MRSI slices were pulse-cascaded, Hada-

mard-encoded (49,50), and acquired with an FID-based

sequence (51). The pulse-cascaded Hadamard scheme is

similar to normal Hadamard encoding, in which all slices

are excited with pulse phases according to a Hadamard

matrix. In contrast to conventional Hadamard encoding,

the pulses for the slices are not summed, but instead are

transmitted one after another. The parameters of the

sequence were 64� 64�2 voxels; elliptically weighted;

nominal voxel size 3.4� 3.4� 8 mm3; slice gap of 8 mm;

6-kHz spectral bandwidth; 2048 complex free induction

decay (FID) points; weak water suppression enhanced

through T1-effects (WET) (52); TR of 0.6 s; flip angle of

45 �; acquisition delay of 1.3 ms (upper slice) and 2.3 ms

(bottom slice); and measurement time of 60 min. Two sli-

ces were acquired with a gradient echo sequence to serve

as GRAPPA auto-calibration signals (ACS) and as coil

combination weights (8), and were measured with the

same FOV, slice positions, shim adjustments, and echo

times (same as acquisition delays), but without water sup-

pression and with a 128�128 matrix size.
In addition, undersampled MRSI and gradient-echo

MRI data with four slices were acquired in one volunteer

(Volunteer #6) with an acceleration of RTotal¼8, RSlice¼ 2,

and Hadamard encoding of the resulting two slice groups,

to show the feasibility of the proposed method for more

slices. The slices were measured without gaps.

Quality Measures

Two important quality measures of PI are the artifact

power (AP) and the g-factor. The artifact power is

defined as follows:

AP:¼100 �
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[1]

where cha are the different channels, r is the voxel posi-

tion, t is the FID time points, mask is the spatial brain

mask, Tmask is the mask in the time domain (that takes

every eighth point from the first 512 FID points to

reduce computational burden), and S is the signal of

either the simulated acceleration or of the full data set.
Therefore, the AP is a measure of the relative error of

the time domain signal in percent.
Acceleration through the omission of k-space points

leads to an expected loss in SNR as a result of fewer

independent measurements. The g-factor describes the

additional SNR loss that is caused by imperfect recon-

struction. The g-factor is defined as

g :¼ SNRFullffiffiffiffiffiffiffiffiffiffiffiffi
RTotal

p
SNRPI

[2]

Writing the SNR as the ratio of the signal and the root

mean square (RMS) of the noise, and assuming that the

signal is unchanged between the PI and the normal

acquisition, Equation [2] can be rewritten as

g :¼ SignalFull

RMSðNoiseFullÞ
=

ffiffiffiffiffiffiffiffiffiffiffiffi
RTotal

p
SignalPI

RMSðNoisePI Þ

� RMSðNoisePI Þffiffiffiffiffiffiffiffiffiffiffiffi
RTotal

p
� RMSðNoiseFullÞ

[3]

This formula was used throughout the manuscript for

calculating the g-factors. RTotal was defined as the total

acceleration factor with respect to the elliptically sam-

pled, full data, taking into account the in-plane accelera-

tion, RInPlane, the slice acceleration, RSlc, and the variable

density (VD) radius, ie, the radius within which all

k-space points were “measured.”
Another quality measure is the RMSE of the metabolic

maps, as follows:

RMSE :¼ 100 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
r2mask
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N

vuuut
[4]

where C is the fitted concentration of one specific metab-

olite, and N is the number of voxels in the mask.

Identifying the Best Undersampling Patterns

Our first goal was to identify the best (2þ 1)D-CAIPIRI-

NHA, 2D-CAIPIRINHA, and 2D-GRAPPA patterns among

all possible patterns. The (2þ 1)D-CAIPIRINHA patterns

consisted of a 2D-CAIPIRINHA pattern and two FOV
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shifts in both phase-encoding directions between the two
slices.

The starting point for the 2D-CAIPIRINHA patterns was
all possible patterns arising when distributing j points in a
k� k undersampling cell with the intended in-plane
acceleration, fulfilling RInPlane � j=k2. This was calculated
for all possible j and k, restricted only by requiring the
number of resulting patterns to be below 108. The GRAP-
PA patterns were calculated by choosing natural numbers
n and m, such that RInPlane � n �m. The best (2þ 1)D-CAI-
PIRINHA patterns were estimated in three steps.

Step 1: k-Space Distance

Suitable 2D-CAIPIRINHA patterns were identified by
minimizing the mean distance between a nonmeasured
k-space point and its three measured next neighbors.
Such patterns tend to result in better reconstruction per-
formance, as nearby k-space points contribute the most
to the reconstruction information (21). The 20 patterns
with the lowest mean distance were chosen for Step 2.

Step 2: Artifact Power and g-Factor Minimization

Step 2 was performed for four volunteers. The volunteer
mean was computed at the end. Each of the substeps, 2a
and 2b, resulted in one pattern, minimizing either the
artifact power or the g-factor. Both were used for Step 3.
In some cases, the patterns of 2a and 2b coincided, in
which case only one pattern was processed in Step 3.

a. Artifact Power: The combinations of those 2D-
CAIPIRINHA patterns and FOV shifts 2 f0; 1

6 ;
2
6 ;

3
6gx�

FoVx � f0; 1
6 ;

2
6 ;

3
6gy � FoVy were selected, which min-

imized the artifact power within the brain mask, as
defined by Equation [1]. The FOV shifts were simu-
lated in both phase-encoding directions indepen-
dently. The brain mask was defined based on the
T1-weighted image of the MP2RAGE data set, using
the brain extraction tool BET2 (http://www.fmrib.
ox.ac.uk/analysis/research/bet).

b. g-Factors: For each of the 20 best patterns in Step
1, the 0.9-quantile of the g-factors within the brain
mask was calculated, independent of Step 2a. The
pattern with the minimum g-factor was chosen for
Step 3, along with the pattern of 2a. This measure
was chosen because the highest g-factors restrict
the maximum possible acceleration, but the maxi-
mum g-factor is prone to outliers. The g-factors
were computed as the ratio of the RMS of the
undersampled and the fully sampled noise (Eq. [3]).

Step 3: Root Mean Square Error

Step 3 was performed for five volunteers. The volunteer
mean was computed at the end of Step 3.

Finally, the data were undersampled independently
with the best patterns of 2a and 2b, and then recon-
structed and processed using LCModel. The RMSE of
total N-acetyl-aspartate (tNAA) was used to determine
the overall best pattern of the given RTotal. tNAA was
chosen, as residual lipid contamination from non–fully
unaliased lipids occur primarily in the tNAA signal. The

details about computing the RMSE are described
subsequently.

The whole procedure was performed for different
RTotal2 f2;3; . . . ;10g (2D-GRAPPA, 2D-CAIPIRINHA) or
RTotal2 f5;6; . . . ;10g ((2þ1)D-CAIPIRINHA).

The best 2D-CAIPIRINHA patterns were estimated simi-
larly, but without the slice aliasing and reconstruction
part. As a result, higher RInPlanes were necessary to achieve
the same RTotal. To obtain the best 2D-GRAPPA patterns,
the same procedure was performed with simple n�m
GRAPPA patterns, requiring RTotal ¼ n �m (n,m integer
and n,m<6). If this resulted in high-acceleration factors
along one spatial dimension, eg, for RInPlane¼ 5, the next
higher possible RInPlane was chosen and compensated by a
higher VD radius. Both possibilities, n�m and m�n,
were simulated. Thus, eg, RTotal¼ 5 was achieved by four
patterns in 2D-GRAPPA: 1�5; 5� 1; 2� 3 with VD radi-
us¼ 6; and 3� 2 with VD radius¼ 6. By allowing more
patterns, the quality measures, especially of GRAPPA, can
be dramatically improved for RTotal¼ 5, 7, 8, and 10.

As a mean of flexibility, the VD radius could also be
chosen to adapt to slightly different RTotals for 2D-
CAIPIRINHA and (2þ1)D-CAIPIRINHA. The RMSE was
calculated as follows: The noise-decorrelated full data set
was undersampled according to the used pattern, and
reconstructed by first performing a k-space-based in-plane
reconstruction algorithm, and then, for the (2þ 1)D-CAIPI-
RINHA, a k-space-based slice reconstruction algorithm.
The data were then spatially Fourier transformed, coil-
combined using MUSICAL (8), and Hamming-filtered. The
individual spectra were fitted with LCModel (http://s-pro-
vencher.com/pages/lcmodel.shtml) using a basis set with
metabolites simulated by “NMR scope” of jMRUI (http://
www.mrui.uab.es). These simulated metabolites contain
the same acquisition delay as the MRSI data (51); thus, the
first-order phase error is accounted for. For the presenta-
tion in this publication, the spectra were first-order phase-
corrected with a MATLAB (MathWorks, Natick, Massa-
chusetts, USA) routine, and the resulting increased base-
line variations were fitted by LCModel as the baseline.
The RMSE of the tNAA map was calculated with the fully
sampled data set as the gold standard.

Analyzing the Best Undersampling Patterns

The best patterns of Step 3 (minimum RMSE) were com-
pared among the three PI methods for the volunteer

mean and all RTotal values using RMSEs and Cram�er–Rao

lower bound (CRLB) values as a measure of PI recon-

struction quality. Statistical tests were performed on the

difference between (2þ 1)D-CAIPIRINHA and the two

other methods, using the APs, g-factors, RMSE, and

CRLB. Spectra and metabolic maps were compared quali-

tatively among the three PI methods.

Lipid Contamination and Feasibility of
(2þ 1)D-CAIPIRINHA

To determine the sensitivity of all three PI methods to
lipid artifacts, the lipid content relative to the reference
with RTotal¼ 1 was evaluated by summing the magnitude
spectra in the range of 0.3 to 2.1 ppm, dividing by the
results of the reference, and averaging over the brain
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voxels and the volunteers. This was done for different

values of RTotal, and undersampling methods. By choos-

ing such a broad range in parts per million, all lipids,

even those overlapping with tNAA, are quantified, with

the drawback of having “contamination” values>0%

even for perfect lipid suppression. In addition, a lipid

decontamination algorithm using a regularized recon-

struction according to Bilgic et al (53) was performed,

and the lipid contamination was again compared for all

data sets. In both cases, with and without lipid decon-

tamination, the reference was chosen without lipid

decontamination to investigate the lipid suppression

capabilities of the regularized reconstruction.
The data from Volunteer #6 were processed with the

standard processing described previously, including lip-

id decontamination, to prove the feasibility of (2þ 1)D-

CAIPIRINHA.

RESULTS

Identifying the Best Undersampling Patterns

Three examples of the undersampling patterns of Step 1

(RInPlane¼6.25) are illustrated in Figure 2, together with

the mean distance of the nonmeasured k-space points to

their three measured nearest neighbors. It is clearly visible

that the mean distance is a good measure of how evenly

the measured k-space points are distributed. An overview

of how many patterns were processed in each of the three

steps is given in Table 1 for three RTotal values.
The results of Step 2, ie, the AP and the g-factors depen-

dent on the RTotal, are shown in Figures 3a and 3b. Only

the results of the best pattern for each PI method are

shown. It is clearly visible that the best (2þ 1)D-CAIPIRI-

NHA pattern achieved smaller APs than the best 2D-

GRAPPA or 2D-CAIPIRINHA patterns, particularly for high

acceleration factors. The APs of (2þ1)D-CAIPIRINHA were

significantly lower than for 2D-GRAPPA (see Supporting

Table S1). The g-factors also followed this trend. However,

all three methods had very similar g-factors for RTotal¼ 9.

Analyzing the Best Undersampling Patterns

The RMSE of the tNAA map for the best undersampling

patterns that are dependent on RTotal are shown in Figure

3c. The trend is very similar to the results of the AP,

with (2þ1)D-CAIPIRINHA giving the lowest % RMSE

for all acceleration factors higher than R¼5.
The mean CRLB values of total choline (tCho) and

total creatine (tCr) (for the patterns that minimize the

RMSE) are provided in Figure 3d. tNAA was not includ-

ed, because the remaining lipid aliasing often superim-

poses the NAA peak, which could mistakenly decrease

the CRLB values, thus making the tNAA CRLB inappro-

priate measures to determine the performance of PI

methods. However, tNAA could be fitted properly, as

shown in Figures 4–7. The CRLB values of (2þ 1)D-CAI-

PIRINHA were lower than those of 2D-CAIPIRINHA only

for RTotal� 9, but they were very similar for the other

acceleration factors.
Examples of metabolic maps of tNAA, tCr and tCho of

two volunteers are shown in Figure 4 for the three PI

methods and the fully sampled data set. Spectra are pro-

vided in Figure 5.
In summary, the mean AP, median g-factor, absolute

errors (same as RMSE without summing over the voxels),

FIG. 2. Three examples of the undersampling patterns for RInPlane¼6.25, which are processed in Step 1. The blue points with the green

frame represent the elementary cell, which is replicated to the matrix size, in this case, 15�15. The mean distance stated below each
pattern indicates the mean distance of the nonsampled points to their three measured next neighbors. This measure is used in Step 1
to find evenly distributed patterns.

Table 1

Number of Processed Patterns for Each Processing Step and for
Three Sample Acceleration Factors

Step 1 Step 2 Step 3a

2D-GRAPPA 2 2 2
R¼2 2D-CAIPI 6438 6 2

(2þ1)D-CAIPI 0 0 0
2D-GRAPPA 2 2 2

R¼5 2D-CAIPI 10.7 � 104 17 2

(2þ1)D-CAIPI 1.3 � 106 576 2
2D-GRAPPA 1 1 2

R¼9 2D-CAIPI 68 � 106 54 2
(2þ1)D-CAIPI 6.7 � 106 400 2

aIn step 3, exactly two patterns (or none for (2þ1)D-CAIPIRINHA

and R<5) were processed: the best AP pattern (Step 2a) and the
best g-factor pattern (Step 2b).

(2þ1)D-CAIPIRINHA Accelerated MRSI 433



and CRLB values are provided in Supporting Table S1,

together with the significance levels of the t-test (AP,

CRLB) or Wilcoxon signed rank tests (others). The four (AP

and g-factors) or five (RMSE and CRLB) volunteers and all

of their voxels were considered the test samples, except for

the APs, which inherently sums over all voxels. Because

the voxel values are not entirely independent measure-

ments, but the Wilcoxon and t-tests require that condition,

stronger significance-level requirements were used.

Lipid Contamination and Feasibility
of (2þ 1)D-CAIPIRINHA

Figure 6 shows an example of a tNAA map of Volunteer

#5, which is strongly altered by lipid artifacts. The

strong lipid artifacts, caused by a GRAPPA acceleration

of RTotal¼ 10, were almost removed by the use of the lip-

id decontamination method.
The mean lipid and macromolecule values of all volun-

teers with and without lipid decontamination are given in

Table 2 for all RTotals and all three acceleration methods.
In Figure 7, metabolic maps of tNAA, tCho, tCr, myo-

Inositol (Ins), and glutamine and glutamate (Glx) are

shown for Volunteer #6, who was measured with actual

(2þ 1)D-CAIPIRINHA undersampling of RTotal¼ 8 and

four slices within 15 min. The maps show a very good

quality, with increases of tCho in the frontal and central
brain area, consistent with other studies (54). The maps
are ordered to increase in gray matter/white matter con-
trast from left to right, which is especially evident in
Glx. The decreased metabolic concentrations in Slice 4
stem from a decreased sensitivity of the array coil at low-
er positions, which does not appear to be fully corrected
during coil combination. The minor hotspots in the
tNAA maps appear to be natural variations, as they also
appear in another measurement of the same volunteer.

DISCUSSION

In our work, we proposed a new PI method for multi-
slice 2D-1H-MRSI that accelerates in all three spatial
dimensions. Taking advantage of such acceleration
results in maximal exploitation of the sensitivity varia-
tions of the AC, leading to expected reconstruction
improvements over conventional PI methods. This theo-
retical expectation was confirmed by this study, as the
proposed method provides lower AP, g-factor, RMSE,
and (partially) CRLB values, compared with 2D-GRAPPA
and 2D-CAIPIRINHA. With the proposed method, accel-
erations up to R¼ 8 were feasible when using lipid
decontamination according to Bilgic et al (53). Such high
accelerations result in spectra with low SNR, allowing

FIG. 3. AP (a) and 0.9-quantile g-factors (b), averaged over four volunteers, the RMSE of tNAA, averaged over five volunteers (c), and

the mean CRLBs of tCho and tCr plotted against the total acceleration, RTotal (d). The AP perfectly follows the expected trend: The APs
increase with RTotal for all PI methods, with (2þ1)D-CAIPIRINHA having the smallest, and 2D-GRAPPA the highest, values. The g-

factors and the RMSE are similar, except for RTotal¼9, in which all methods have effectively the same g-factors. The CRLBs show
smaller values only for RTotal�9.
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reliable fits (CRLBs< 20%) only for tCr, tCho, tNAA, Ins,

and Glx (for the latter two, consider the ultrashort TE).

Identifying the Best Undersampling Patterns

An analysis of Step 2 showed that the APs followed the

expected trend almost perfectly: The higher the RTotal,

the higher the AP for all three PI methods. Moreover,

(2þ 1)D-CAIPIRINHA led to lower APs than 2D-

CAIPIRINHA, as it makes better use of the AC in all

three dimensions. However, substantial differences in

AP between 2D-CAIPIRINHA and (2þ 1)D-CAIPIRINHA

were found only for high RTotal values, because, only for
high acceleration were the in-plane sensitivity variations
no longer sufficient for 2D-CAIPIRINHA using our 32-
channel receive coil. 2D-CAIPIRINHA provided lower
APs than 2D-GRAPPA. This is in accordance with the
literature (23).

The g-factors showed a similar behavior, with the excep-
tion of RTotal¼ 9, in which all methods performed equally
well. Moreover, the g-factor decrease of the 2D-GRAPPA

FIG. 4. Metabolic maps in native resolution of tNAA, tCho, tCr,

and the RMSE values to the R¼1 gold standard for one volunteer
with RTotal¼7. (2þ1)D-CAIPIRINHA shows the least artifacts com-
pared with the fully sampled data for Slice 1, whereas the other

two methods perform better in Slice 2. The holes in the upper
right and left corner of the tNAA and tCho of Slice 2 are caused

by lipid artifacts, which can be removed by the regularized lipid
decontaminated reconstruction.

FIG. 5. Example of spectra comparing the performance of the

three PI methods to the fully sampled data. The first column
shows a case in which the 2D-GRAPPA failed, whereas the other
two PI methods performed well. The spectra of the second col-

umn demonstrate where the 2D-CAIPIRINHA is highly lipid con-
taminated. The black lines in the plots represent the measured

data, the red lines the fitted data, and, in the upper part, the
residua are plotted. The black arrows in the spectra indicate arti-
facts caused by remaining lipids. The origin of the spectra are

shown on T1-weighted reference images and marked with arrows
and white squares in the size of the nominal resolution.
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method from RTotal¼7 to RTotal¼ 9 is worth noting. These
patterns were achieved with the same pattern as for
RTotal¼9, ie, a 3� 3 pattern, but with higher VD radii. It is
known that the best SNR performance is achieved by sam-
pling the k-space uniformly. With high VD radii, this is
not the case, thus, resulting in lower SNR/t and higher g-
factors. The high g-factor increase between RTotal¼9 and
RTotal¼10 was caused by the high acceleration factor of 4
in one direction of the 4� 3 or 3� 4 patterns.

Analyzing the Best Undersampling Patterns

Step 3 showed that (2þ 1)D-CAIPIRINHA provides over-
all better RMSE values. The CRLB values were similar
for 2D-CAIPIRINHA and (2þ1)D-CAIPIRINHA for
RTotal< 9, but better than for 2D-GRAPPA. Only at very
high RTotal (>7) was (2þ 1)D-CAIPIRINHA better than

the other two PI methods. The qualitative assessment of
metabolic maps and spectra showed very similar results
for 2D-CAIPIRINHA and (2þ1)D-CAIPIRINHA for a low
RTotal, but better performance for RTotal> 7. The perfor-
mance versus 2D-GRAPPA was better for all RTotal (>4).

2D-CAIPIRINHA also performed better than 2D-
GRAPPA. This can be attributed to the fact that 2D-
CAIPIRINHA can achieve a more even distribution of the
aliasing across the whole FOV than 2D-GRAPPA.

Lipid Contamination and Feasibility of (2þ 1)D-
CAIPIRINHA

The lipid decontamination provided good results,
decreasing the mean lipid and macromolecule contents
from almost 200% to under 80% of that of RTotal¼ 1.
Note that the lipid and macromolecule ratio of 200%, on

FIG. 6. Effect of the lipid decontami-

nation method used to demonstrate
one very extreme case of lipid arti-

facts in Volunteer #5 for 2D-
GRAPPA, RTotal¼10. When using the
decontamination algorithm, only

minor lipid artifacts remain. This fact
is additionally shown by the sample

spectra from the locations indicated
by the red and gray arrows, as the
lipid-decontaminated spectra show

much lower lipid signals.
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average, has to be considered a substantial increase, as
most voxels are usually not affected at all, whereas some
regions are likely to be highly contaminated and may thus
be unusable. It is further important to stress that 80% can
be considered a low value, because even for perfect lipid
suppression, the choice to sum the signal between 0.3
and 2.1 ppm overestimates the lipid signal. Furthermore,
with 80% the lipid contamination is lower than for R¼ 1
without lipid suppression, in which case lipids are no
problem because of the high resolution. Despite GRAPPA

working well in general, the remaining lipid artifacts are
especially problematic with GRAPPA at high acceleration
factors if no lipid suppression method is used.

The successful measurement in a volunteer acquired
with (2þ 1)D-CAIPIRINHA provided proof-of-principle
of the proposed method. Even Ins and Glx were ade-
quately fittable in all slices, showing a strong gray and
white matter contrast. Using slice gaps of 50% was not
superior to using no slice gap in a prestudy (55); there-
fore, no slice gap was used in the measurement.

FIG. 7. T1-weighted reference and metabolic maps of the additionally measured Volunteer #6, which was undersampled during mea-
surement with (2þ1)D-CAIPIRINHA, RTotal¼8, leading to a measurement time of 15 min. The metabolic maps tNAA, tCho, tCr, Ins, and

Glx are ordered to increase in gray matter/white matter contrast from left to right. In the lowest slice an artifact occurred in the top-right
corner. All maps and images are in neurological display, as indicated by the “R” and “L” above the T1-weighted images.

Table 2
Lipid Contamination Ratio of RTotal¼1 for Different Acceleration Factors, Acceleration Methods, and with and without Lipid Decontami-
nation, Averaged over Five Volunteers

Lipid Ratio to RTotal¼1 [%]

Without lipid decontamination With lipid decontamination

GRAPPA CAIPI (2þ1)D-C GRAPPA CAIPI (2þ1)D-C

R¼2 98.9 101.0 — 60.2 59.8 —
R¼3 107.7 105.0 — 61.1 60.6 —

R¼4 109.1 113.4 — 62.0 61.8 —
R¼5 125.0 116.9 122.7 63.2 63.1 61.7
R¼6 136.7 126.6 131.7 65.1 65.0 58.6

R¼7 143.8 133.2 138.2 65.9 66.0 63.3
R¼8 151.5 160.0 149.7 67.3 67.1 72.1

R¼9 163.4 170.3 147.6 69.9 69.3 72.2
R¼10 192.0 198.2 180.4 71.9 72.0 77.6

Note: The lipid contamination increases with RTotal, but is always well below the reference when using lipid decontamination. The lipid

decontamination appears to work worse for (2þ1)D-CAIPIRINHA for R>7, as the lipid values are higher than those of the other two
methods, but lower when not using lipid decontamination.
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Comparison of PI Methods

To date, two methods to accelerate in all three spatial
dimensions have been proposed in conventional MRI:
Zigzag sampling by Breuer et al (45) and Wave-CAIPI by
Bilgic et al (44). Both involve shifting the individual
frequency-encoding k-space points along the phase-
encoding directions by applying time-varying phase-
encoding gradients during the readout.

In conventional MRSI, it is possible to accelerate in
three dimensions without any additional shifts. To date,
at most, two spatial dimensions have been exploited for
PI acceleration in conventional MRSI (35,38,42,56), using
only standard GRAPPA (14,29,40–42) and SENSE
(28–39). SENSE, in its normal, so-called “strong”
approach, was shown to be prone to reconstruction
errors when applied to low-resolution data (34). Some of
the groups who performed GRAPPA measured the ACS
data with a time-consuming MRSI sequence (29,41,42),
although there is no evidence that calculating GRAPPA
weights for each spectral time point improves the
reconstruction.

In contrast, our MRSI data were reconstructed using a
k-space-based reconstruction. In this way, we avoided
the point-spread function complications of the SENSE
reconstruction (34). In addition, the ACS data were
acquired with an imaging-based sequence, which
requires only a few seconds. No lengthy, inefficient
MRSI measurements of the central k-space were required
for the ACS data. These were acquired with a sequence
very similar to that of the MRSI data, and with a high
matrix size of 128�128, in contrast to matrix sizes of
approximately 32� 256 in MRI. Both facts are beneficial
for the PI reconstruction. Through PI acceleration in all
three spatial dimensions, including 2D-CAIPIRINHA pat-
terns superior to standard GRAPPA patterns, we avoided
additional SNR losses as a result of increased g-factors.
This is particularly important if high acceleration factors
are used. Acceleration factors up to 8 (Volunteer #6) or
10 (simulations) were therefore possible in vivo, because
of the high SNR provided by the ultrahigh magnetic
field, the AC with 32 channels, the optimal coil combi-
nation (8), and the ultrashort acquisition delay (51).

Because of the FOV shifts between the aliased slices,
the sensitivity variation is exploited not only along the
slice direction, but also along the PE directions in the
1D-CAIPIRINHA reconstruction, thus requiring no slice
gaps. Large distances between the aliased slices are,
however, beneficial. The proposed method is therefore
best suited for measurements with big slice gaps, 2–8 sli-
ces, and high acceleration factors.

One additional feature that was used in our work was
Hadamard encoding of the different aliased slice groups.
In Figure 1a, this would be the group consisting of Slices
1 and 3, and the group consisting of Slices 2 and 4.
Slice-CAIPIRINHA can be combined with Hadamard
encoding, because slice-CAIPIRINHA adds a linearly
increasing phase to the excitation pulse for the different
phase-encoding points. Hadamard encoding, however,
adds a constant phase to the excitation pulse phase for
all phase-encoding points, but different phases for differ-
ent Hadamard steps.

All GRAPPA-like reconstruction methods, and there-
fore all three methods compared here, could be further
improved by a regularized PI reconstruction (57), or by
calculating different GRAPPA weights for different
regions of the k-space (58).

Comparison to SSE in MRSI

SSE is a good alternative to PI for accelerating MRSI.
SSE techniques can provide higher acceleration factors
than PI, and do not suffer from lipid aliasing, while still
maintaining an SNR/t close to that of conventional
MRSI. A minor disadvantage of SSE is the high load on
the gradient coils, which can cause frequency drifts and
associated line broadening at 3 T (59,60). These effects
are further worsened at 7 T because of the shortened
spectral dwell times required to cover the same spectral
range in parts per million.

Limitations

The main limitations of this study are the possible lipid
contaminations that occur when the acquired ACS data
and MRSI data differ as a result of subject motion and
other instabilities, and the longer reconstruction times
compared with 2D-GRAPPA. A large volume was careful-
ly shimmed to prevent the subcutaneous lipids from res-
onating within the metabolite chemical shift range and a
lipid decontamination was used in postprocessing, based
on an L2-norm-regularized reconstruction proposed by
Bilgic et al (53). Other solutions will be considered in
future studies, such as dedicated gradient crusher coils
(61), higher order shims (62), constrained shimming rou-
tines (26), outer volume saturation (63), and (double)
inversion recovery methods (64,65).

The proposed method is only reasonable for eight sli-
ces or fewer, because pulse-cascaded Hadamard introdu-
ces acquisition delays that become longer with the
number of slices, and the slice-acceleration is limited to
approximately RSlc¼ 2. For more slices, 3D-CAIPIRINHA
would be the better choice. This is a distinct disadvan-
tage compared with SSE methods, which can easily pro-
vide accelerations higher than 10, and thus more slices
within a reasonable time.

It is crucial to understand that the optimal patterns
found in our study are not necessarily optimal if other
coils or slice positions are used, or if investigating differ-
ent organs. In particular, if the coil arrangement along
the z-dimension differs substantially, the optimal pat-
terns will be different. Lower field strengths should theo-
retically not influence the choice of the best patterns,
but all patterns should provide worse reconstructions as
a result of more overlapping sensitivities. The best pat-
terns must be identified for each coil and organ individ-
ually, which is in fact also the case for 2D-CAIPIRINHA
and, to a small extent, even for 2D-GRAPPA (2 � 3 ver-
sus 3 � 2). However, simulations based on the Biot-
Savart law can be performed to restrict the number of
patterns to begin with. The exact patterns are provided
as Supporting Material 2, because for coil geometries
similar to ours and for brain measurements, the patterns
found in this study are likely to be among the best
choices.
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The long reconstruction times of all three compared

methods could be mitigated by improving the reconstruc-

tion algorithm.

CONCLUSIONS

In this study, we show, for the first time, the feasibility

of PI along three spatial dimensions in MRSI. (2þ 1)-

CAIPIRINHA can be implemented for multislice MRSI in

the brain, enabling higher accelerations than are possible

with 2D parallel imaging methods. (2þ 1)D-CAIPIRINHA

is therefore the preferred method, if high acceleration

factors are required for multislice MRSI.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article

Table S1. Mean APs, Median g-Factors, Median Absolute Errors, and
Mean CRLBs of tCho and tCr for the Three Methods and Six Acceleration
Factors (Bold numbers indicate that the reference method was worse than
(2 1 1)D-CAIPIRINHA; * indicates statistical significance (P< 5�1022 for AP,
P< 5�1023 for the others); and ** indicates highly significant differences
(P< 5�1024). A t-test was performed on the AP data of the five volunteers.
For the other quality measures, the voxels of all volunteers were used as
the sample for the t-test (CRLB values) or Wilcoxon signed rank test (g-fac-
tors, median absolute errors), which requires independent measurements.
Because the voxel values are not entirely independent (only the k-space
data are), stronger significance level requirements were chosen.)

Supporting Material 2. MATLAB file containing the best 2D-GRAPPA, 2D-
CAIPIRINHA, and (2 1 1)D-CAIPIRINHA Patterns after Step 3. In the latter
case, a 2D-CAIPIRINHA pattern and two FOV shifts are provided. The FOV
shifts are given as multiples of the FOV (eg, a value of 0.5 indicates half a
FOV shift). The 2D-CAIPIRINHA patterns consist of 0s and 1s, in which 0s
represent not measured, and 1s represent measured k-space points. These
patterns have to be replicated to the intended matrix size (eg, from 5 3 5
to 64 3 64). The VD radius gives the radius in multiples of 1/FOV, within
which all k-space points are measured.
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