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Introduction
For over 50 years, systemic lupus erythematosus has been thought 
to result from a break in systemic tolerance and production of 
pathogenic autoreactive antibodies (1, 2). This canonical model is 
based on extensive studies of patient blood and spontaneous sys-
temic lupus erythematosus–like animal models (3, 4). In the kidney, 
the manifestation of systemic autoimmunity is glomerulonephritis 
(GN). Indeed, lupus nephritis (LN) is usually equated with GN (5). 
However, tubulointerstitial inflammation (TII) — and not GN — pre-
dicts progression to end-stage renal disease (ESRD; refs. 6–9).

Lupus TII is associated with a local immune response very 
different than the inflammation observed in glomeruli. Indeed, 
TII is associated with infiltrating B cells, plasma cells, T follic-
ular helper (Tfh) cells, plasmacytoid DCs (pDCs), and myeloid 

DCs (mDCs), although these cells are rare in LN glomeruli (10–
15). These cell subsets are often organized into lymphoid-like 
architecture in the tubulointerstitium. This phenomenon is 
associated with local antigen-driven B cell clonal selection 
(14, 15), suggesting that adaptive immunity in the tubuloint-
erstitium could play a role in driving renal outcomes. There 
is, therefore, a compelling need to understand in situ adaptive 
immunity in human LN.

An initial road map to the lupus kidney was provided by 
the Accelerating Medicines Partnership–funded (AMP-fund-
ed) single-cell RNA sequencing (scRNA-Seq) of cells sorted 
from LN biopsies (16, 17). While these AMP investigations were 
informative, there were several limitations. The patient sample 
was small, and the frequency of each immune cell population 
was not been related to relevant histological features. A larger 
deficiency of scRNA-Seq is that all spatial information is lost. 
We do not know how populations spatially relate to each other 
in the kidney. This lack of spatial information prevents poten-
tial functional relationships from being identified.

Previously, in lupus TII, we used conventional immunoflu-
orescence microscopy coupled to evolving computational and 
machine-learning approaches to characterize the frequency of 
specific cell populations and identify cell/cell behaviors indicative 
of cognate immunity (12, 13, 18). However, a systemic analysis of 
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cessfully in cancer biopsy image analysis (23). However, conven-
tional methods for cell detection and segmentation are not easily 
generalized to chronically inflamed organs.

Herein, we describe multiple computational pipelines employ-
ing deep-learning algorithms that provide high-throughput assess-
ments of cell phenotypes and cellular architectures. These meth-
ods have been developed and validated in LN image data sets 

TII and identification of prognostic features has been historically 
impeded by the complexities of analyzing immunofluorescence 
data from chronically inflamed kidneys, including tissue autoflu-
orescence due to scarring, antibody cross-reactivity, and patient 
heterogeneity. Artificial intelligence algorithms have led to sig-
nificant progress in automated detection and analysis of cells in 
confocal images (19–22). These approaches have been used suc-

Figure 1. Instance segmentation of immune cells in high-reso-
lution fluorescence microscopy images of LN kidney biopsies. 
(A) Automatic instance segmentation of 5 immune cell classes 
was performed by combining predictions from 2 instances 
of Mask R-CNN: one trained to segment CD20+, CD3+CD4–, 
and CD3+CD4+ lymphocytes and one trained to segment pDCs 
and mDCs. Cell location, class, and morphological features 
were calculated from joint predictions. (B) The Mask R-CNN 
architecture comprises a ResNet Feature Pyramid Network 
(FPN) backbone used for feature extraction, a region proposal 
network (RPN) used to generate cell proposals, and two paral-
lel branches used for (a) semantic segmentation (mask branch) 
and (b) classification (softmax layer) and localization (bound-
ing box [Bbox] regression) of cell proposals. (C) Representative 
segmentations produced by the multinetwork pipeline showed 
strong agreement with the expert-defined manual segmenta-
tions. Magnification for all images 63x (zoom factor 1.7). This 
figure was created with BioRender.com.
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3) of 0.75 and 0.62, respectively, while the overall F1 score for 
detection of all 5 cell classes was 0.74, yielding excellent concor-
dance (Figure 1C). The class-specific F1 scores for the lympho-
cyte network, DC network, and the combined predictions are 
reported in Supplemental Table 3. By implementing DCNNs, we 
achieved rapid and accurate multiclass instance segmentation.

Specific in situ immune cell densities associated with progression to 
renal failure. Automatic cell segmentations were used to describe 
and quantify the spatial distribution of all 5 cell classes in the HR 
data set. A comparison of overall cell densities (total cells/ROI) 
in ESRD– and ESRD+ patients revealed no significant differences 
(Figure 2A). However, the total cell count per sample was higher 
in the ESRD+ cohort, reflecting larger overall areas of inflamma-
tion (Figure 2B). In contrast to overall cell density, there were dif-
ferences in the cellular constituents of inflammation between the 
two patient cohorts. Surprisingly, ROIs from ESRD– patients had 
higher densities of B cells relative to ROIs from ESRD+ patients 
(Figure 2C). In contrast, ROIs from ESRD+ patients had increased 
densities of CD4– T cells (Figure 2D). There were no significant 
differences in the densities of CD4+ T cells, pDCs, or mDCs 
between patient cohorts (Figure 2, E–G).

Although there were fewer ESRD+ patients, on average these 
patients had more ROIs captured per biopsy. To mitigate any 
effect from this class imbalance, we performed a bootstrapping 
analysis. The pools of ESRD+ and ESRD– ROIs were iteratively 
sampled with replacement 1000 times to produce samples of 
200 ROIs from each group (ESRD+ and ESRD–). The distribu-
tion of mean cell densities between ESRD+ and ESRD– patients 
revealed distinct, nonoverlapping peaks for both B cells and 
CD4– T cells (Figure 2, H and I). In contrast, there was substan-
tial overlap in the distribution of sample means between ESRD+ 
and ESRD– patients for CD4+ T cells, pDCs, and mDCs (Figure 
2, J–L). The 95% confidence intervals of the difference in means 
between ESRD+ and ESRD– patients revealed for both B cells 
and CD4– T cells did not cross 0 (Supplemental Figure 2, A and 
B). In contrast, the 95% confidence interval for the difference 
in means for the remaining cell types did cross 0 (Supplemen-
tal Figure 2, C–E). These data indicate that the observed differ-
ences in B cell and CD4– T cell densities between ESRD+ and 
ESRD– patients are robust. Furthermore, our results did not sig-
nificantly change if the 2 patients who received rituximab were 
removed (Supplemental Table 1 and data not shown). Therefore, 
we conclude that high B cell densities are associated with a good 
prognosis, while high densities of CD4– T cells are associated 
with progression to renal failure.

When we examine these densities on the patient level, we 
observed that, in patients with high CD4– T cell densities, B cell 
densities tended to be low (Figure 2M). As indicated by point size, 
these tended to be ESRD+ patients with higher tubulointerstitial 
(TI) chronicity scores. The converse appeared true, as patients 
with higher B cell densities tended to have low TI chronicity 
scores and be ESRD–. These data suggest that lupus TII is associ-
ated with two or more distinct inflammatory states, each associ-
ated with a different prognosis.

Patients who present in renal failure have a skewed in situ inflam-
matory state. Within the ESRD+ group of patients was a small yet 
distinct cohort of 5 patients that either were in renal failure at 

consisting of both discrete fields of view and entire biopsy sections 
images. Integration of these data revealed that CD4– T cell popu-
lations, comprising CD8+, γδ, and double-negative (CD4–CD8–δ–; 
DN) T cells, often organized into small cellular neighborhoods, 
are both associated with acute refractory disease and predict pro-
gression to renal failure. In contrast, regions of high B cell density 
were associated with patients who did not progress to renal failure. 
These and other findings indicate that systemic and in situ autoim-
mune pathogenic mechanisms are different in LN, and each might 
require specific targeted therapies.

Results
Accurate segmentation of immune cells in LN kidney biopsies. To 
probe the relationship between TII and clinical outcome we used 
a well-characterized cohort of 55 biopsy-proven patients with LN 
with at least 2 years of follow-up (Supplemental Tables 1 and 2; 
supplemental material available online with this article; https://
doi.org/10.1172/JCI155350DS1). Within this cohort, 19 patients 
progressed to ESRD (ESRD+), requiring either dialysis or trans-
plant within the follow-up period, while 36 did not (ESRD–). The 
ESRD+ and ESRD– groups did not differ in length of follow-up, 
duration of disease, or patient age (Supplemental Figure 1, A–C). 
Additional information about patient treatment can be found in 
Supplemental Tables 1 and 2. Thirty-eight patients had moder-
ate or severe TII distributed across both outcome groups. Based 
on previous studies (6), we hypothesized that differences in renal 
outcome would be related to differences in in situ adaptive immu-
nity, such as frequency and organization of principal cellular 
effectors. Therefore, we stained each biopsy for 6 markers, CD3, 
CD4, CD20, CD11c, BDCA2, and DAPI, to characterize 5 classes 
of immune cells: CD3+CD4+ T cells, CD3+CD4– T cells, CD20+ B 
cells, BDCA2+ pDCs, and CD11c+ mDCs. Across the 55 biopsies, 
we captured all regions of interest (ROIs) with detectable CD3+ T 
cells, resulting in 865 ROIs. Image ROIs were 1024 × 1024 pixels, 
with a pixel size of 0.1058 μm. These data are referred to as the 
high-resolution (HR) data set.

LN is often characterized by chronic and intense inflamma-
tion in which accurate cell segmentation can be difficult due to 
the high cell densities and structured background signal (12, 
21). Therefore, we trained deep convolutional neural networks 
(DCNNs) to perform automatic cell detection, classification, 
and segmentation (collectively known as instance segmenta-
tion) on the HR data set. To achieve optimal performance across 
all cell classes, we split the 5-class cell detection into two tasks: 
instance segmentation of lymphocytes and instance segmen-
tation of DCs (Figure 1A). For each task, a separate instance of 
a region-based DCNN architecture, Mask R-CNN, was inde-
pendently trained (Figure 1B and ref. 24). Each Mask R-CNN was 
trained on 246 manually segmented images with a validation set 
of 65 manually segmented images used for hyperparameter tun-
ing. A cell prediction was defined as a true positive prediction 
if it had an intersection-over-union (IOU) score of greater than 
0.25 with a ground truth cell of the same class. Additionally, all 
cell predictions with a network confidence score of less than 0.3 
were rejected. On a test set of 34 images from patients unique 
to the training and validation data, the lymphocyte detection 
network  and the DC detection network had F1 scores (Equation 
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Figure 2. Higher CD4– T cell density and lower B cell density 
associated with progression to ESRD. (A) Local cell density 
comparison for ESRD– patients (n = 437 ROIs) and ESRD+ 
patients (n = 428) for all cells. (B) Total cells per patient grouped 
by ESRD status. Local cell density by cell class compared 
between ESRD– and ESRD+ patient for (C) CD20+ cells, (D) 
CD3+CD4– cells, (E) CD3+CD4+ cells, (F) BDCA2+ cells, and (G) 
CD11c+ cells. For all box plots, the population mean is represent-
ed by a white diamond, and quartile ranges are defined by the 
whisker boundaries and upper and lower box boundaries. Outli-
ers are represented as open circles. All cell density comparisons 
were done with a Mann-Whitney U test with a Bonferroni’s cor-
rection for multiple comparisons, with significant P values noted. 
Bootstrapped sample means of ESRD– (blue) and ESRD+ (red), 
ROIs for (H) CD20+ cells/ROI, (I) CD3+CD4– cells/ROI, (J) CD3+CD4+ 
cells/ROI, (K) BDCA2+ cells/ROI, and (L) CD11c+ cells/ROI. (M) 
Average B cell and CD4– T cell count per ROI for each patient 
biopsy. Point size is weighted by the TI chronicity score for each 
patient. †95% confidence interval does not overlap with 0.
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Figure 4B). K-means clustering was then applied to define classes 
of neighborhoods, with k = 6 classes determined ideal by boot-
strapping cluster descriptors, including the within-cluster sum 
of squares (WCSS) and the Δ WCSS (Supplemental Figure 4, C 
and D). The test score from a leave-one-out t test approach was 
used to determine which features or combination of features best 
distinguished the 6 neighborhood groups (Figure 4D). The most 
distinctive feature(s) for each group was used to describe the cell 
neighborhoods as follows: (a) B cell–enriched cluster; (b) CD4– T 
cell–enriched cluster; (c) large lymphocyte-enriched cluster; (d) 
CD4+ T cell–enriched cluster, (e) mDC-enriched cluster; and (f) 
pDC-enriched cluster (Figure 4E).

Tertiary lymphoid structures (TLSs) have been previously 
identified in the context of LN (15). Although we cannot explicit-
ly define TLSs in this data set, we hypothesized that some of the 
large lymphocyte-enriched neighborhoods might approximate 
TLSs. For example, we noted that within this group 28.6% of the 
cells were B cells and 48.3% were CD4+ T cells. 96.1% of these 
neighborhoods met the following criteria: (a) contained at least 
20 cells, (b) both B cells and CD4+ T cells were represented in the 
neighborhood, and (c) at least 50% of all cells were B cells and/or 
CD4+ T cells. Therefore, the vast majority of large lymphocyte-en-
riched neighborhoods have features consistent with TLSs.

We then examined how these 6 classes of neighborhoods were 
distributed between the ESRD– and ESRD+ patients. After normal-
izing by the number of ROIs captured for each patient, ESRD– and 
ESRD+ patients had no difference in their total neighborhood 
count per ROI (Figure 4F). However, ESRD+ patients had a signifi-
cantly higher prevalence of CD4– T cell–enriched neighborhoods 
relative to the ESRD– patients (Figure 4G). The per-ROI preva-
lence of the other classes of neighborhoods did not correlate with 
renal outcome (Supplemental Figure 5, A–E). We next examined 
if the CD4– neighborhoods differed among the ESRD–, ESRD+, 
and ESRD current patient groups (Figure 4H). ESRD+ and ESRD 
current patients had a statistically higher prevalence of neigh-
borhoods from the CD4– cluster compared with ESRD– patients. 
These data demonstrate that, on a per patient basis, the preva-
lence of small CD4– T cell–enriched neighborhoods is strongly 
associated with progressive renal disease.

Cell detection and segmentation in highly multiplexed, full-biopsy 
images. To better characterize in situ lymphocyte populations, we 
performed highly multiplexed (HMP) confocal microscopy on a 
separate data set of 18 LN biopsies. In this HMP data set, we inter-
rogated a set of 9 markers (CD3, CD4, CD8, ICOS, PD1, FoxP3, 
CD20, CD138, and DAPI). This HMP panel was obtained using 
4-color confocal microscopy and iterative stripping and reprob-
ing (26). Additionally, we imaged full biopsy sections rather than 
capturing isolated ROIs, thereby facilitating a more complete and 
unbiased spatial analysis.

Full biopsy images for all stains were aligned with the DAPI 
channel (Figure 5A). Two new instances of Mask R-CNN were 
trained to perform single-marker and dual-marker instance seg-
mentation (Figure 5B). Briefly, ROIs from the HR data set (pix-
el size = 0.1058 μm) were broken up into 512 × 512 pixel tiles to 
pretrain each Mask R-CNN. Each network was then fine-tuned 
using small sets of manually segmented 512 × 512 pixel tiles 
from the HMP data set (pixel size = 0.221 μm). The single-mark-

the time of biopsy or progressed to renal failure within 2 weeks 
of biopsy collection. If these patients are treated as their own 
unique outcome group (ESRD current), differences in the densi-
ty of specific cell classes become even more apparent (Figure 3). 
There were progressively fewer B cells/ROI among the ESRD–, 
ESRD+, and ESRD current groups, respectively (Figure 3A). The 
opposite trend was observed for CD4– T cell densities (Figure 3B). 
In contrast, there were no apparent differences in CD4+ T cells or 
pDCs in the ESRD current patients (Figure 3, C and D). Remark-
ably, there was a profound depletion of mDCs in the ESRD current 
cohort (Figure 3E).

A 3-group bootstrapping analysis was performed to assess 
the effect of class imbalance in patient numbers. ESRD current 
patients had the lowest mean density of B cells, followed by 
ESRD+ patients, with ESRD– patients having the highest density 
of B cells (Figure 3F). Confidence intervals for the pairwise dif-
ferences between bootstrapped samples did not overlap with 0 
(Supplemental Figure 3A). An inverse, stepwise relationship was 
observed for CD4– T cells with progressively higher densities 
found in the ESRD+ and ESRD current patients relative to ESRD– 
patients (Figure 3G and Supplemental Figure 3B). ESRD current 
patients were also well separated from the other 2 cohorts with 
respect to local mDC abundance (Figure 3J and Supplemental 
Figure 3E). As expected, there were no differences between the 
3 groups with respect to CD4+ T cells or pDCs (Figure 3, H and 
I, and Supplemental Figure 3, C and D). These findings indicate 
that patients with LN that present in renal failure have a skewed 
inflammatory state with abundant CD4– T cells, relatively few B 
cells, and a depletion of mDCs.

Specific cellular neighborhoods associated with progressive and 
refractory renal disease. We next explored the relative in situ 
spatial relationships between the different immune cell class-
es. First, for every cell in the data set, we identified the nearest 
neighbor using centroid-to-centroid distances. All cell classes 
except mDCs were significantly more likely to have a B cell as 
their nearest neighbor in ESRD– biopsies (Figure 4A). In contrast, 
all cell classes were significantly more likely to have a CD4– T 
cell nearest neighbor in ESRD+ biopsies (Figure 4B). Additional-
ly, both B cells and CD4– T cells showed a strong propensity for 
colocalization with cells of the same type.

Local cellular organization was then probed by grouping cells 
into spatially discrete neighborhoods. DBSCAN, a density-based 
clustering algorithm (25), was implemented to define cell neigh-
borhoods using a maximum intercellular centroid-to-centroid 
distance. Variation in this maximum distance between 50 
and 150 pixels resulted in a range of neighborhood sizes vary-
ing between those that contained just a few cells (50 pixels) to 
those that encompassed large areas of inflammation (150 pixels) 
(Figure 4C and Supplemental Figure 4A). A maximum distance 
of 100 pixels (~10.6 μm) was selected, as this distance approxi-
mates a cell body and appeared to capture observable groupings 
of cells across the data set.

Using this 100-pixel cutoff and a minimum neighborhood size 
of 2, DBSCAN detected 4022 cell neighborhoods. Each neigh-
borhood was characterized by a set of 24 quantitative features, 
including cell type frequency, cell type proportion, ratios of cell 
types, cell shape features, and neighborhood area (Supplemental 
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Figure 3. Local cell densities are associated 
with progressively worse renal outcomes. 
Local cell density compared across ESRD– 
patients (n = 437 ROIs), ESRD+ patients 
(n = 266), and ESRD current patients (n 
= 162) for (A) CD20+ cells, (B) CD3+CD4– 
cells, (C) CD3+CD4+ cells, (D) BDCA2+ cells, 
and (E) CD11c+ cells. For all box plots, the 
population mean is represented by a white 
diamond, and quartile ranges are defined 
by the whisker boundaries and upper 
and lower box boundaries. Outliers are 
represented as open circles. All cell density 
comparisons were done with a Mann-Whit-
ney U test with a Bonferroni’s correction for 
multiple comparisons, with significant P 
values noted. Bootstrapped sample means 
of ESRD– (blue), ESRD+ (orange), and ESRD 
current (green) ROIs for (F) CD20+ cells/ROI, 
(G) CD3+CD4– cells/ROI, (H) CD3+CD4+ cells/
ROI, (I) BDCA2+ cells/ROI, and (J) CD11c+ 
cells/ROI. †95% confidence interval does 
not overlap with 0. The data set analyzed 
in this figure is the same as the data set 
introduced in Figure 2.
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er Mask R-CNN was used to predict B cells (CD20+) and plasma 
cells (CD138+), while the dual-marker Mask R-CNN was used to 
predict single-positive and double-positive T cells. The 3 main 
classes of T cells were determined by combining predictions from 
a CD3/CD4/DAPI image stack with predictions from a CD3/
CD8/DAPI image stack at the same location in the tissue: CD4+, 
CD8+, and CD4–CD8– (DN) (Figure 5C). The dual-marker Mask 
R-CNN was also used to generate cell predictions on CD3/ICOS/
DAPI and CD3/PD1/DAPI images. The resulting single-positive 
(CD3+ICOS– or CD3+PD1–) and double-positive (CD3+ICOS+ or 
CD3+PD1+) predictions were used to define ICOS and PD1 expres-
sion for every putative T cell in the data set. FoxP3 images were 
binarized by thresholding individual image tiles. T cell predictions 
with more than 25% overlap with this binary mask were deter-
mined to be FoxP3+.

CD4– T cells contain CD8, γδ, and other DN T cell populations. 
T cells comprised over 65% of predicted lymphocytes in the HMP 
data set (Figure 5D). Plasma cells were the second-most abundant 
class, comprising approximately 28% of detected lymphocytes. B 
cells were least prevalent at only approximately 6%. CD4+ T cells 
were the most abundant cell class across all 5 main classes, mak-
ing up 35% of detected lymphocytes and over 50% of detected 
T cells (Figure 5E). Surprisingly, CD8+ T cells were only slightly 
more abundant than DN T cells, comprising approximately 17% of 
detected lymphocytes and approximately 26% of detected T cells.

To further characterize these DN T cells, we interrogated 
public scRNA-Seq data of immune cells infiltrating the kidneys of 
patients with LN (16). We identified naive T and CTL clusters in 
intrarenal immune cells by unsupervised clustering and canonical 
marker expression (Figure 6A). Within these T cell clusters, 21% 
were DN, as measured by the unique molecular identifier (UMI) 
of CD4, CD8A, and CD8B (Supplemental Figure 6A). Several T 
cell subtypes do not express CD4 nor CD8, including NK T cells 
and γδ T cells. Indeed, there was a small increase in CD3D in cells 
assigned to the NK cell class, suggesting a NK T cell phenotype. 
However, there was not a substantial enrichment for NK T cell 
markers in the DN subset (Supplemental Figure 6B).

Next, we compared TCRα and δ chain expression (TRAC and 
TRDC). Some cells were apparently positive for both TRAC and 
TRDC, likely due to sequence homology between these genes 
(Figure 6B). However, TRAC– cells and TRDC+ cells were both 
enriched in the DN population (Figure 6C). These results suggest 
that a portion of the DN T cells observed in LN are γδ T cells. To 
further examine this possibility, we stained 8 LN biopsies with 
antibodies specific for CD3, CD4, CD8, and TCRδ and imaged 281 
ROIs (Figure 6D). Per biopsy, 51.4% ± 21.3% of DN T cells were 
positive for TCRδ. These findings indicate that a substantial frac-
tion of T cells in LN do not detectably express CD4 or CD8, and 
approximately half of these DN T cells are γδ T cells.

In situ distributions of exhausted, regulatory, and helper T cell 
populations. We then examined the distributions of ICOS, PD1, 
and FoxP3 in the T cell subsets. Roughly 30% of CD8+ T cells in 
the HMP data set were PD1+ (Supplemental Figure 7A), suggesting 
an exhausted phenotype. Approximately 25% of CD8+ T cells were 
“exhausted” by the definition of PD1+ICOS–FoxP3– (27). This is 
consistent with observations from murine lupus models in which 
exhausted tissue-infiltrating CD8+ T cells are relatively common 

(28). However, PD1 is only one marker of exhaustion and human 
lupus renal scRNA-Seq data suggest CD8+ T cell exhaustion is 
infrequent (16).

A surprisingly small percentage (5.41%) of CD4+ T cells were 
FoxP3+, while fewer still were also PD1–ICOS–, suggesting that 
Tregs comprise only about 2.5% of CD4+ T cells (Supplemental 
Figure 7B). In contrast, even fewer CD8+ T cells (1.3%) or DN T 
cells (0.88%) expressed FoxP3 (Supplemental Figure 7, A and C). 
Therefore, very few of the tissue-infiltrating CD4+ T cells in LN are 
potentially Tregs.

We additionally identified Tfh cells based on the combination 
of PD1 and ICOS expression by CD4+ T cells (29, 30). 5.05% of the 
CD4+ T cell compartment was PD1+ICOS+FoxP3–. Previous inves-
tigations have consistently associated PD1 expression with Tfh-
like cells (including T peripheral helper cells) but not necessarily 
ICOS. Therefore, we applied a less stringent definition of PD1+I-
COS+/–/FoxP3– to identify this cell subset. This Tfh cell phenotype 
was associated with roughly 30% of the CD4+ T cells (Supplemen-
tal Figure 7B). Although PD1+ICOS–FoxP3–CD4+ T cells could be 
interpreted as exhausted, we chose to use the more expansive Tfh 
cell definition in our subsequent analysis.

Organization of inflammation across whole biopsies. We next 
probed potential interacting partners of Tfh cells, Tregs, and 
exhausted T cells by identifying the class of their nearest neighbors. 
Most Tregs are closest to other Tregs and other CD4+ T cells (Sup-
plemental Figure 7D). In contrast to the expectation that Tfh cells 
would primarily be in close proximity with CD20+ B cells, Tfh cells 
had other CD4+ T cells as their most frequent neighbor, followed by 
other Tfh cells (Supplemental Figure 7E). Exhausted CD8+ T cells 
were most frequently found near other exhausted CD8+ T cells, 
followed by CD4+ T cells and CD8+ T cells (Supplemental Figure 
7F). Overall, these data demonstrate that across biopsies there is a 
tendency for the clustering of similar cells together.

Cell neighborhoods in the HMP data set were then defined 
using DBSCAN with a distance cutoff of 50 pixels, roughly 10 
μm. Most neighborhoods detected in the HMP data set were 
small (Figure 7A). However, without the constraint of discrete 
fields of view, we were able to capture larger neighborhoods, 
with a maximum neighborhood size of 273 cells, relative to the 
147 cell maximum in the HR data set. Given the association of 
CD4– T cell–enriched neighborhoods with ESRD+ patients in the 
HR data, we investigated similar CD4– neighborhoods in the 
HMP data. We classified CD4– neighborhoods as those that (a) 
had less than 20 cells and (b) more than or equal to 25% of their 
cells were either CD8+ or DN T cells, as these criteria captured 
99.1% of the CD4– neighborhoods observed in the HR data (Fig-
ure 7B). A strong majority of the cells in these neighborhoods 
were CD4– T cells, including 26% DN T cells and 34.2% CD8+ 
T cells (Figure 7C). There was a weak negative correlation (R = 
–0.35) between the number of DN T cells and CD8+ T cells in 
these neighborhoods, suggesting that DN and CD8+ T cells are 
not proportionally represented in a given neighborhood.

Large B and T cell (B-T) neighborhoods were defined by the 
set of 3 criteria (as described above) that captured most of the 
large lymphocyte-rich neighborhoods in the HR data. Of near-
ly 14,000 neighborhoods in the HMP data set, 111 met these 
criteria (representative clusters in Figure 7D). Within these B-T 
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Figure 4. Specific cellular neighborhoods associated with renal failure. Proportions of cells that have (A) CD20+ B cells and (B) CD4– T cells as nearest 
neighbors in ESRD+ and ESRD– patients (χ2 test for independence with Bonferroni’s correction for multiple comparisons). (C) Neighborhoods of automatically 
detected cells were detected by DBSCAN. Automatic cell segmentations and representative neighborhoods (highlighted in E) are shown for images taken at 
63x magnification with a zoom factor of 1.7. (D) Heatmap showing test statistics for each feature from leave-one-out t tests used to define 6 types of cell 
neighborhoods, colored by the magnitude of the test statistic. (E) Representative neighborhoods from each defined class. (F and G) The abundance of neigh-
borhoods between the patient cohorts, normalized by the number of ROIs per patient, was compared by Mann-Whitney U test with a Bonferroni’s correction 
for (F) all cell neighborhoods and (G) CD4– T cell neighborhoods. A 3-group comparison for CD4– neighborhoods, splitting the ESRD+ population into ESRD+ 
and ESRD current patients is shown in H. Significant P values after correcting for multiple comparisons are noted. The data set analyzed in this figure is the 
same as the data set introduced in Figure 2. For all box plots, the population mean is represented by a white diamond, and quartile ranges are defined by the 
whisker boundaries and upper and lower box boundaries. Outliers are represented as open circles.
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non–B-T neighborhoods (P = 1.9 × 10-6, Mann-Whitney) (Figure 
7G). As observed across whole biopsies, within these B-T neigh-
borhoods, homotypic proximity predominated. B cells were 
located near other B cells, followed by plasma cells and CD4+ 

neighborhoods, a vast majority of the lymphocytes were T cells, 
followed by similar proportions of B cells and plasma cells (Fig-
ure 7E). Tfh cells made up 36% of CD4+ T cells in B-T neigh-
borhoods (Figure 7F), a significant enrichment compared with 

Figure 5. Cell detection, segmentation, and phenotyping in highly multiplexed fluorescence microscopy images. (A) Representative composite of a full biopsy 
section, shown with merged and with isolated panels of CD3, CD4, CD8, ICOS, PD1, and FoxP3. Scale bar: 150 μm; 500 μm (inset). (B) Schematic of procedure for 
training and fine-tuning a Mask R-CNN for instance segmentation of cells in highly multiplexed microscopy images. High resolution, 63x, zoom factor=1.7 (left); 
multiplexing image: 63x, zoom factor=1 (right). (C) Dual-marker and single-marker cell predictions are used to establish base lymphocyte classes. All T cell predic-
tions are further described by ICOS, PD1, and FoxP3 expression. (D) Breakdown of frequencies of the 5-base classes in the HMP data set. (E) Frequencies of CD4+, 
DN, and CD8+ T cells within the T cell compartment. Images in A–C were created with BioRender.com.
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The overall proximity of broad lymphocyte classes to tubules 
and glomeruli was assessed by calculating the minimum distance 
of a given cell centroid to a pixel defined as either glomerular or 
tubular. Plasma cells were found to be closer to tubules than all 
other cell types (Figure 8C and Supplemental Tables 4 and 5). 
Additionally, B cells and CD4+ T cells were significantly farther 
from tubules than other cell types, although no difference was 
found between these 2 populations with respect to tubule prox-
imity. Notably, plasma cells were also farther from glomeruli than 
all other lymphocytes (Figure 8D and Supplemental Tables 4 and 
5). CD4+ T cells were also closer to glomeruli than CD8+ T cells, B 
cells or plasma cells.

Finally, the locations of the identified CD4– and large B-T 
neighborhoods relative to the glomeruli and tubules were 
assessed. On average, the large B-T neighborhoods were signifi-
cantly closer to glomeruli than both the CD4– neighborhoods and 
all other uncategorized neighborhoods (Figure 8E). In contrast, 
B-T neighborhoods were significantly farther from tubules than 

T cells (Figure 7H). Tfh cells in these neighborhoods were most 
often near other Tfh cells, while overall, Tfh cells were near 
unspecified CD4+ T cells (Figure 7I and Supplemental Figure 
7E). Unassigned CD4+ T cells in B-T neighborhoods were also 
most likely to be found near other CD4+ T cells, followed by Tfh 
cells (Figure 7J).

Cellular neighborhoods are differentially distributed relative to 
renal structures. Whole-biopsy imaging made it possible to charac-
terize the distribution of immune cell populations relative to renal 
structures. Therefore, we trained a Mask R-CNN to segment the 
tubular structures in the biopsies, which encompassed proximal 
and distal tubules, and some vascular structures. Due to a low 
prevalence, glomeruli were manually segmented (Figure 8A). The 
relative areas of the tubules, glomeruli, and the resulting TI space 
were calculated from these structural segmentations (Figure 8B). 
Glomeruli were indeed much less frequent and comprised the 
smallest fraction of total tissue. While tubules were abundant, the 
TI space was the largest structural compartment defined.

Figure 6. Identifying γδ T cells in LN. (A) Distribution of CD3D in cell clusters identified in scRNA-Seq data from LN kidney samples. (B) Expression of TRAC 
and TRDC in T cells identified in scRNA-Seq data. (C) Comparison of TRAC and TRDC expression in identified double-negative (DN), CD8+, CD4+, and dou-
ble-positive (DP) T cells. (D) Representative image of DN (CD4–CD8–) γδ (TCRd+) T cells in LN biopsy, marked by white arrows. Scale bar: 25 μm.
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matory cytokines (39). Resolving heterogeneity in these CD4– T 
cell populations is necessary to identify the populations most close-
ly linked with ESRD.

In addition to yielding information on cell frequencies in tissue, 
our analytic pipelines provided precise positions of all cells assayed 
in the biopsy. This allowed us to define cellular neighborhoods and 
extract quantitative features, including neighborhood size, shape, and 
cell constituency. Unsupervised clustering revealed that in individu-
al patients small neighborhoods of CD4– T cells were associated with 
progression to ESRD. These data suggest that understanding immune 
cell architectures, even in relatively small patient sample cohorts, can 
identify prognostically important mechanisms.

Our data identified CD4– T cells, including CD8+, γδ, and DN 
T cells, as potentially important therapeutic targets. This associ-
ation was particularly striking in patients that presented in renal 
failure. It is possible that the inflammatory phenotype observed in 
these patients was not a primary state but arose as a secondary con-
sequence of renal damage and scarring. Indeed, the patients who 
progressed to ESRD generally had higher chronicity scores than 
the patients who did not. However, 2 of the ESRD current patients 
(patients 51 and 55) had high densities of CD4– T cells, high activity 
indices, and relatively low chronicity scores, suggesting that infil-
trating CD4– T cells can precede substantial renal damage. These 
data suggest that patients exhibit distinct, prognostically meaning-
ful, intrarenal inflammatory trajectories.

Unfortunately, in contrast to the B cell/Tfh cell axis, we have 
limited therapeutic options that specifically target these T cell pop-
ulations. One of the few classes available is calcineurin inhibitors. 
The recent success of the calcineurin inhibitor voclosporin in treat-
ing some patients with LN is promising (47). We propose that strat-
ifying patients by the constituency and organization of their renal 
inflammation might identify those most likely to benefit from the 
addition of T cell–targeting therapies such as voclosporin.

There are several models that might account for the surprising 
association between dense regions of B cells and good renal out-
come. First, B cells might have a previously unappreciated protec-
tive role in the context of renal inflammation (48, 49). Alternatively, 
it is possible that B cells and subsequent local antibody secretion are 
somewhat benign or neutral compared with other pathological pro-
cesses in terms of tissue destruction. The final model is that dense 
B cell regions are responsible for tissue destruction in a subset of 
patients, but conventional therapies are effective at inhibiting this 
process. Indeed, most of our patients were treated with high-dose 
steroids and induced with cytotoxic therapies, most often mycophe-
nolate. These therapies have been demonstrated to deplete B cells 
and plasma cells (50, 51).

Large neighborhoods of cells were enriched in both B cells and 
CD4+ T cells, including putative Tfh cells. These neighborhoods 
have similar features to the T/B aggregates described previously 
(15). However, our HMP image analysis indicated that these struc-
tures are more complex, containing other cell types, including other 
CD4+ T cell and plasma cell populations. These findings cohere with 
previous studies that suggest an underlying architecture to these 
large neighborhoods (13). Further work will be needed to under-
stand the rules by which these different neighborhoods organize 
with respect to each other and the underlying biological processes 
governing their organization.

all other cell neighborhoods. CD4– neighborhoods were closer to 
tubules than B-T neighborhoods but still significantly farther than 
the other non–B-T neighborhoods (Figure 8F). These data suggest 
that there is a preferential aggregation of large B-T neighborhoods 
near glomeruli, while other quantifiable neighborhoods are dis-
persed among tubules in the TI space. A representative image of 
this phenomenon can be seen in Figure 8G. These data suggest 
that cellular neighborhoods, first identified in discrete fields of 
view, are spatially organized within the renal cortex.

Discussion
Canonically, LN is thought of as arising from a systemic break in 
B cell tolerance that leads to glomerular antibody deposition and 
inflammation. This model, supported by large bodies of evidence 
in both humans and mice (10, 31), has led to clinical trials targeting 
B cells and Tfh cells (32–38). However, these efforts have yielded 
either incremental or no improvement over the standard of care. 
By quantifying cellular organization within confocal microscopy 
images using deep-learning algorithms, we demonstrated that 
high regional B cell density is associated with a good prognosis. 
Rather, it is CD4– T cell populations, including CD8+, γδ, and other 
DN T cells, that are associated with refractory disease and pro-
gression to renal failure.

The CD4– population was surprisingly heterogeneous. As 
expected, CD8-expressing cells were common. However, over 
40% of the CD4– cells did not express CD8. Of these, approximate-
ly 50% expressed the γδ TCR. Reexamination of the AMP data 
confirmed the presence of intrarenal γδ T cells within the DN T 
cells. We also observed a substantial population of CD4–CD8–δ– T 
cells. These cells appear similar to previously described DN T cells 
that arise from CD8+ self-reactive T cells that have downregulated 
CD8 expression (39, 40).

It remains to be determined whether a specific CD4– T cell 
population is associated with progression to renal failure or if these 
populations share pathogenic roles. Certainly, both CD8+ and γδ 
T cells can be cytolytic and might provide complementary recog-
nition of different classes of autoantigens (41–44). Intrarenal γδ 
T cells have been implicated in chronic renal disease, though the 
mechanism is unclear (45, 46). The function of DN T cells is not 
known, but they might retain cytolytic activity, as they are derived 
from CD8+ T cells. Alternatively, they could be a source of inflam-

Figure 7. Identification of distinct CD4– and B-T neighborhoods. (A) Distri-
bution of sizes of all cell neighborhoods in the HMP data set. (B) Represen-
tative CD4– clusters (red, CD4+ T cells; blue, CD8+ T cells; green, DN T cells). 
Scale bar: 10 μm. (C) Distribution of the 5 main lymphocyte classes in the 
CD4– T cell neighborhoods. (D) Representative B-T aggregates (outlined 
by white boxes) (green, DN; red, non-Tfh CD4+; yellow, Tfh; blue, CD8+; 
magenta, CD20+; cyan, CD138+ cells). Scale bar: 100 μm. (E) Distribution of 
the 5-base classes of lymphocytes in B-T neighborhoods. (F) Distribution of 
CD4+ T cell phenotypes in B-T neighborhoods. (G) Comparison of proportion 
of CD4+ T cells that are Tfh cells in identified B-T aggregates and non B-T 
aggregates (Mann-Whitney U Test, P = 1.9 × 10-6). The population mean 
is represented by a white diamond, and quartile ranges are defined by 
the whisker boundaries and upper and lower box boundaries. Outliers are 
represented as open circles. The nearest neighbors of (H) CD20+ B cells, (I) 
Tfh cells, and (J) CD4+ T cells within B-T aggregates. The data set analyzed in 
this figure is the same as the data set introduced in Figure 5.
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Figure 8. Structural segmentation reveals B-T neighborhood proximity to glomeruli. (A) Structural segmentation of biopsies required 3 steps: (a) 
automatic segmentation of the tissue in the composite was accomplished through filtering and thresholding the DAPI channel, (b) glomeruli were 
hand-segmented on the DAPI channel of each biopsy, and (c) a U-Net was trained to segment tubular structures (including both tubules and blood 
vessels) in 512 × 512 DAPI tiles. Structural segmentations were merged with the coordinate space of the detected lymphocytes to calculate proxim-
ity to kidney structures (magnification 63x, zoom factor 1 in A and G). (B) The TI space was the largest compartment, followed by tubular structures 
and then glomeruli. (C) Lymphocyte proximity to glomeruli varies slightly across detected classes. (D) Minimum distance of detected lymphocytes 
to a tubule segmentation also varies across class. Means and P values for all 2-way comparisons in C and D are reported in Supplemental Tables 4 
and 5. (E) B-T neighborhoods were significantly closer to glomeruli than all other neighborhood classifications. (F) Conversely, B-T neighborhoods 
were significantly farther from tubular structures than all other aggregates. CD4– neighborhoods were also significantly farther from tubules than 
all other non–B-T neighborhoods. The population mean is represented by a white diamond, and quartile ranges are defined by the whisker bound-
aries and upper and lower box boundaries. Outliers are represented as open circles. (E and F) Significant P values (P < 0.05) are noted on plots 
(Mann-Whitney U test with Bonferroni’s correction). (G) Representative B-T and CD4– neighborhoods and cell constituents (for zoom panels at right, 
green, DN T cells; red, non-Tfh CD4+ T cells; blue, CD8+ T cells; magenta, CD20+ cells; cyan, CD138+ cells; yellow, Tfh cells). The data set analyzed in 
this figure is the same as the data set introduced in Figure 5.
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We implemented artificial intelligence to quantify immune cell 
populations in human tissue, thereby extracting rich, nonbiased, spa-
tio-cellular data that allowed identification of unexpected pathogenic 
mechanisms. Even in a relatively small longitudinal cohort, we were 
able to resolve patient heterogeneity to identify putative pathogen-
ic processes. Remarkably, specific cell densities provided powerful 
insights into disease pathogenesis. Understanding how these pop-
ulations were organized into neighborhoods enabled us to associate 
cellular features of inflammation with prognosis. Further work needs 
to be done to identify whether these findings apply to other states of 
renal inflammation, such as mixed renal rejection or ANCA vascu-
litis. However, preliminary work indicates that the neural networks 
and approaches used for LN can be extended to other disease states, 
such as renal allograft rejection and rheumatoid arthritis. Therefore, 
our data suggest that using machine-learning-assisted spatial analysis 
to evaluate the complexity, heterogeneity, and organization of in situ 
inflammation will help to provide a more quantitative understanding 
of human autoimmunity. Such knowledge is critical for interpreting 
and applying the wealth of knowledge we have gained from animal 
models. It is also likely to identify both new therapeutic targets and 
those patients in which specific strategies are likely to be beneficial.

Methods

Sample staining and image acquisition — HR data set
FFPE kidney biopsies from 55 patients with LN with at least 2 years of 
clinical follow-up were obtained from the University of Chicago Human 
Tissue Resource Center (Supplemental Figure 8). FFPE sections were 
deparaffinized and treated with a citric acid buffer (pH 6.0) for antigen 
retrieval and blocked with serum prior to antibody staining. Samples 
were stained with indicated specific antibodies (Supplemental Table 6) 
and imaged on a Leica SP8 laser scanning confocal microscope at ×63 
magnification. Image ROIs were collected in tissue regions with identifi-
able CD3 signal. Collected images were 1024 × 1024 pixels × 6 channels 
with a 0.1058 μm pixel size.

Staining and image acquisition — HMP data set
Samples were stained using a strip and reprobe procedure in which 5 μm 
thick sections of FFPE biopsy sections were iteratively stained accord-
ing to a procedure outlined by (ref. 26 and Supplemental Figure 8). Sec-
tions were deparaffinized and stained with a combination of primary 
antibodies and secondary antibodies conjugated with Alexa Fluor 488, 
546, and 647 fluorophores (Supplemental Table 6). DAPI was includ-
ed in every iteration of staining. Each round of staining, samples were 
imaged using a Caliber ID RS-G4 large-format confocal microscope at 
a magnification of ×63, resulting in a pixel size of 221 nm. After each 
round of imaging, samples were stripped as described previously (26) 
and then reprobed with a new set of primary and secondary antibodies 
and reimaged until the full marker panel had been imaged.

Staining and image acquisition — γδ T cells
Eight LN kidney biopsies were stained for CD3, CD4, CD8, TCRδ, and 
DAPI. Inflamed regions were imaged on the Leica Stellaris 8 confocal 
microscope, with ×40 magnification and a pixel size of 0.225 μm. 281 
ROIs (35 ± 19 per sample) were obtained and then postprocessed with 
background subtraction, despeckling, and contrast adjustment using 
ImageJ (NIH). Cells in these images were quantified by manual count.

Interestingly, pDC prevalence was not associated with renal 
outcome in our HR data set. As sources of IFN-α, they have been 
postulated to play a central role in disease pathogenesis (52–55). 
However, the outcomes of clinical trials of anti–IFN-α antibodies 
in lupus have been modest (56, 57). In contrast to pDCs, mDCs 
were depleted in those patients that presented in renal failure. 
This was an unexpected finding, as CD1c+DC-SIGN+ DCs and 
CD141hiCLEC9A+ DCs in the tubulointerstitium of patients with 
LN have previously been correlated with fibrosis and poor renal 
function (58). In addition, periglomerular inflammatory mDCs 
that drive pathology have been recently described in LN (59), 
though the mDCs in the tubulointerstitium do not appear to share 
this phenotype. However, tissue-resident DCs have also been 
appreciated for their role in enforcing peripheral tolerance (60). 
Therefore, a subset of DCs might have a role in organ tolerance, 
even in the context of inflammation.

Furthermore, CD11c is a marker that can capture a range 
of cells in addition to mDCs, including macrophages and even 
age-associated or DN B cells (61, 62). In our CNN hierarchy, puta-
tive cells expressing both CD20 and CD11c would be classified as 
B cells; such occurrences were rare. Further work, with multiple 
additional cell markers, will be needed to resolve the complexity 
of the CD11c populations.

Using deep-learning and other artificial intelligence algorithms, 
we achieved robust and accurate cell detection across multiple LN 
image data sets. This enabled a detailed, accurate spatial analysis of 
in situ adaptive immunity in LN samples. However, we must acknowl-
edge the limitations of this approach — namely that additional work 
needs to be done to elucidate the pathological mechanisms at play. 
We have identified a series of striking associations, but we do not yet 
have insight into how some cells are driving progression to renal fail-
ure. For example, it is not feasible to directly test whether the CD4– T 
cell populations identified in this work are poorly responsive to corti-
costeroids or mycophenolate therapy. Future work should be focused 
on validating these findings in a separate cohort of patients from a 
clinical trial of a B cell– or T cell–specific therapy (e.g., rituximab, voc-
losporin), which would allow the identified cellular states to be relat-
ed to therapeutic responses.

Several computer vision methods were implemented to estab-
lish an analytical pipeline that addressed experimental, biological, 
and technical limitations. CNNs trained for instance segmenta-
tion detected and classified several immune cell classes with high 
fidelity not only in sparsely populated images, but also in densely 
packed images. In previous work, we trained and implemented a 
single Mask R-CNN for 5-class cell segmentation in LN images (21). 
By splitting this task into 2 separate networks, we were able to mit-
igate issues with cell class imbalance and variable stain signatures 
to improve overall detection performance (63). We also trained and 
implemented CNNs for rapid and robust image and object filtering 
to optimize immune cell calling in full biopsy sections. This includ-
ed a network trained to discriminate between image tiles containing 
positive cell signal and tissue autofluorescence. We also trained a 
network to segment tubules in order to reject false-positive plasma 
cell predictions. By combining these CNNs with thresholding and 
image registration techniques, we automatically mapped several 
immune cell classes to full-biopsy sections, enabling a robust spatial 
analysis of in situ autoimmunity.
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T cell segmentation. An instance of Mask R-CNN was pretrained to 
segment single-positive (CD3+ CD4–) and double-positive (CD3+CD4+) 
T cells in 512 × 512 pixel image patches from T cell image stacks (CD3/
CD4/DAPI) from the HR data set. This pretrained network was fine-
tuned with a small set of 211 T cell image stacks from the HMP data set. 
The HMP fine-tuning image sets contained CD3/CD4/DAPI, CD3/
CD8/DAPI, and CD3/ICOS/DAPI image stacks. This fine-tuning set 
was split into training (169 images, 80%), validation (21 images, 10%), 
and testing (21 images, 10%) sets, with all images from a given patient 
confined to a specific set. For fine-tuning, weights were permitted to 
adjust for all convolutional, max-pooling, and fully connected layers of 
the pretrained Mask R-CNN. The fine-tuned T cell network was used to 
make predictions for CD3/CD4/DAPI, CD3/CD8/DAPI, CD3/ICOS/
DAPI, and CD3/PD1/DAPI images. The trained dual-marker network 
had an average F1 score of 0.85 on all single-positive cell predictions 
(i.e., CD3+CD4– and CD3+CD8–) and an average F1 score of 0.92 on all 
double-positive cell predictions (i.e., CD3+CD4+ and CD3+CD8+).

B cell segmentation. An instance of Mask R-CNN was pretrained to 
segment B cells in 512 × 512 pixel image patches generated from B cell 
image stacks (CD20/DAPI) from the HR data set. This pretrained net-
work was fine-tuned with a set of 79 B cell image stacks from the HMP 
data set. This fine-tuning set was split into training (63 images, 80%), 
validation (8 images, 10%), and testing (8 images, 10%) sets, with all 
images from a given patient confined to a specific set. For fine-tun-
ing, the weights were permitted to be adjusted for all convolutional, 
max-pooling, and fully connected layers of the pretrained Mask R-CNN. 
The fine-tuned B cell network was used to make predictions for B cell 
(CD20) and plasma cell images (CD138). The trained single-marker 
network had and average F1 score of 0.87.

Tubule segmentation
An instance of Mask R-CNN was trained to segment tubular struc-
tures, including blood vessels and tubules, in the HMP data set. 300 
DAPI tiles (512 × 512 pixels) from 18 patients were manually annotat-
ed by a single expert. Manually segmented images were separated 
into training, validation, and testing sets as follows: 240 images in 
the training set (80%), 30 images in the validation set (10%), and 30 
images in the test set (10%). Data augmentation consisted of random 
horizontal and vertical flips and rotations. Performance of the tubule 
segmentation network was assessed at the pixel level, with the trained 
network yielding an average recall (Equation 2) of 0.74 and an average 
precision (Equation 1) of 0.79 on the test set of tubule images.

All computation associated with the HMP data set was performed 
on the MEL computational server in the Radiomics and Machine 
Learning Facility at the University of Chicago. MEL contains 256 Xeon 
Gold 6130 CPU cores, 3 TB of DDR4 ECC RAM memory, 24 TB of 
NVMe SSD storage, and 16 Nvidia Tesla V100 32GB GPU accelerators.

Defining cell neighborhoods through density-based clustering
Cells in both data sets were assigned to clusters using the sklearn (version 
0.23.2) implementation of Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN; ref. 25), using an epsilon of roughly 10 μm, 
corresponding to 100 pixels in the HR data set and 50 pixels in the HMP 
data set and a minimum cluster size of 2. In the HR data set, 24 features 
of cellular constituency and cell/neighborhood shape were extracted for 
each cluster, and K-means clustering was then applied to define classes 
of neighborhoods. The neighborhoods were split into 6 classes, as deter-

Automatic cell detection and segmentation — HR data set
Two instances of a Mask R-CNN architecture (24) were trained to detect 
and segment cells in this data set. One instance was trained to detect 
3 classes of lymphocytes (B cells, CD3+CD4– T cells, and CD3+CD4+ T 
cells). A second instance was trained to detect 2 classes of DCs (pDCs and 
mDCs). For this work, ResNet-101 was used as a backbone for the Feature 
Pyramid Network. Networks were trained with a learning rate of 0.01. 
Training, validation, and testing data were generated by a single expert. 
All manually segmented images from a given patient were relegated to the 
training set (246 images [70%] from 21 unique patients), validation set (62 
images [20%] from 4 unique patients), or test set (34 images [10%] from 
6 unique patients). Training progress was monitored using Tensorboard, 
and training was stopped after cell recall stopped improving for all classes. 
Precision, recall, and F1 score were used to evaluate network performance 
(see equations below). Specifically, these metrics were calculated at the 
object level, not the pixel level. A predicted object was defined as a true 
positive if it had an IOU score of greater than 0.25, with a ground truth cell 
of the same class, and if the network confidence in that predicted object 
was greater than 0.3. Cell predictions that had an IOU of less than 0.25 
with a manual segmentation or had a disagreement in class with an over-
lapping manual segmentation were defined as false-positive predictions. 
All manual segmentations that were not matched with a true positive pre-
diction were defined as false negatives. Because instance segmentation is 
first an object detection task, no true negative objects can be defined. All 
computation for the HR data set was performed using resources at the 
University of Chicago Research Computing Center. Each instance of Mask 
R-CNN was trained on a single GPU compute node containing 4 Nvidia 
GPUs with 12 GB memory per card, 28 Intel E5-2680v4 CPUs at 2.4 GHz, 
and 64 GB of system memory. A batch size of 4 images was used for train-
ing, distributed across the 4 GPU cards. Networks were trained to the point 
at which the recall for all cell classes stopped increasing.

 (Equation 1)

 (Equation 2)

 (Equation 3)

Automatic cell detection and segmentation — HMP data set
Image strips (1024 × N pixels) from a Caliber ID microscope were stitched 
together using cross-correlation of image patches at the strip boundaries. 
These single-channel composites were then aligned with the DAPI chan-
nel from the first round of imaging, again through cross-correlation of 
image patches. Multichannel composites were then broken into 512 × 512 
pixel image tiles. All DAPI tiles were passed through a simple image inten-
sity filter to determine if tissue was present at a given location. All tiles at 
a given location were filtered out of proceeding analyses if the DAPI filter 
revealed no tissue at that location. This resulted in over unique 18,000 tile 
locations, with each location containing 9 unique stains.

Instance segmentation of cells was split into two tasks: instance 
segmentation of T cells (also referred to as dual-marker detection) 
and instance segmentation of B cells (also referred to as single-marker 
detection). Instance segmentation performance was evaluated using 
precision (Equation 1), recall (Equation 2), and F1 score (Equation 3).
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expression with no detectable CD4 transcripts. Cells were catego-
rized as double-positive or DN when they had both/neither CD4 
and/nor CD8A/B. t-SNE was performed by Rtsne (0.15). Plots were 
generated by ggplot2 (3.3.2) and ggridges (0.5.2).

Data and materials availability
Code used for the cellular segmentation and spatial analysis can be 
found at the following repository: https://github.com/durkeems13/
LN_image_analysis (commit id: 9281d32).

Statistics
Differences between the groups of patients or groups of cellular neigh-
borhoods were evaluated using the Mann-Whitney U test with the Bon-
ferroni’s correction for multiple comparisons. Differences in proportions 
were evaluated using the χ2 test for independence with Bonferroni’s cor-
rection for multiple comparisons. Data are shown as the mean ± SEM.

The bootstrapping analysis to validate the differences between the 
groups of patients in the HR data set was performed by sampling the 
individual pools of ROIs with replacement to produce samples of 200 
ROIs for each of the patient cohorts in the 2-group analysis (ESRD+ 
vs. ESRD–) and 150 ROIs for each of the patient cohorts in the 3-group 
analysis (ESRD+ vs. ESRD– vs. ESRD current). For each pair of groups, 
the mean for each random sample was calculated as well as the differ-
ence between the 2 group means. This procedure was repeated 1000 
times to produce distributions of the difference in means between the 
groups. The 2 populations were considered to be significantly different 
from each other if the 95% confidence interval of the differences in 
means that did not overlap with 0.

Study approval
This study, which used only deidentified human samples, was 
approved by the University of Chicago Institutional Review Board, 
with protocol number 15065.
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mined ideal by bootstrapping cluster descriptors, including the WCSS 
and the Δ WCSS. The types were characterized using a leave-one-out 
t test to identify which features of each type of neighborhood distin-
guished it from the other neighborhoods. In this procedure, the current 
cluster of reference was treated as the alternative group, all remaining 
clusters were then binned together as the reference group, and then a t 
test for was applied for all features used to describe the neighborhoods.

Structural segmentation of kidney biopsies
Full-biopsy segmentation was performed on the DAPI channel for all 
kidney biopsies. The fully stitched DAPI composite was γ-corrected 
to increase brightness and then filtered with a Gaussian kernel. The 
filtered image was normalized and thresholded to create a binary 
mask of all tissue in the composite. Glomerular segmentation was per-
formed by hand. Due to the relatively low prevalence of glomeruli in 
this data set, there was not enough glomeruli to train an algorithm to 
define glomeruli. Tubular structures, including both tubules and blood 
vessels, were segmented on the DAPI channel of all samples using the 
Mask R-CNN trained for tubule segmentation (as described above). 
No markers were included in the staining panel to explicitly identify 
tubules and blood vessels, and the signatures of these 2 structures are 
very similar in the DAPI channel. Therefore, the “tubule” network is 
trained to segment general tubular structures, which include proximal 
tubules, distal tubules, and blood vessels.

Spatial analyses
All other spatial analyses were performed using Python (3.7.9) and the 
following packages: pandas (1.2.2) (https://pandas.pydata.org/), numpy 
(1.19.2) (https://numpy.org/), sklearn (0.23.2) (https://scikit-learn.org/
stable/), scipy (1.6.1) (https://scipy.org/), and tifffile (2021.1.14) (https://
pypi.org/project/tifffile/2021.1.14/). Plotting was performed with mat-
plotlib (3.3.2) (https://matplotlib.org/) and seaborn (0.11.1) (https://sea-
born.pydata.org/). The nearest-neighbors calculation was performed 
by iterating through every cell in the data set and identifying the class of 
the closest cell by centroid-to-centroid distance.

In the HMP data set, coordinates of the cells in the tiles were 
adjusted to a composite-level coordinate system by shifting the 
tile-level coordinates based on the location of the tile in the composite. 
All subsequent calculations around the distribution of cells in tissue 
were based on these composite-level locations.

RNA-Seq analysis
scRNA-Seq data for human LN tissue were obtained from the 
ImmPort repository (accession code SDY997, “SDY997_EXP15176_
celseq _matrix_ ru10_molecules.tsv” raw data file). Quality control 
was performed according to Arazi et al. (16), such that cells were 
removed from the analysis if they expressed fewer than 1000 
or more than 5000 genes or if more than 25% of the total UMIs 
mapped to mitochondrial genes. Gene expression values were 
normalized to library size (UMI count per million) and scaled by 
log2. Clustering implemented in Seurat 3.2.2 and canonical marker 
expression were used to identify cellular subsets. T cells were ana-
lyzed if they were assigned to the “naive T” or “CTL” clusters. T 
cells were categorized based on CD4, CD8A, and CD8B expression. 
Cells were categorized as “CD4” when they had detectable expres-
sion of CD4 transcripts but no CD8A or CD8B. They were instead 
categorized as “CD8” when they had detectable CD8A and/or CD8B 
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