
The Molecular Basis of the Effect of
Temperature on the Structure and
Function of SARS-CoV-2 Spike Protein
Faez Iqbal Khan1,2, Kevin A. Lobb3* and Dakun Lai 2*

1Department of Biological Sciences, School of Science, Xi’an Jiaotong-Liverpool University, Suzhou, Jiangsu, China, 2School of
Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, China, 3Department of
Chemistry, Rhodes University, Grahamstown, South Africa

The remarkable rise of the current COVID-19 pandemic to every part of the globe has
raised key concerns for the current public healthcare system. The spike (S) protein of
SARS-CoV-2 shows an important part in the cell membrane fusion and receptor
recognition. It is a key target for vaccine production. Several researchers studied the
nature of this protein under various environmental conditions. In this work, we applied
molecular modeling and extensive molecular dynamics simulation approaches at 0°C
(273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study the detailed
conformational alterations in the SARS-CoV-2 S protein. Our aim is to understand the
influence of temperatures on the structure, function, and dynamics of the S protein of
SARS-CoV-2. The structural deviations, and atomic and residual fluctuations were least at
low (0°C) and high (60°C) temperature. Even the internal residues of the SARS-CoV-2 S
protein are not accessible to solvent at high temperature. Furthermore, there was no
unfolding of SARS-CoV-2 spike S reported at higher temperature. The most stable
conformations of the SARS-CoV-2 S protein were reported at 20°C, but the free
energy minimum region of the SARS-CoV-2 S protein was sharper at 40°C than other
temperatures. Our findings revealed that higher temperatures have little or no influence on
the stability and folding of the SARS-CoV-2 S protein.
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INTRODUCTION

The outbreaks of Severe Acute Respiratory Syndrome CoV 1 (SARS-CoV-1), Middle-East
Respiratory Syndrome CoV (MERS-CoV), and Severe Acute Respiratory Syndrome CoV 2
(SARS-CoV-2) were caused by zoonotic viruses in 2003, 2012, and 2019–2020 with a fatality
ratio of 10%, 35%, and 5%, respectively (Lee et al., 2003; Cheng et al., 2007; Zaki et al., 2012; de Groot
et al., 2013; Reusken et al., 2013; Rothan and Byrareddy, 2020). The International Virus Classification
Commission (ICTV) termed this 2019 novel CoV as SARS-CoV-2 (Chen et al., 2020; Zhu et al.,
2020). SARS-CoV-2 virus spread from humans to humans, and animals to humans (Khan et al.,
2020a; Khan et al., 2021a). The COVID-19-infected patient develops mild to moderate symptoms
and recovers. Some patients have serious symptoms such as atypical pneumonia and chest pain
(Huang et al., 2020a; Cheung et al., 2020; Lu et al., 2020; Rothan and Byrareddy, 2020). The
phenomenal spread of the current COVID-19 pandemic to every part of the sphere has raised key
concerns for the healthcare system. To combat this pandemic, the researchers are using all possible
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approaches and practices to inhibit the synthesis of crucial non-
structural viral proteins, inhibit the viral replicase enzyme, inhibit
the formation of viral RNA, prevent the self-assembly of viruses,
or boost the human immune response against the virus.

The Spike (S) protein of SARS-CoV-2 performs a vital part in
the cell membrane fusion and receptor recognition. It has two
subunits such as S1 and S2. A receptor-binding domain (RBD) is
present on the S1 subunit. The RBD recognizes and attaches to
the host receptor angiotensin-converting enzyme 2 (ACE-2). The
membrane fusion (MF) is facilitated by the S2 subunit by making
6 helical bundles through two heptad repeat (HR) domains
(Huang et al., 2020b). The S protein has a size of
180–200 kDa. It has an extracellular N-terminal, a
transmembrane (TM) attached to the membrane, and small
intracellular C-terminal domains.

The S proteins are covered with polysaccharide for camouflage
and escaping the host immune system in the course of entry
(Huang et al., 2020b). The S protein of SARS-CoV-2 contains 1,273
amino acid residues. It contains a signal peptide (1–13 amino
acids), an S1 subunit (14–685 residues), and an S2 subunit
(686–1,273 residues). The S1 subunit has 14–305 N-terminal
domain amino acids and 319–541 RBD amino acids. The S2
subunit has 788–806 fusion peptide (FP) amino acids, 912–984
HR1 amino acids, 1,163–1,213 HR2 amino acids, 1,213–1,237 TM
domain amino acids, and 1,237–1,273 cytoplasm domain amino
acids (Xia et al., 2020). The SARS-CoV-2 S protein lives as a
sedentary precursor in native state. During the viral contagion, the
proteases from target cells trigger the S protein by slicing it into two
different subunits (Bertram et al., 2013), which is needed for
triggering the MF domain after entry of virus into the target cells.

The SARS-CoV-2 S protein is an important target for vaccine
production. In this work, we applied molecular modeling and
molecular dynamics simulations approaches at 0°C (273.15 K),
20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K) to study
the detailed conformational variations in the SARS-CoV-2 S
protein. It is worth noting that, experimentally, in terms of
information on inactivation of viruses, data in the range
40–60°C are essential (Bertrand et al., 2012). Our findings
revealed that higher temperatures have little or no influence
on the SARS-CoV-2 S protein. We found that the structural
deviations, atomic, and residual fluctuations were least at low
(0°C) and high (60°C) temperature. The solvent accessible area
plot indicated that the internal residues of SARS-CoV-2 spike
protein are not exposed to solvent at high temperature. The
secondary structure scheme indicated that there was no such
denaturation of the SARS-CoV-2 S protein at higher temperature.
The most stable conformations of the SARS-CoV-2 S protein was
found at 20°C, but the free energy state region of SARS-CoV-2
spike protein was sharper at 40°C than other temperatures.

MATERIALS AND METHODS

Structure Modeling of the SARS-CoV-2 S
Protein
The structures of S protein of SARS-CoV-2 (PDB: 6vsb) were
taken from PDB (Wrapp et al., 2020). The missing atoms in the

structure of S protein were modeled using MODELLER (Webb
and Sali, 2016). The complete protocols are stated in preceding
publications (Khan et al., 2015; Khan et al., 2016c; Khan et al.,
2017a; Khan et al., 2017b; Khan et al., 2021d). Structure analysis
was performed using PDBsum (Laskowski et al., 2018) and
numerous modules of MD simulations. PyMOL was used for
visualization and drawing structure.

MD Simulations
MD simulations were achieved on SARS-CoV-2 spike protein at
0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and 60°C
(333.15 K) via GROMACS 2018.2 (Van Der Spoel et al., 2005)
using a standard protocol (Khan et al., 2020b; Khan et al., 2020c;
Khan et al., 2021b). Na+ and Cl− ions were supplemented to
neutralize the system. Absolute production phase of 100 ns was
attained at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K), and
60°C (333.15 K). The complete MD simulation procedure is cited
in prior publications (Khan et al., 2016a; Khan et al., 2016b;
Durrani et al., 2020; Hassan et al., 2020; Qausain et al., 2020).

Essential Dynamics
EDwas obtained for the SARS-CoV-2 S protein at 0°C (273.15 K),
20°C (293.15 K), 40°C (313.15 K), and 60°C (333.15 K). It is
estimated as:

Cij � < (ri − 〈ri〉) × (rj − 〈rj〉)(i, j � 1, 2, 3, . . . 3N). (1)
ri denotes the coordinate, ith Cα atom, N signifies the Cα

atoms, and <ri > indicates time average over all configurations
(Khan et al., 2020d).

Gibbs Free Energy Landscape
GFE landscape can suggest conformational variations in the
SARS-CoV-2 S protein at 0°C (273.15 K), 20°C (293.15 K),
40°C (313.15 K), and 60°C (333.15 K) (Khan et al., 2016c). The
GFE landscape was projected on PC1 and PC2.

G(PC1,PC2) � −kBTInP(PC1,PC2). (2)
kB, T, and P(PC1, PC2) denote Boltzmann constant, temperature,

and normalized joint probability distribution for SARS-CoV-2
spike protein at 0°C (273.15 K), 20°C (293.15 K), 40°C (313.15 K),
and 60°C (333.15 K) respectively.

RESULTS AND DISCUSSION

Structure Analysis of Spike Protein
The SARS-CoV-2 spike protein comprises N-terminal, TM, and
C-terminal segments (Bosch et al., 2003). It consists of a signal
peptide (1–13 residues at the N-terminal), an S1 subunit (14–685
amino acid residues), and an S2 subunit (686–1,273 amino acid
residues). The S1 is accountable for receptor attachment, and S2 is
accountable for membrane fusion. The S1 subunit contains
14–305 NTD residues and 319–541 RBD residues. The S2
contains 788–806 FP amino acid residues, 912–984 HR1
residues, 1,163–1,213 HR2 residues, 1,213–1,237 TM domain
residues, and 1,237–1,273 cytoplasm domain residues (Huang
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et al., 2020b). The residues that participated in strand, α-helix,
and 3–10 helix formations are 271 (28.3%), 190 (19.8%), and 23
(2.4%), respectively. The structure of spike protein includes 18 β-
hairpins, 13 β-sheets, 52 β-strands, 18 β-bulges, 29 helix-helix
interactions, 22 helices, 16 γ-turns, 76 β-turns, and 12 disulfides
(Figure 1).

Structural Deviations
To investigate the structural dynamics of the SARS-CoV-2 S
protein, the RMSD, RMSF, and the Rg were considered
throughout 100-ns MD simulations at 0°C (273.15 K), 20°C
(293.15 K), 40°C (313.15 K), and 60°C (333.15 K), respectively
(Kuzmanic and Zagrovic, 2010). The mean RMSD values of the
SARS-CoV-2 S protein at 0, 20, 40, and 60°C were estimated to be
1.53, 2.51, 3.26, and 2.23 nm, respectively (Figure 2). It has been
estimated that RMSD values, and residual and atomic
fluctuations increase from 0 to 40°C. It attained a low
structural deviation equilibrium at 60°C. The SARS-CoV-2 S
protein is least deviated at low (0°C) and high (60°C)
temperature. The average radius of gyration (Rg) values for the
SARS-CoV-2 S protein at 0, 20, 40, and 60°C was found to be 4.09,
4.37, 4.32, and 3.48 nm, respectively. The Rg is described as the
allotment of atoms of a molecule around its axis. The calculation
of Rg is a significant indicator that is broadly used in calculating
the structural activity. At different temperatures, there is a
conformational change in the SARS-CoV-2 S protein that

changes the radius of gyration. It was estimated that the
SARS-CoV-2 S protein is tightly packed at 60°C. At
20°C–40°C, it shows high fluctuations throughout the time scale.

Solvent Accessible Surface Area
It has been assumed as a significant element in molecular
stability and folding analysis. The average solvent accessible
surface area values for the SARS-CoV-2 S protein at 0, 20, 40,
and 60°C were found to be 437.71, 439.92, 418.90, and
384.66 nm2, respectively (Figure 3). The solvation energy
for the SARS-CoV-2 S protein at 0, 20, 40, and 60°C was
found to be 752.14, 730.93, 668.86, and 657.95 kJ/mol/nm2,
respectively. An increase in temperature from 0 to 20°C has not
much effect on SASA of the SARS-CoV-2 S protein. At
40°C–60°C, the solvent accessible surface area of the SARS-
CoV-2 S protein continuously decreases. This specifies that the
internal residues of the SARS-CoV-2 S protein are not exposed
to solvent at high temperature. This might be due to stability
and compactness of the SARS-CoV-2 S protein at higher
temperature. The solvation energy refers to the free-energy
change during the simulations. The solvation free energy is
also less at higher temperature. The solvent accessible surface
area was further divided into hydrophobic and hydrophilic
regions. The hydrophobic regions for the SARS-CoV-2 S
protein at 0, 20, 40, and 60°C were found to be 224.22,
224.34, 221.61, and 218.62 nm2, respectively. The

FIGURE 1 | (A) The structure of SARS-CoV-2 spike protein indicating SP (red, 1–13 aa), S1 (green, 14–685 aa), and S2 (blue, 686–1,273 aa), respectively. (B) The
S1 subunit includes NTD domain (green, 14–305 aa) and RBD (blue, 319–541 aa). The S2 subunit includes FP (magenta, 788–806 aa), hepta-peptide repeat sequence 1
(yellow, 912–984 aa), hepta-peptide repeat sequence 2 (cyan, 1,163–1,213 aa), TM domain (orange, 1,213–1,237 aa), and cytoplasm domain (pink, 1,237–1,273 aa),
respectively.
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hydrophilic regions for the SARS-CoV-2 S protein at 0, 20, 40,
and 60°C were 254.52, 256.53, 250.9, and 243.08 nm2,
respectively. Both hydrophobic and hydrophilic regions are
sparingly accessible to solvent at higher temperatures.

Secondary Structure Analysis
The secondary structure in the SARS-CoV-2 S protein was analyzed
at each period at 0, 20, 40, and 60°C (Table 1). The mean residues
involved in the assembly of the SARS-CoV-2 S protein at 0, 20, 40,

FIGURE 2 | Structural dynamics. (A) RMSD plot for the SARS-CoV-2 S protein vs. time. (B) RMSF vs. residues. (C) RMSF vs. residues. (D) Rg plot vs. time. The
values calculated at 0°C (black), 20°C (red), 40°C (green), and 60°C (blue), respectively.

FIGURE 3 | The solvent accessible surface area of the SARS-CoV-2 S protein. (A) SASA vs. time. (B) Free energy of solvation vs. time. The color codes have the
same meaning as described in Figure 2. It was resolved into hydrophobic and hydrophilic regions for the SARS-CoV-2 S protein at (C) 0°C, (D) 20°C, (E) 40°C, and (F)
60°C, respectively.
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and 60°C were found to be 60%, 61%, 59%, and 59%, respectively
(Figure 4). There was no such unfolding of the SARS-CoV-2 S
protein reported at higher temperature from this analysis. The β-
sheet of the SARS-CoV-2 S protein slightly unfolds from 30 to 28%
at 60°C, while the α-helix (21%) remained unchanged at 60°C. The
most stable conformation of the SARS-CoV-2 S protein was found at
20°C. Furthermore, we calculated the volume and density of the
SARS-CoV-2 S protein at 0, 20, 40, and 60°C, respectively.Moreover,
the volume of the SARS-CoV-2 S protein was found to be 176.02,
176.04, 174.71, and 172.03 nm3 at 0, 20, 40, and 60°C, respectively,
while the density of the SARS-CoV-2 S protein was calculated to be
1,001.84 g/L, 1,001.72 g/L, 1,009.39 g/L, and 1,025.18 g/L at 0, 20, 40,
and 60°C, respectively. The volume of the SARS-CoV-2 S protein
slightly decreases and density increases at higher temperature. This
might be due to different structure conformations at higher
temperatures.

Hydrogen Bonding and the Mean Square
Displacement
The H-bond is a noteworthy element in stabilizing the molecule.
It was estimated between the main chain and side chains (M-S) of
the SARS-CoV-2 S protein at 0, 20, 40, and 60°C, respectively. The
mean H-bonds betweenM-S chains of the SARS-CoV-2 S protein
were found to be 413.43, 407.89, 417.99, and 417.51 at 0, 20, 40,
and 60°C, respectively (Figure 5). The strength of hydrogen
bonds becomes stronger at 40–60°C. There is no sign of
denaturation at higher temperatures. Furthermore, the mean
square displacement (MSD) of atoms from a set of original
positions of the SARS-CoV-2 S protein at 0, 20, 40, and 60°C
was computed. The displacement of atoms from a set of initial
positions of the SARS-CoV-2 S protein was estimated to be higher
at 40°C only. In short, higher temperature has not much impact
on unfolding and denaturation of the SARS-CoV-2 S protein.

TABLE 1 | Percentage of residues in SARS-CoV-2 spike protein at 0, 20, 40, and 60°C contributed in mean structure development.

Temperature (°C) Secondary structure (SS %)

Structurea Coil β-sheet β-bridge Bend Turn α-helix 310-helix

0 60 25 30 1 15 7 21 0
20 61 23 32 2 15 8 20 1
40 59 25 30 2 15 8 20 0
60 59 25 28 2 15 8 21 0

aStructure = α-helix + β-sheet + β-bridge + Turn.

FIGURE 4 | The secondary structure conformations. The secondary structure plot of the SARS-CoV-2 S protein at (A) 0°C, (B) 20°C, (C) 40°C, and (D) 60°C,
respectively. (E) Volume and (F) density of SARS-CoV-2 spike protein. The color codes have the same meaning as described in Figure 2.
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Principal Component Analysis
It shows global expansion of the SARS-CoV-2 S protein at 0,
20, 40, and 60°C. It estimates mean atomic motions of the
SARS-CoV-2 S protein at 0, 20, 40, and 60°C. The eigenvalues
were 8,360.61, 33,665.60, 53,083.50, and 8,911.24 nm2 for the
SARS-CoV-2 S protein at 0, 20, 40, and 60°C, respectively. It
was higher at 20–40°C (Figure 6). The average atomic motions
in the SARS-CoV-2 S protein was highest at 40°C. The atomic
motions are also related to activity in case of protein molecules.
It can be assumed that at low and high environmental
temperatures, the atomic motions and activity of the SARS-
CoV-2 S protein are low.

GFE Landscape
The GFE landscape exhibited diverse forms for the SARS-CoV-2 S
protein at 0, 20, 40, and 60°C (Figure 7). Every atomic pair covariance
displays diverse frameworks in respective events. The GFE patterns
are relatively similar withminor changes at 0–20°C and 40–60°C. The
following GFE curve with reflective blue shade implies lower energy
state. Extra blue regions describe shifts in themolecular conformation
lagged by the thermodynamically new favorable areas. The GFE state
in the global energy minimum section of the SARS-CoV-2 S protein
at 40°C is sharper than other temperatures. This indicates that
temperature slightly affects the GFE patterns in the case of the
SARS-CoV-2 spike protein. The GFE landscape suggests that the

FIGURE 5 | Hydrogen bonds and MSD. (A) The H-bond estimation between M-S chains of the SARS-CoV-2 S protein was calculated. The color codes have the
same meaning as described in Figure 2. (B) The MSD of the SARS-CoV-2 S protein at 0°C (black), 20°C (red), 40°C (green), and 60°C (blue), respectively.

FIGURE 6 | (A) The 2D projection and (B) projections of trajectories of SARS-CoV-2 spike protein. (C) Eigen RMSF. The color codes have the same meaning as
described in Figure 2. The Eigen components were calculated for SARS-CoV-2 spike protein at (D) 0°C, (E) 20°C, (F) 40°C, and (G) 60°C, respectively.
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temperature slightly affects the atomicmotions of SARS-CoV-2 spike
protein. The denaturation was not reported from the secondary
structure analysis. The potential energy and the enthalpy were also
calculated during the course of simulations. The potential energy was
found to be −10,713,734.28 kJ/mol, −10,434,949.84 kJ/mol,
−10,161,602.16 kJ/mol, and −9,893,572.08 kJ/mol at 0, 20, 40, and
60°C, respectively. The enthalpy was found to be −9,100,901.71 kJ/
mol, −8,704,052.14 kJ/mol, −8,312,630.26 kJ/mol, and
−7,926,537.36 kJ/mol at 0, 20, 40, and 60°C, respectively.

Recently, several inhibitors and their mode of action have been
demonstrated (Khan et al., 2021c; Rani et al., 2021). Edwards et al.
found that the spike protein samples kept at diverse temperatures did
not show any considerable denaturation, while they observed an
increase in upper molecular weight bands in a sample that was kept
at 37°C (Edwards et al., 2021). Kumar et al. imitated SARS-CoV-2 by
polymer beads covered with the S protein of SARS-CoV-2 to
investigate the effect of different temperatures on attachment of
virus-imitating nano-spheres to lung tissues incubated at 33 and
37°C. They found that the existence of the RBD of S protein
controlled the binding by Calu-3 airway epithelial tissues. They

also found that there was no temperature correlation to binding of
BSA-coated nano-spheres. Additionally, the 4–40°C temperature
had no influence on S-RBD-ACE-2 ligand–receptor, and the
negligible effect on the S-RBD protein structure (up to 40°C) was
reported. The protein denaturation occurred at 51°C. Their
outcomes suggested that 4–40°C temperature has a slight
influence on SARS-CoV-2 and ACE-2 contact (Kumar et al.,
2021). Zhou et al. performed MD simulations at 36–40°C to
prove SARS-CoV-2 and ACE2 binding. They found that it was
less stable under 40°C than under 37°C, and reduced infection rate at
higher temperature (Zhou et al., 2021). Martí et al. also performed
MD simulations at 298 K (24.85°C), 310 K (36.85°C), 324 K
(50.85°C), 338 K (64.85°C), 358 K (84.85°C), and 373 K (99.85°C),
respectively. They suggested that temperature brings structural and
conformational variations in the S1 subunit and affects the RBD.
Nevertheless, the influence of temperature up to 373 K was not
adequate to cause a noteworthy alteration of the S protein of SARS-
CoV-2 (Martí et al., 2021). Our results also suggested that the
temperature has the least effect on the structure conformations of
S protein of SARS-CoV-2.

FIGURE 7 | GFE landscape. The GFE landscape plot achieved for SARS-CoV-2 spike protein at (A) 0°C, (B) 20°C, (C) 40°C, and (D) 60°C, respectively.
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CONCLUSION

Previously, we published several articles based on finding potential
inhibitors of SARS-CoV-2. In the present work, we focused on the
SARS-CoV-2 S protein as it performs a vital part in the cell
membrane fusion and receptor recognition. Researchers have
demonstrated the nature of the S protein of SARS-CoV-2 on
diverse environmental conditions. We applied molecular modeling
and extensive molecular dynamics simulations approaches at
different temperatures to investigate the structural conformational
of SARS-CoV-2 spike protein. There are several hypotheses proposed
regarding the temperature dependence of the COVID-19
transmission. We concluded that temperature has no effect or has
the least effect on the structure conformations of S protein of SARS-
CoV-2. Minor changes were reported in the structure and
thermodynamic properties that are mentioned in this paper.
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