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Abstract. EpCAM (epithelial cell adhesion molecule) is a 
type  I transmembrane glycoprotein, which was originally 
identified as a tumor‑associated antigen due to its high expres-
sion level in rapidly growing epithelial tumors. Germ line 
mutations of the human EpCAM gene have been indicated as 
the cause of congenital tufting enteropathy. Previous studies 
based on cell models have revealed that EpCAM contributes to 
various biological processes including cell adhesion, signaling, 
migration and proliferation. Due to the previous lack of genetic 
animal models, the in  vivo functions of EpCAM remain 
largely unknown. However, EpCAM genetic animal models 
have recently been generated, and are useful for understanding 
the functions of EpCAM. The authors here briefly review 
the functions and mechanisms of EpCAM in physiological 
processes and different diseases. 
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1. Introduction 

The epithelial cell adhesion molecule (EpCAM, also known 
as cluster of differentiation 326 or Tacstd1), is a 40 KD trans-
membrane glycoprotein, consisting of 314 amino acids, firstly 
identified in colon cancer in 1979. Its molecular structure 
includes: Extracellular domain (EpEX), single transmembrane 
domain and intracellular domain (EpICD) (1). EpCAM is a 
homophilic Ca2+‑independent cell‑cell adhesion molecule. In 
addition to a role in intercellular adhesion, in vitro and in vivo 
studies have revealed that EpCAM plays important roles in 
cell signaling, proliferation, differentiation, formation and 
maintenance of organ morphology (2).

EpCAM is expressed in many kinds of epithelial tissues (3) 
and is also a cell surface marker on various stem and 
progenitor cells (4,5). Mutations in human EpCAM have been 
identified to be associated with congenital tufting enteropathy 
(CTE) (6). To investigate the in vivo functions of EpCAM, 
several mutant animal models have been generated in recent 
years, including mice, zebrafish and Xenopus. At least 4 types 
of global EpCAM knockout mice suggest that the phenotype 
is similar to the symptoms of human CTE  (7‑9), however 
one model leads to embryonic lethality due to placental 
defect (10). In addition, a conditional knockout mouse model 
exhibits impaired motility of the skin Langerhans cells (11). 
Zebrafish (12) and Xenopus (13,14) models demonstrate the 
functions of EpCAM in morphogenic movements during 
gastrulation. Hepatic development has also been affected in 
EpCAM mutant zebrafish (15). These studies have confirmed 
the important functions of EpCAM in physiological processes 
and development.

In addition to important roles in developmental processes, 
EpCAM is also highly expressed in epithelial tumor tissues, 
and promotes the proliferation of tumors (16,17). Its functions 
in oncogenesis and cancer cells have been studied by many 
groups, and therapeutic approaches targeting EpCAM are also 
currently being developed.

Here, the authors summarize the functions of EpCAM 
in physiology, development and diseases, and review 
current progresses in identifying the underlying molecular 
mechanisms. 
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2. Expression pattern and subcellular localization of 
EpCAM

EpCAM can be detected in many tissues from very early 
embryos to adult animals and human beings, and it is also 
highly expressed in numerous types of tumor tissue.

Expression of EpCAM during embryo development. 
EpCAM mRNA can be detected in the fertilized zygotes 
of zebrafish  (12), indicating it is present maternally. In 
1981, EpCAM was defined as one of the human trophoblast 
cell‑surface antigens (18). In the developing mouse embryo, 
EpCAM is also detected in the inner cell mass of the blas-
tocyst (7), the epiblast (7,19), and the gonads at E12.5 (7). At 
early gastrulation stages including E6.5 and E7.5, EpCAM 
is expressed in the ectoderm and endoderm, however may 
be used as a marker of the endoderm at and after E8.25 (19). 
Nagao et al (10) revealed that the expression of EpCAM is 
most prominent in the facial primordia, gut, branchial arches, 
and otocyst at E9.5. EpCAM protein may be detected in the 
allantois, the labyrinthine layer, and the spongiotrophoblasts 
from E8.5 and E9.5 placentas of mice, however the highest 
expression levels are detected in the labyrinth. In addition, the 
expression of EpCAM is readily detected in various epithelial 
components of a variety of organs including hair follicles, 
the nasal plexus, lungs, kidneys, and pancreas examined at 
E14.5 (10). EpCAM mRNA is detected in the developing gut 
of mice from E9.5 to E15.5, as well as throughout the intes-
tine, from the duodenum to the colon, at E18.5 (7). EpCAM 
protein is detected in the villi and intervillus domains, and is 
localized to cell‑cell junctions of the intestinal epithelium at 
E18.5 and at P0. EpCAM is highly expressed in the epithelia 
of stomach, lungs, pancreas, and kidneys at E18.5 (7). During 
the embryogenesis of zebrafish, maternally provided EpCAM 
mRNA is uniformly distributed in all cells of cleavage and 
early blastula stage embryos. Following the onset of epiboly, 
EpCAM mRNA is restricted to the enveloping layer (EVL) and 
basal epidermis, indicating the zygotic expression of EpCAM 
is restricted to the epithelial structures (12). EpCAM has also 
been demonstrated to be expressed in migrating neuromast 
primordia, otic vesicles and olfactory placodes (12).

Expression pattern of EpCAM in adult organs and tumor 
tissues. EpCAM is expressed in many adult organs, just as 
Balzar et al (3) and Schnell et al (2) have summarized in detail. 
Similar to what they have mentioned in rats, we also observed 
a gradient of EpCAM from crypts to villi in small intestines 
of adult mice (Fig. 1; unpublished data). It confirmed that the 
expression level of EpCAM was high in the proliferative cells 
and low in the differential cells. Balzar et al reported that in 
the skin of adult humans, the expression level of EpCAM is 
low in hair follicles and sweat glands (3). Recently, it has been 
reported that EpCAM is expressed in the skin Langerhans 
cells (11). In addition, according to reverse transcription‑poly-
merase chain reaction analysis, EpCAM mRNA is also present 
in the skin of adult zebrafish (12). Recently, Poon et al (20) 
studied the expression pattern of EpCAM in rat uterus, and 
it was revealed that prior to implantation, EpCAM mediates 
intercellular adhesion in the uterine epithelium, but during 
implantation, when the uterine luminal epithelial cells lose the 

majority of their intercellular and cell‑matrix adhesions, the 
expression of EpCAM is decreased, although still present for 
the maintenance of mucosal integrity.

EpCAM was originally identified as a tumor‑associated 
antigen on the basis of its high expression level in the 
tumors of epithelial origin (16). EpCAM‑positive cells have 
been suggested to serve as cancer stem cells for various 
human cancers, including colorectal and hepatocellular 
carcinoma  (21,22). Numerous antibody‑based therapeutic 
approaches targeting EpCAM are currently being devel-
oped (23). Further information regarding EpCAM expression 
in tumors can be found in Balzar et al (3) and Schnell et al (2).

Subcellular distribution of EpCAM. It has been verified that 
EpCAM is enriched at the basolateral membrane of mouse 
and human intestinal epithelium. Immunohistochemistry 
(IHC) staining of the intestinal epithelium of mice with both 
EpCAM antibody and either E‑cadherin antibody or ZO‑1 
antibody, markers of adherens junctions (AJs) and tight junc-
tions (TJs), respectively, revealed that EpCAM is localized to 
TJs, AJs and the lateral membranes of epithelial cells lining 
the mouse intestines (7). In normal human intestinal epithe-
lium, anti‑EpCAM antibody stains the region of TJs and the 
lateral membrane; the EpCAM signal can even be detected 
on the brush border by immunostaining and immunoelectron 
microscopy (24). Using domain‑specific antibodies, it was 
demonstrated that EpICD‑specific staining is speckled in the 
cytoplasm, perinucleus and nuclei of FaDu hypopharynx and 
HCT‑8 colon carcinoma cells (25). EpICD may also be detected 
in the nuclei of carcinoma samples, but does not appear to 
localize to the nuclei in samples from normal colon biopsies 
and is detected as distinct speckles in the cell cytoplasm of 
normal tissues (25). 

3. Functions of EpCAM in physiological processes

EpCAM and cell junctions. The name EpCAM‑epithelial cell 
adhesion molecule‑describes cell‑cell adhesion protein. Like 
most cell adhesion molecules, the primary function of EpCAM 
appears to be cell‑cell interaction (26). This has been supported 
by the studies with L929 fibroblasts, which are normally 
not involved in cellular adhesion. The L929 fibroblasts form 
multicellular aggregates of cells when expressing EpCAM, 
suggesting that EpCAM is involved in homotypic cell‑cell 
interactions (27). Although a previous study revealed that cells 
expressing EpCAM were only loosely interconnected (28), 
further reports have revealed that EpCAM is essential for cell 
junctions: It interacts with several important cell adhesion 
molecules (CAMs) and regulates adhesive structures between 
cells and cell‑matrix, including TJs, AJs, desmosomes, and 
hemi‑desmosomes.

EpCAM regulates CAMs. EpCAM and classical cadherins. 
The E‑cadherin gene is extensively studied as a classical 
cadherin for the whole cadherin superfamily. The early stage 
results have revealed that E‑cadherin exerts opposing effects to 
EpCAM. E‑cadherin acts as a tumor suppressor protein (29‑31). 
Mutational disruption of the E‑cadherin gene has been observed 
in invasive lobular breast cancer and gastric carcinoma (31‑33). 
E‑cadherin germline mutations are detectable in families 
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with a high frequency of early‑onset gastric cancer (32‑34). 
In contrast, EpCAM is highly expressed in a variety of carci-
nomas and currently considered to be an important carcinoma 
marker. In cultured murine fibroblast L cells, the expression 
of EpCAM suppresses the E‑cadherin‑mediated cell aggrega-
tion, because EpCAM disrupts the association of E‑cadherin 
with the cytoskeleton (35,36). It has also been reported that 
EpCAM affects the cadherin‑mediated junctions in HBL‑100 
cells (35). From these results, it was hypothesized that EpCAM 
may act as an antagonist of E‑cadherin. 

However, this conclusion has recently been challenged by 
EpCAM genetic animal models. In contrast to cell culture 
studies, Slanchev et al (12) revealed that in the EpCAM mutant 
enveloping layer (EVL) of zebrafish, the expression level of 
E‑cadherin is reduced; EpCAM and E‑cadherin tightly interact 
for an enhanced effect to promote EVL integrity as well as deep 
cell epiboly. Each of them is indispensable for EVL integrity, 
whereas combined loss of both EpCAM and E‑cadherin leads 
to severe layer‑autonomous EVL disassembly during early 
gastrulation stages (12). Several reports have revealed that 
EpCAM contributes to the formation of functional TJs in the 
mouse and human intestinal epithelium (7,9,37). Notably, when 
E‑cadherin is deleted from the mouse intestine, the barrier 
function of the intestines is compromised  (38), moreover, 
loss of E‑cadherin in mouse epidermis may lead to improper 
localization of the key tight junctional proteins, resulting in 
permeable TJs and altered epidermal resistance (39). From 
these reports, it was concluded that EpCAM and E‑cadherin 
enhance each other's physiological functions in vivo.

The conclusions from the reduced expression of EpCAM 
in vivo and in vitro are completely different. The expression 
of E‑cadherin in the CTE children's biopsy specimens is 
normal (40). The expression level and expression pattern of 
E‑cadherin and β‑catenin are normal in the EpCAM mutant 

intestines of mouse embryos (7), but their expression levels 
are disrupted and the intracellular accumulation rapidly 
increases after birth (8). As these alterations occur following 
birth, they may be secondary effects of EpCAM mutation. In 
contrast, in vitro studies suggest that the reduction of EpCAM 
expression does not change the expression or localization of 
E‑cadherin and β‑catenin in T84 cells (41).

Various EpCAM knockout mice exhibit abnormal placental 
development and die in utero by E12.5, and the expression of 
E‑cadherin and P‑cadherin in E9.5 placentas of these mutant 
mice are not affected  (10). EpCAM is co‑expressed with 
E‑cadherin, but the expression of EpCAM is inversely corre-
lated with P‑cadherin in mouse placentas, developing guts, 
lungs and hair follicles (10). However, Wu et al (41) reported 
that EpCAM and E‑cadherin did not precisely co‑localize in 
T84 cell monolayers detected by confocal microscopy, and 
co‑immunoprecipitation studies did not indicate that EpCAM 
and E‑cadherin were tightly associated in T84 cells.

There are two noteworthy exceptions. Global depletion 
of EpCAM by injection of antisense Morpholino oligonucle-
otides (EpCAM MO) in Xenopus embryos results in a marked 
decrease in C‑cadherin protein levels, but does not affect 
mRNA levels (the same was observed for the associated 
tested molecules E‑cadherin, α‑ and β‑catenin), indicating 
that the regulation occurs at a posttranscriptional level (14). 
Cadherin downregulation results from protein kinase C 
(PKC) overactivation in EpCAM mutant Xenopus embryos. 
In EpCAM‑depleted Caco‑2 cells, a human colon cancer cell 
line, PKC activation increases and the E‑cadherin protein is 
decreased (14) or mislocalized (42).

EpCAM and claudins. Claudin‑7 is the first member of the 
family of claudins which was reported in a study investi-
gating the association between EpCAM and claudins in both 

Figure 1. In situ hybridization analysis of EpCAM mRNA in the small intestines of adult mice and E18.5 mouse embryos. (A) The EpCAM mRNA level 
in crypts was higher compared with in the villi of the small intestine. (B) At E18.5, the expression level of EpCAM in the intervillus domains was higher 
compared with in villi. EpCAM, epithelial cell adhesion molecule. 
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non‑transformed tissues and metastasizing tumor cell lines (24). 
Claudin‑7 was first detected in a CD44v6‑tetraspanis‑EpCAM 
complex, and later it was confirmed that claudin‑7 associates 
directly with EpCAM (24,43). Claudin‑7 has been observed in 
TJs and basolateral membranes; the co‑localization of EpCAM 
and claudin‑7 has also been observed on both TJs and baso-
lateral membranes (7,24). Mutant experiments identified that 
the AxxxG motif in the transmembrane domain of EpCAM is 
required for association with claudin‑7, and claudin‑7 is unable 
to associate with EpCAM if A279 and G282 are changed to 
I279 and I282 (44). 

Claudin‑7 is one of the primary claudin proteins expressed in 
the intestine (45). In EpCAM mutant embryos, claudin‑7 protein 
is downregulated to undetectable levels in all regions of the 
intestine examined, but claudin‑7 mRNA is still normal in 
the mutant intestine  (7). EpCAM and claudin‑7 have been 
demonstrated to colocalize at the basolateral surface of the 
intestine, pancreas, stomach, lungs and kidneys in wild type 
(WT) mice, detected by fluorescent immunohistochemistry. 
Claudin‑7 protein is also downregulated to undetectable levels 
in the pancreas, lungs and stomach of EpCAM knockout mice, 
but there are still some weak claudin‑7 protein signals in the 
EpCAM mutant kidneys (7). Deletion of the exon 4 in EpCAM 
leads to decreased expression and mislocalization of EpCAM in 
the intestinal epithelium rather than along the plasma membrane, 
meanwhile, the expression of claudin‑7 protein is also decreased, 
and the co‑localization with EpCAM ∆4 protein is lost, although 
claudin‑7 mRNA levels remain unaltered (9). Mueller et al (9) 
also observed a similar situation of claudin‑7 expression in CTE 
patients. Furthermore, in WT or ∆4 FLAG‑tagged EpCAM 
transfected HEK293 cells, endogenous claudin‑7 combines with 
WT EpCAM, however not with EpCAM ∆4. Knockdown of 
EpCAM in T84 and Caco‑2 cells using short hairpin RNA leads 
to decreased claudin‑7 proteins in these cells (41).

As mentioned above, the transmembrane domain of 
EpCAM is directly associated with claudin‑7. Claudin‑7 protein 
is decreased when EpCAM is lost. Claudin‑1 and claudin‑7 are 
closely related (~50% homologous at the amino acid level) (46), 
and their sub‑localization is similar. Wu et al (41) revealed 
that the expression of claudin‑1 protein is also decreased 
following knockdown of EpCAM in T84 and Caco‑2 cells, 
however claudin‑1 mRNA remains normal. Notably, the 
expression of claudin‑1 is also reduced in claudin‑7 knockout 
mice (47). It has been confirmed that claudin‑7 is associated 
with claudin‑1 and facilitates the incorporation of claudin‑1 
into EpCAM‑containing complexes.

The fact that decreased expression levels of claudin‑7 and 
claudin‑1 are associated with the reduction of EpCAM expres-
sion indicates that the alterations are post‑transcriptional. 
Inhibition of proteosomes by lactacystin or MG132 are 
unable to increase the expression of claudin‑7 and claudin‑1 
proteins in EpCAM knockout samples or EpCAM knockdown 
cells (7,41). Wu et al (41) indicated that claudin‑7, claudin‑1, 
and EpCAM turnover occurs via lysosomes, and EpCAM may 
protect claudin‑7 and claudin‑1 from lysosomal degradation 
in Caco‑2 cells, detected by immunofluorescence microscopy 
and chloroquine treatment experiments (41).

Claudin‑7 was not detected in the intestine, lungs, 
stomach, and pancreas of EpCAM mutant mice, however 
is still detected in the kidney epithelium, albeit at reduced 

levels (7). The kidney epithelium may express an EpCAM‑like 
protein that associates with claudin‑7. EpCAM‑2/Tacstd‑2 is 
a candidate for such an EpCAM‑like molecule, given that it 
is not only structurally related to EpCAM, but also interacts 
with claudin‑1 and claudin‑7 in human tissues and cultured 
cells (48).

In addition to claudin‑7, the levels of claudins 2, 3, and 15 
are also reduced in the intestine of EpCAM mutant mice (7); 
claudins 2, 3, 7, and 15 co‑precipitate with each other from 
mouse intestinal lysates. However, claudin molecules asso-
ciate with each other in a heterotypic as well as homotypic 
manner in cultured cell lines (49‑51). EpCAM may indirectly 
interact with these claudins and recruit them to the cell‑cell 
junctions, in particular the sub‑localization of claudin‑2, 3, 
and 15 is only at the TJs (7). As the distribution and expres-
sion levels of claudins 2, 3, 4, and 8 in the kidneys are not 
affected in claudin‑7 knockout mice (52), the precise manner 
of the interaction between EpCAM and various claudins 
remains to be determined. AJs have been found to be neces-
sary for the establishment of TJs (53); certain TJ proteins 
are mislocalized and functional TJs are not formed in the 
absence of α‑catenin or cadherin (39,54,55). The structure 
of AJs appears normal in EpCAM mutant animals, but as 
mentioned above, their function in maintaining TJs may be 
affected, which may be the reason for decreased levels of 
other claudins.

In the mouse intestines, claudin‑7, claudin‑1 and α2 ‑inte-
grin form a complex (47), therefore it may be hypothesized 
that this also occurs in other organs. EpCAM directly binds 
claudin‑7, which in turn facilitates the incorporation of 
claudin‑1 into the EpCAM‑containing complexes. In many 
tumor cells, the complex changes to EpCAM‑claudin‑7‑CD4
4v6‑tetraspanis (43), which may be important during tumori-
genesis.

EpCAM regulates adhesive structures. It has previously 
been demonstrated that exogenous EpCAM mediates 
Ca2+‑independent homophilic cell‑cell adhesion in cultured 
EpCAM‑negative cells. Here, the authors discuss its in vivo 
cell‑cell adhesion functions from the reports of genetic animal 
models and CTE patients.

Apical junctional complex (AJC). In vertebrate epithelial 
cells, the apical TJ and the more basally localized AJ form 
the AJC (56‑58). EpCAM mutant zebrafish display a persistent 
basal extension of AJCs in EVL cells under ultrathin electronic 
microscopy (12). Ultrathin electronic microscopy results also 
indicate that TJs of the small intestinal epithelia in EpCAM 
knockout mice are extended, but freeze‑fracture electronic 
microscopy results suggest that TJs in the EpCAM mutant 
mouse intestinal epithelia are scattered and dispersed  (7). 
It may therefore be hypothesized that the AJCs in EpCAM 
mutant EVL cells of zebrafish are also scattered and dispersed. 
If the TJs scatter, their functions will be affected.

The morphology of AJs in EpCAM mutant intestines 
is normal, and this may be due to the fact that E‑cadherin 
and β‑catenin are still maintained  (7). The mislocaliza-
tion of TJs indicates that the AJs' function of supporting 
TJs may be affected; which may be because EpCAM and 
claudin‑7 proteins are lost in AJs. The authors speculate 
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that EpCAM and claudin‑7, together with E‑cadherin, are 
essential to keep the balance between AJs and cortical 
tension (Fig. 2A). The loss of EpCAM and claudin‑7 would 
result in loss of balance between AJs and cortical tension, 
affecting the function of AJs leading to the mislocalization 
of TJs (Fig. 2B). As mentioned above, in the EpCAM mutant 
enveloping layer (EVL) of zebrafish, the expression level of 
E‑cadherin is decreased, and the EpCAM mutant zebrafish 
display a persistent basal extension of AJCs in EVL cells. In 
summary, these reports suggest that EpCAM regulates the 
formation, maintenance and functions of AJCs.

Desmosomes. Electron microscopic examination has revealed 
that the length and number of desmosomes between the entero-
cytes of CTE patients is increased, and some of them exhibit a 
distorted structure (9,40). Mueller et al (9) also suggested that 
the intestines of EpCAM∆4/∆4 mice have sporadic irregularity, 
with crowding and lengthening desmosomes, as determined 
using an electron microscope (EM) (9). Using an immunohis-
tochemical assay, Patey et al (40) found that the expression of 
desmoglein is restricted to the upper part of the intercellular 
membrane of the epithelial cells lining villi and crypts in the 
normal small bowel, whereas the expression of desmoglein is 
expanded with staining all over the lateral membrane of the 
epithelial cells lining villi and crypts in the intestines of CTE 
patients. However, the expression levels of the other compo-
nents of desmosomes, plakoglobin and desmoplakin, were 
normal. EpCAM knockdown does not lead to marked altera-
tion of the expression and distribution of desmoglein 2 in T84 
cells (41). The association between EpCAM and desmosomes 
in the enterocytes remains unclear. The authors speculate that 
if the balance between AJs and cortical tension is broken, the 
components of desmosomes would move to the basal parts of 
the lateral membrane.

Cell‑matrix adhesion. The abnormalities in the composition 
of the basement membrane of the intestines from CTE patients 
have been identified, including the enhanced deposition of 
heparan sulfate proteoglycan (HSPG) and type IV collagen, 
and extremely faint laminin in the crypt region  (59,60). 
Distribution of α2β1 integrin adhesion molecules along the 
crypt‑villous axis of CTE patients is abnormal; in the normal 
small bowel, the α2 subunit is expressed on the epithelial cells 
lining crypts and is absent on the epithelial cells lining villi, 
whereas in epithelial dysplasia, the α2‑integrin is expressed on 
the basolateral membranes of the epithelial cells lining both 
the villi and the crypts (40,59,60).

The cell‑matrix adhesion situation in EpCAM mutant 
animal models remains to be elucidated. As claudin‑7 protein 
levels are decreased to undetectable levels in EpCAM mutant 
mice, it has been hypothesized that claudin‑7 knockout 
mice may be useful for future investigations. Deletion of 
claudin‑7 alters the normal distribution pattern of α2‑integrin; 
α2‑integrin in WT intestines is clearly visualized at the basal 
membrane, whereas in Claudin7-/- intestines, α2‑integrin 
either forms clusters or moves toward the apical lateral. 
Deletion of claudin‑7 also significantly increases the expres-
sion levels of matric metallopeptidase (MMP)‑3 and MMP‑7, 
which may result in the degradation of extracellular matrix 
components (47).

The primary reason for abnormalities of cell‑matrix adhe-
sion in CTE patients or claudin‑7 mutant mice remains to 
be determined. Basement membrane molecules are involved 
in the epithelial mesenchymal cell interactions, which are 
instrumental in the development and differentiation of the 
intestine (61‑66). The changes in the cell‑matrix adhesion in 
EpCAM mutant humans and animals contribute to the behav-
ioral and morphological alterations of the intestine.

Cell transport. The intestinal TJs of EpCAM mutant mice are 
affected. TJs form a barrier that separates the apical from the 
basolateral membrane of the epithelium, allowing the selec-
tive passage of ions and solutes (7,58). Therefore, EpCAM is a 
very important molecule that regulates movement of materials 
across the intestinal epithelium and other epithelial tissues.

Injection of sulfo‑NHS‑biotin, a probe that physically 
labels cell membrane proteins, into the intestinal lumen of 
E18.5 WT and EpCAM mutant embryos revealed that this 
probe penetrates the mutant intestinal epithelium easily, and 
the flux of lucifer yellow probe from apical to basal as well as 
from the basal to apical is increased in the intestine of EpCAM 
mutant mice at P3.5 (7). EpCAM∆4/∆4 mice show intestinal 
permeability defects, with the FITC‑dextran crossing the 
mutant intestinal barrier into the bloodstream more quickly 
compared with WT mice (9). Together, these reports suggest 
that the barrier function of the intestine is impaired in EpCAM 
mutant mice.

As mentioned above, the results of electron microscopy 
showed that TJs mis‑localize in EpCAM mutant intestines, 
and the combined downregulation of claudins‑2, 3, 7, and 
15 may be observed in the intestinal epithelium of EpCAM 
mutant mice (7). Claudin‑2 and claudin‑15 are responsible for 
paracellular permeability of Na+ (67). Lei et al (7) found that 
in EpCAM mutant mice, NaCl‑dilution potential is lowered, 
and Na+‑selective paracellular permeability is reduced while 
Cl−‑selective permeability remains normal  (7), like in the 
claudin‑15 mutant mice (67). Combined downregulation of 
claudins may result in diarrhea in EpCAM mutant mice and 
CTE patients. Knockdown of EpCAM may also lead to signifi-
cant reduction of Trans‑epithelial Electrical Resistance in T84 
and Caco‑2 cell lines (41).

Cell exosomes. Extracellular vesicles (EVs) detach from the 
cell membrane or bilayer membrane secreted by cells, and are 
mainly composed of apoptotic bodies, ectosomes, extranuclear 
particles, cell microbubbles and exosomes (68). Exosomes 
are released to the outside of the cell by extracellular secre-
tions from the intracellular multivesicular bodies after fusion 
with the cell membrane, with a diameter of ~40 to 100 nm. 
EVs carry a variety of proteins, lipids, DNA, mRNA and 
miRNA, which are involved in intercellular communication, 
cell migration, angiogenesis and immune regulation (69,70). 
Increased levels of EVs may act as diagnostic markers of 
diabetes, cardiovascular disease, AIDS, chronic inflammatory 
diseases and cancers, therefore the accurate characterization 
and research of EVs is particularly important (71).

It has been demonstrated that EpCAM is essential for 
the gastrointestinal localization of some EVs secreted from 
the intestinal epithelia cells (IECs) (72). Under physiological 
conditions, IECs produce EVs with transforming growth 
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factor (TGF)‑β1‑dependent immunosuppressive activity (72). 
By inducing regulatory T cells and immunosuppressive 
dendritic cells, the transfer of EVs into inflammatory bowel 

disease (IBD) mice induced by dextran sulfate sodium could 
improve the symptoms of IBD. Conversely, reduced produc-
tion of endogenous EVs may promote the development of 

Figure 3. Schematic representation of the function of EpCAM in the recruitment of EVs in the intestine. (A) EVs with TGF‑β1 produced by the IECs bind to 
IECs through EpCAM molecules which are localized in the membranes of EVs and IECs respectively. Therefore, these EVs can be recruited to the intestine. 
(B) EVs are unable to localize in the intestine when EpCAM gene is deleted in the IECs. EVs, extracellular vesicles; TGF‑β1, transforming growth factor‑β1; 
IECs, intestinal epithelial cells; EpCAM, epithelial cell adhesion molecule.

Figure 2. Schematic representation of the function of EpCAM in cell‑cell adhesive structures. (A) In the normal intestinal epithelium, EpCAM and claudin‑7 
complex, together with E‑cadherin, is essential to keep the balance between AJs and cortical tension. The strength of the total pulling force from E‑Cadherin, 
EpCAM, claudin‑7, other claudins, occludin and other junction connections is equal with the cortical tension between two epithelial cells; but the direction 
of the total pulling force is opposite to that of cortical tension. With this balance, AJs support TJs to keep the normal structure and functions of TJs. (B) In 
EpCAM knockout intestinal epithelium, the EpCAM and claudin‑7 complex is completely lost; as is the balance between AJs and cortical tension. Therefore, 
the support of AJs to TJs becomes weak. TJs will therefore disperse and scatter with the EpCAM mutation and functions of TJs are also affected. EpCAM, 
epithelial cell adhesion molecule; AJs, adherens junctions; TJs, tight junctions.
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IBD (73). During the development of IBD, IECs produce EVs 
with elevated TGF‑β1 levels in an extracellular signal regu-
lated kinase‑dependent manner. These EVs tend to localize in 
the gut through associating with EpCAMs of IECs (Fig. 3). 
Knockdown of EpCAM in vivo increases the severity of IBD 
in mice, and as the expression level of EpCAM decreases, the 
protective effect of EVs on murine IBD is attenuated (74). 
Therefore, the function of EpCAM in the localization of EVs 
is very important for numerous physiological or pathological 
processes.

Cell polarity. The AJCs play crucial roles in the formation of 
the polarity and the maintenance of tissue architecture (58). 
Since EpCAM contributes to the formation of functional 
AJCs, it may be important for the polarity of epithelial cells.

Salomon et al (42) reported that brush border components 
of the enterocytes, such as villin and ezrin, partially disap-
pear, but relocate at the lateral membranes in CTE patients. 
They further revealed that apical polarity proteins, such as 
crumbs 3, cell polarity complex component, protein kinase C 
and par‑3 family cell polarity regulator, relocate laterally at 
the tricellular contacts of EpCAM silenced Caco‑2 cells, but 
the basal polarity is normal. Wu et al (41) found that EpCAM 

knockdown does not change the expression or distribution of 
CD26 (on apical membrane surfaces), Na/K‑ATPase (on baso-
lateral surfaces), or the subapical localization of myosin IIA, 
and they concluded that effects of EpCAM on TJs are selec-
tive, and do not cause gross abnormalities in the cell polarity. 
Na/K‑ATPase proteins are also normal in the enterocytes of 
CTE patients (42). It has been suggested that more cellular 
polarity markers should be investigated in EpCAM mutant 
animal models.

Signaling. From the available data, EpCAM emerged as a 
crucial signaling molecule, controlling four independent 
pathways (Fig. 4). One pathway regulates cell proliferation 
via nuclear activities in tumor cells, which is involved in 
β‑catenin‑dependent transcription  (25). Here, the authors 
discuss three signaling pathways in the developmental 
processes.

The nPKC‑dependent pathway. Loss‑ and gain‑of function 
of EpCAM in Xenopus embryos revealed that EpCAM 
acts as a potent inhibitor of novel protein kinase C (nPKC) 
during development (13,14). PKC inhibition is caused by a 
short segment of the EpCAM cytoplasmic tail. This motif 

Figure 4. Overview of the role of EpCAM in cell signaling. From the available data, EpCAM has emerged as a crucial signaling molecule, controlling four 
independent pathways. i) The nPKC‑dependent pathway: The EpCAM cytoplasmic tail inhibits the nPKC activity and ERK pathway to protect cadherin‑medi-
ated adhesion. ii) Wnt signal pathway: EpCAM extracellular domain directly binds to Kremen1 and disrupts the Kremen1‑Dkk2 interaction, which prevents 
Kremen1‑Dkk2‑mediated removal of Lrp6 from the cell surface. EpCAM derepresses Lrp6 and cooperates with Wnt ligand to activate the Wnt signaling 
through stabilizing membrane Lrp6 and allowing Lrp6 to cluster into active signalosomes. iii) ERas/AKT pathway: EpCAM fosters the activating phosphory-
lation of AKT at serine473 by interacting with hyperactive Ras GTPase ERas, which induces the activation of AKT. iv) In tumor cells or ES cells, EpICD 
forms a transcription activator complex with FHL2, β‑Catenin and LEF‑1 to increase transcription of EpCAM target genes, such as c‑Myc and Cyclins A/E. 
Dkk2, Dickkopf2; Lrp6, Lipoprotein‑receptor‑related protein 6; EpCAM, epithelial cell adhesion molecule; PKC, protein kinase C; ERK, extracellular signal 
regulated kinase; ERas, embryonic Ras; AKT, RAC‑α serine/threonine‑protein kinase; EpICD, intracellular domain of EpCAM; FHL, four and a half LIM 
domains; LEF‑1, lymphoid enhancer binding factor 1.
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resembles the pseudosubstrate inhibitory domains of PKCs 
and bound nPKCs with high affinity. The effects of loss 
of EpCAM on the amphibian embryo tissues have been 
observed, including sequentially strong overstimulation 
of PKC activity and the Erk pathway, exacerbated myosin 
contractility, loss of cadherin‑mediated adhesion, tissue 
dissociation, and, ultimately, cell death  (14). Elevated 
EpCAM levels in either the ectoderm or the mesoderm result 
in tissue mixing, and this property relies on a novel signal 
function through downregulation of nPKC activity (13). This 
activity of EpCAM does not require its extracellular domain, 
but its cytoplasmic motif is essential. A bioinformatics search 
revealed the existence of similar motifs in other plasma 
membrane proteins, most of which were cell‑cell adhesion 
molecules. Thus, direct inhibition of PKC by EpCAM repre-
sents a general mode of regulation of signal transduction by 
cell‑surface proteins (14).

Wnt signal pathway. EpCAM has been identified as an endo-
derm‑specific Wnt activator in zebrafish; EpCAM mutants 
exhibit defective liver development similar to prt/wnt2bb 
mutants (15). It has been revealed that EpCAM that is directly 
bound to Kremen1 disrupts the Kremen1‑Dickkopf2 (Dkk2) 
interaction, which prevents Kremen1‑Dkk2‑mediated removal 
of lipoprotein‑receptor‑related protein 6 (Lrp6) from the cell 
surface. EpCAM activates Lrp6 and cooperates with Wnt2bb 
ligand to activate the Wnt signaling through stabilizing 
membrane Lrp6 and allowing Lrp6 to cluster into active 
signalosomes. Thus, EpCAM autonomously promotes and 
cooperatively activates Wnt2bb signaling in the endodermal 
cells of zebrafish embryos (15). 

It has also been revealed that in EpCAM mutant embryos, 
injection of EpCAM or EpCAM extracellular domain (ECD) 
mRNA rescues the diminished expressions levels of fgf3 and 
dkk1b, the downstream factors of Wnt signaling in the lateral 
line primordia. Therefore, it has been speculated that similar 
mechanisms may also be present in the development of other 
cellular systems such as lateral line primordia in which Wnt 
and EpCAM are active (75,76).

Embryonic Ras (Eras)/RAC‑α serine/threonine‑protein kinase 
(AKT) pathway. It has previously been reported that EpCAM 
regulates murine ES cell differentiation via ERas/AKT 
pathway. ERas has been identified as a novel EpCAM interactor 
through co‑immunoprecipitation, and these two proteins have 
a similar expression pattern in murine ES cells and embryos. 
The expression of EpCAM fosters the activating phosphory-
lation of AKT at serine473 by interacting with hyperactive 
Ras GTPase ERas, which induces the activation of AKT. It 
has been demonstrated that full‑length EpCAM is essential 
for this signaling pathway, but the detailed mechanism is still 
unclear. EpCAM may orchestrate the differentiation of ES 
cells through this signaling pathway (77).

Proliferation. Reports regarding the function of EpCAM on 
the regulation of proliferation are contradictory. It has been 
reported that enhanced expression of EpCAM is associated 
with active proliferation of cancerous or normal tissues (78). 
EpCAM has also been found to increase the proliferation 
of tumor cell lines (79,80). Maetzel et al (25) revealed that 

knockdown of EpCAM in FaDu cells results in decreased 
proliferation, and they concluded that the proliferative 
action of EpCAM was attributed to the ability of EpICD to 
form a transcription activator complex with four and a half 
LIM domains 2, β‑Catenin and lymphoid enhancer binding 
factor 1 (LEF1) (Fig. 4). However, this mechanism could not 
be verified by EpCAM mutant animal models. Lei et al (7) 
found that the number of Ki67‑positive cells in the intervillus 
domains of EpCAM mutant mice at E18.5 was similar to that 
in WT animals throughout the intestine. Mueller et al  (9) 
assessed enterocyte proliferation using BrdU at a 4 h time 
point following intra‑peritoneal injection, and found that 
EpCAM∆4/∆4 mice demonstrate a significantly higher prolifera-
tion index compared with WT mice. Furthermore, knockdown 
of EpCAM in T84 and Caco‑2 cells increases cell prolifera-
tion (41). Overexpression of EpCAM in invasive colon cancer 
cell lines may reduce cell proliferation. These reports indicate 
that EpCAM may inhibit the proliferation of progenitor cells 
of the intestinal epithelium, but the molecular mechanism 
remains to be fully elucidated.

Motility. EpCAM is a cell adhesion molecule, however it has 
been revealed that it may function to enhance the mobility of 
cells and tissues. In 2004, Osta et al (80) reported that EpCAM 
has a stimulatory effect on in vitro cell migration. Moreover, 
it was found that in both Zebrafish and Xenopus embryos, 
EpCAM is required to enable cells to rearrange during 
epiboly, a morphogenetic process through which the ectoderm 
thins and expands during gastrulation (12,13). Furthermore, 
in conditional knockout mice, loss of EpCAM impairs the 
migration of skin Langerhans cells  (11). The fact that the 
migration of cells and tissues may be promoted by a cell 
adhesion molecule is quite counterintuitive. EpCAM may act 
to increase the expression of cadherins (12‑14), which further 
adds to the puzzle. Maghzal et al (13) reported that EpCAM 
positively regulates both cell movements and cadherin levels 
in Xenopus embryos, but they demonstrated that the regula-
tion of cell motility occurs independently of the stabilization 
of cadherins. Motility and normal epiboly may be rescued 
in EpCAM‑depleted tissues of Xenopus embryos by expres-
sion of an EpCAM construct lacking the whole extracellular 
domain (13). EpICD may control the activity of nPKCs, and 
thus moderate actomyosin‑based contractility (14).

However, a contrasting result was observed in the intestinal 
epithelium of mice. To assess the migration of enterocytes 
in EpCAM mutant mice, BrdU positive cells were assessed 
at 24 h, and the result revealed that EpCAM∆4/∆4 mice have 
significantly higher migration rates of BrdU positive entero-
cytes compared with WT mice (9).

4. Functions of EpCAM in development and stem cells

EpCAM is highly expressed in many embryonic tissues of 
vertebrates and in numerous types of progenitor cells and stem 
cells. Research has been focused on its functions in develop-
mental processes and stem cells.

Development. Previously it has been demonstrated that 
EpCAM is required to form cells of all germ layers using 
EpCAM mutant murine ES cells (77); but EpCAM knockouts 
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in mice and EpCAM null mutants in Zebrafish give relatively 
weak embryonic phenotypes (7‑9,12,75). It was speculated 
that the EpCAM‑2 gene which presents in both species func-
tions redundantly (7,14). It has been confirmed that EpCAM 
is essential for intestinal epithelium homeostasis in mice and 
humans (7‑9), and is also required for the integrity of skin in 
adult zebrafish (12).

One EpCAM mutant could cause mouse embryonic 
lethality through placental defects, and it was demonstrated 
that EpCAM is required for the differentiation or survival 
of parietal trophoblast giant cells, normal development of 
the placental labyrinth and establishment of a competent 
maternal‑fetal circulation (10). Lei et al (7) also demonstrated 
that the frequency of homozygous mutant mice is slightly 
smaller than expected (22.43% for EpCAM-/- and 13.76% for 
EpCAMβgeo/βgeo), suggesting that the mutant alleles are embry-
onic lethal in a small proportion of mutant homozygotes. 
Maghzal et al (14) reported that global depletion of EpCAM 
results in Xenopus embryonic lethality with strong penetrance 
(>90%), and EpCAM is crucially required for tissue integrity. 
EpCAM therefore has important functions at different devel-
opmental stages of vertebrate embryos.

EpCAM is highly expressed in human hepatic stem cells 
and progenitor cells, however is absent in mature hepato-
cytes (78,81,82). Knockout of EpCAM in zebrafish induces 
defective early hepatic development; but hepatocytes keep 
proliferating in EpCAM mutants, and the liver becomes rela-
tively normal at 8 days postfertilization (15). Overexpression 
of EpCAM in murine ES cells may increase the transcription 
of hepatocytic markers Afp and Fn1  (77). Therefore, it is 
suggested that liver development in EpCAM knockout mice at 
early stages should be investigated.

Stem cells. In 1993, it was demonstrated that EpCAM is 
highly expressed in undifferentiated mouse P19 embryonal 
carcinoma cells, however is downregulated in differentiated 
P19 cells (83). It has been confirmed that EpCAM is impli-
cated in the maintenance of pluripotency in embryonic stem 
cells (ESCs) (77,84,85) as well as in somatic stem cells such 
as hepatic stem cells (4,81,86,87). The functions of EpCAM 
in stem cells have been explored for many years. Regulated 
intramembrane proteolysis (RIP) and nuclear translocation 
of the EpICD of EpCAM was reported in murine and human 
ESCs (85,88). It has been demonstrated that in human and 
porcine ESCs, EpICD supports pluripotency through activa-
tion of the transcription of reprogramming factors, such as 
SRY‑Box 2, Oct3/4 and Nanog  (85,89,90). The molecular 
functions of EpCAM in somatic stem cells remain unknown. 

It was revealed that the EpCAM and claudin‑7 complex 
has important functions in human and murine somatic cell 
reprogramming processes  (89). EpEX/EpCAM, combined 
with Oct3/4 or Kruppel like factor 4, is sufficient to generate 
human induced pluripotent stem cells (iPSCs)  (91). The 
EpCAM complex may activate the transcription of Oct4 and 
suppress the p53‑p21 pathway to enhance the pluripotency 
reprogramming (89). EpEX/EpCAM may additionally activate 
signal transducer and activator of transcription 3 (STAT3), and 
the activated STAT3 may lead to the nuclear‑translocation of 
hypoxia inducible factor 1a to promote somatic cell repro-
gramming (91).

5. Functions of EpCAM in diseases

EpCAM and CTE. CTE was firstly reported in 1994 (55), 
which is a disease characterized by a classical congenital 
disorder of the intestinal mucosa, including subtotal villous 
atrophy with crypt hyperplasia and focal crowding of surface 
enterocytes, resembling tufts. With an incidence estimated at 
1 per 50,000‑100,000 in Western Europe, there is a high rate 
of mortality in young children with CTE (92). Non‑syndromic 
CTE has been associated with the mutations of EPCAM, 
mainly loss‑of‑function mutations, in 73% of patients. In 21% 
of patients with CTE, a syndromic form is associated with the 
missense mutations of serine peptidase inhibitor, kunitz type 2 
(SPINT2), an inhibitor of HGF activator serine protease (also 
known as HAI‑2) (92). It has been demonstrated that SPINT2 
inhibits the activity of cell surface serine protease matriptase, 
and mutations of SPINT2 lead to efficient cleavage of EpCAM 
by matriptase (41). Microvillus atrophy has been demonstrated 
to be present in the biopsy samples of patients with CTE have 
mutations in EPCAM or SPINT2, which may explain, at least 
in part, the intestinal failure (93).

CTE causes lethal diarrhea in newborns, and it may be 
caused by impaired barrier function of TJs in the intestinal 
epithelium of patients. It has been confirmed that molecular 
probes, such as sulfo‑NHS‑biotin, lucifer yellow and 
FITC‑dextran, cross the EpCAM mutant intestinal epithelium 
more easily compared with in control animal models. This 
leads to a continuous water leak in the intestines of CTE 
patients and EpCAM mutant mice.

Claudin‑2, 3, 7 and 15 are reduced in the intestinal epithe-
lium of EpCAM mutant mice  (7). Some of these claudins 
are required for the nutrient absorption of intestines. Both 
claudin‑2 and claudin‑15 function in the paracellular perme-
ability to Na+ in the small intestinal epithelium (94‑98). This 
permeability permits Na+ to access the lumen to support the 
Na+‑dependent absorption of nutrients, including glucose, 
amino acids, vitamin C and others (99‑101). The changes in 
the expression patterns of claudin‑2 and claudin‑15 in the 
small intestine occur age‑dependently. The claudin‑2 level is 
higher than that of claudin‑15 in the infant small intestine, but 
in adults, the expression level of claudin‑15 is higher than that 
of claudin‑2 (67,102). Knockout of claudin‑15 could lead to Na+ 
deficiency and glucose malabsorption in the small intestines 
of adult mice (67). Knockout of both claudins 2 and 15 would 
cause defects in paracellular Na+ flow and nutrient transport in 
the small intestines and finally lead to mortality from malnutri-
tion, and the mice only survive 25 days after birth (103). From 
these reports, it may be suggested that the nutrient absorption 
in the small intestines of CTE patients may be affected.

The mechanisms for the tuft‑like structure formations in 
CTE are not completely clear. The apical polarity of the entero-
cytes from CTE is affected, which may result in tuft formation. 
The proliferation and mobility of EpCAM mutant intestinal 
epithelial cells is also altered, which may be an additional cause 
of tuft formation. There is no curative treatment for CTE yet, 
therefore elucidation of the mechanisms underlying tuft forma-
tion is very important for the treatment of CTE.

EpCAM and tumors. Originally identified as a novel 
tumor‑specific cell surface antigen following immunization of 
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mice with cancer cells in 1970s (1), EpCAM has been known to 
be highly expressed in a variety of epithelial carcinomas (104). 
EpCAM is also highly expressed in acute myeloid leukemia 
(AML), and EpCAM‑positive cells may be leukemia stem cells 
which could promote leukemic progression (105). It has been 
reported that EpCAM is involved in tumorigenesis, metastasis, 
and cancer stem cells (25,106,107).

Previous research has focused on the function of EpCAM 
in cancers. Maetzel  et  al  (25) firstly demonstrated that a 
proteolytic fragment of EpCAM containing EpICD forms a 
complex with β‑catenin and LEF‑1, which translocates to the 
nucleus and activates the transcription of genes associated 
with cell proliferation, such as c‑Myc and cyclins A and E, 
thereby promoting oncogenesis (25) (Fig. 4). This mechanism 
depends on the cellular interaction to provide initial signals 
of regulating intramembrane proteolysis (108). A complex of 
EpCAM, claudin‑7, CO‑029, and CD44v6 is frequently formed 
in colorectal cancer, and this complex, but not the individual 
molecules, may promote the progression of colorectal cancer 
and increase the apoptosis resistance of cancer cells  (43). 
EpCAM may promote the chemotherapeutic resistance of 
myeloid leukemia via the Wnt5b singling pathway  (105). 
Previously, Wang  et  al  (107) demonstrated that EpCAM 
regulates epithelial‑mesenchymal transition (EMT), stemness 
and metastasis of nasopharyngeal carcinoma cells through the 
phosphatase and tensin homolog (PTEN)/AKT/ mechanistic 
target of rapamycin kinase (mTOR) pathway. They revealed 
that overexpression of EpCAM reduces the expression level of 
PTEN, and then the phosphorylation levels of AKT, mTOR, 
p70S6K and 4EBP1 are increased with the reduction of PTEN. 
It may be hypothesized that EpCAM has similar functions 
in other types of cancers. The elucidation of these molecular 
mechanisms is an important guide in the effective develop-
ment of therapies for tumors.

EpCAM has become a therapeutic target in many types of 
cancers. The emergence of chemotherapeutic drug resistance 
in cancer stem cells is a key factor hindering the effective 
treatment of many cancers. A novel system by conjugating 
cancer stem cells targeting EpCAM aptamer with a chemo-
therapeutic drug can eliminate chemotherapeutic drug 
resistance. Incubation of the chemotherapy drug doxorubicin 
with colorectal cancer cells could lead to the long‑term 
retention and enrichment of adriamycin in the nucleus, thus 
weakening the therapeutic effect (109). Doxorubicin targeted 
EpCAM aptamer therapy in tumor‑bearing nude mice may 
significantly inhibit tumor growth, prolong survival time and 
lead to a prolonged dose‑dependent tumor latency. In general, 
conjugation of cancer stem cells targeting EpCAM aptamer 
with a chemotherapeutic drug could transform conventional 
chemotherapeutic drugs into tumor killers to overcome the 
drug resistance in tumors (110). Zheng et al (105) also found 
that the EpCAM antibody sensitizes the chemoresistant 
myeloid leukemia to innate immune cells. It has been reported 
that exosomes in the circulatory system derived from tumors, 
called extracellular vesicles or vesicles, may easily be isolated 
using anti‑EpCAM antibodies in combination with magnetic 
beads. The exosomes are isolated by various downstream 
assays such as sandwich immunization assay and RT‑qPCR. 
The isolated exosomes could be used to study the distribu-
tion of tumor‑specific extracellular body surface proteins 

and associated miRNAs (111). Dendritic cells play a crucial 
role in the host immune response and antigen presentation. 
EpCAM peptide‑primed dendritic cell vaccinations exhibit 
significant anti‑tumor immunity in hepatocellular carcinoma 
cells (107).

However, it has been revealed that EpCAM could be 
a tumor suppressive protein in certain types of cancers. 
Hwang et al (112) suggests that decreased expression of EpCAM 
is an early event in oral carcinogenesis. Gosens et al (113) 
observed that reduced EpCAM expression at the invasive 
margin of rectal carcinomas, and reduction of EpCAM 
expression may increase the risk of local recurrence. A recent 
report revealed that loss of EpCAM increases the malignancy 
of endometrial carcinoma (EC), and high EpCAM expression 
favors the survival of patients with EC (114). The molecular 
mechanisms of the tumor suppressive function of EpCAM in 
these cancers are not yet clear.

EpCAM and inflammatory bowel disease. Inflammatory 
bowel disease (IBD) refers to chronic inflammatory disorders 
in the gastrointestinal tract (115). Crohn's disease and ulcer-
ative colitis are two clinical forms of IBD (116), and the precise 
aetiology is unclear. It has been reported that intestinal barrier 
function of patients with IBD is compromised (117,118). The 
reduction of expression of several cell adhesion molecules has 
been found in IBD patients (119‑123). As mentioned above, 
knockdown of EpCAM in large intestines of mice increase 
the severity of murine IBD induced by dextran sulfate sodium 
salt (124). However, EpCAM is present at normal levels and 
location in the tissue specimens from patients with Crohn's 
disease and ulcerative colitis (9). There is no clear evidence 
that EpCAM mutation could cause IBD.

The claudin‑7 protein is reduced to undetectable levels in 
the intestines of EpCAM mutant mice and CTE patients. The 
inflammatory and immune responses are clearly observed in 
Claudin7-/- intestines, including an increased number of leuko-
cytes and macrophages, increased mRNA level of interleukin 
(IL)‑1β, IL‑8 receptor β, IL‑6, AP‑1 and tumor necrosis factor 
(TNF)‑α, increased protein expression levels of nuclear factor 
κB (NF‑κB), c‑Jun, c‑Fos, and cyclooxygenase 2 (COX‑2), 
and elevated phosphorylations of NF‑κB and c‑jun (47,125). 
Claudin‑7 mutant mouse models therefore exhibit IBD‑like 
symptoms.

In fact, an inflammatory infiltration may be detected at 
day 4 in the intestines of EpCAM∆4/∆4 mice  (9). However, 
absent or mild inflammation may be observed in the intestinal 
biopsies from CTE patients (126,127). In JAM‑A‑deficient 
mice, TGF‑β‑producing CD4+ T cells promote IgA secre-
tion to protect intestinal inflammation  (128), confirming 
that impaired intestinal barriers induce adaptive immune 
compensation. The intestinal barrier function is affected in 
EpCAM mutant mice, but it is normal in claudin‑7 knockout 
mice (47,125). The impaired intestinal barrier of EpCAM 
mutant mice or CTE patients may induce adaptive immune 
compensation to protect the intestine from inflammation. 
EpCAM may also protect intestines from inflammation via 
binding EVs with TGF‑β1 (124).

CTE patients may be more sensitive to IBD induced 
factors, and the EpCAM expression reduction would increase 
the severity of human IBD.
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EpCAM and cholestatic liver diseases. Cholestatic liver injury 
is a very big clinical problem, but underlying specific patho-
logical processes are unknown. Recently, Song et al  (129) 
reported that overexpression of long non‑coding RNA H19 
promotes cholestatic liver fibrosis through zinc finger E‑box 
binding homeobox 1 (ZEB1)/EpCAM pathway. H19RNA 
interacts with the transcriptional suppressor ZEB1 and 
inhibits its binding to the EpCAM promoter, thus promoting 
the expression of EpCAM. The increased EpCAM may result 
in development of cholestatic liver fibrosis. It was additionally 
revealed that H19 and EpCAM are both highly expressed 
in liver specimens from primary sclerosing cholangitis and 
primary biliary cholangitis patients. As EpCAM is a down-
stream gene of H19, the overexpression of EpCAM may 
promote cholestatic liver injury. The exact molecular mecha-
nisms of EpCAM in promoting cholestatic liver injury are still 
unclear, but EpCAM is a marker of biliary hyperplasia (130) 
and may drive cholangiocyte proliferation to promote the 
development of cholestatic liver fibrosis.

6. Conclusions and perspectives

EpCAM has been recognized to exhibit broad spectrum func-
tions in multiple physiological and pathological processes. It 
is essential for the homeostasis of epithelial tissues through 
regulating cell‑cell junctions, signaling pathways, cellular 
proliferation and mobility. It is a very important molecule that 
maintains the pluripotency of ES cells and promotes the iPSCs 
process. Mutations or aberrant expression levels of EpCAM 
are associated with numerous diseases including many types 
of cancers.

EpCAM is a cell adhesion molecule that plays important 
roles in the formation and functions of adhesive structures 
and polarity. However, EpCAM is highly expressed in 
tumor tissues, and the tumor tissues usually lose organized 
adhesive structures and cell polarity. These two things seem 
contradictory. The clear understanding of different functions 
of EpCAM in normal and cancer tissues will play an impor-
tant role in exploring the potential therapeutic strategies for 
cancers. Tissue‑specific mutant and overexpression animal 
models would be very useful to explore these molecular 
mechanisms.

From mutant animal models, it was concluded that 
EpCAM has important roles in both the intestinal epithelium 
and the placental labyrinth. These two tissues both function 
on the absorption of nutrients. Knockout EpCAM in mice 
impairs the intestinal barrier function and causes ion transport 
dysfunction in the intestinal epithelium (7,9,37). The nutrient 
absorption ability of the placental labyrinth may also be 
affected, which may be a cause of embryonic lethality. The 
EpCAM expression level is higher in the crypts of the small 
intestine than in the villi (2,3), and it has been demonstrated 
that the EpCAM expression level is also higher in the multi-
potent labyrinth trophoblast progenitor cells than other parts 
of the placental labyrinth in mice (131). EpCAM may have 
similar functions in regulating the development of these two 
tissues.

The different mechanisms underlying the roles of 
EpCAM in cancer tissues and the trophectoderm have yet to 
be elucidated. EpCAM is highly expressed in both types of 

tissue. Trophoblasts can invade and branch out within uterine 
epithelium (132), but the invasive ability of trophoblasts is 
very limited. EpCAM is associated with the metastasis of 
cancer cells (106), and the invasive ability of cancer cells is 
uncontrollable. Elucidation of these different mechanisms 
would be helpful in exploring the therapeutic ways to control 
the metastasis of cancers.

EpCAM is expressed in many types of epithelia in adult 
animals and humans, and may have important functions in 
these tissues. Therefore, conditional knockout animal models 
are required to study these functions. EpCAM is under the 
control of transcriptional factor grainyhead like transcription 
factor 2 (Grhl2), and in the otic epithelium of Grhl2 mutant 
zebrafish, EpCAM protein is markedly reduced (133). Grhl2 
mutation is associated with hearing loss in humans, and the 
hearing and balance system is severely disrupted in EpCAM 
mutant zebrafish (133). EpCAM may have functions in otic 
epithelium of humans and animals. It has been reported 
that CTE patients also suffer from various other condi-
tion, including chronic arthritis (2,134,135). These reports 
confirmed that EpCAM has various functions in multiple 
organs of adults. The molecular mechanisms of these func-
tions remain unclear. Elucidation of the molecular functions 
of EpCAM will be useful for its role as a therapeutic target 
in the future.
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