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Abstract

The accumulation of Alzheimer’s disease (AD) associated Amyloid beta (Aβ) oligomers can

trigger aberrant intracellular calcium (Ca2+) levels by disrupting the intrinsic Ca2+ regulatory

mechanism within cells. These disruptions can cause changes in homeostasis levels that

can have detrimental effects on cell function and survival. Although studies have shown that

Aβ can interfere with various Ca2+ fluxes, the complexity of these interactions remains elu-

sive. We have constructed a mathematical model that simulates Ca2+ patterns under the

influence of Aβ. Our simulations shows that Aβ can increase regions of mixed-mode oscilla-

tions leading to aberrant signals under various conditions. We investigate how Aβ affects

individual flux contributions through inositol triphosphate (IP3) receptors, ryanodine recep-

tors, and membrane pores. We demonstrate that controlling for the ryanodine receptor’s

maximal kinetic reaction rate may provide a biophysical way of managing aberrant Ca2+ sig-

nals. The influence of a dynamic model for IP3 production is also investigated under various

conditions as well as the impact of changes in membrane potential. Our model is one of the

first to investigate the effects of Aβ on a variety of cellular mechanisms providing a base

modeling scheme from which further studies can draw on to better understand Ca2+ regula-

tion in an AD environment.

Introduction

Alzheimer’s Disease (AD) is a devastating neurodegenerative illness affecting over 40 million

people worldwide. AD is the leading cause of dementia and is characterized by a progressive

and irreversible decline in memory and cognitive skills [1]. The prevalence of AD and associ-

ated dementia is estimated to double in the next 20 years, and as such, there is a critical need to

better understand this disease. While the appearance of extracellular hydrophobic amyloid pla-

ques and intracellular neurofibrillar tangles associated with tau proteins have become the hall-

marks of the disease, the cause of AD remains unknown. Abnormal intracellular Ca2+ levels

have been observed in AD brains even before the presentation of clinical symptoms and amy-

loid plaques [2, 3]. Because it has been shown that Amyloid beta peptide (Aβ) accumulation

can lead to increased intracellular Ca2+ levels [4, 5], studying its effect on intracellular mecha-

nisms is important for understanding its impact on neuronal functions. Intracellular
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accumulation of Aβ can cause an increase release of Ca2+ from internal stores such as the

Endoplasmic Reticulum (ER) [4, 6–8]. As such, Aβmay lead to both local and global Ca2+ pro-

liferation that are persistent and cytotoxic. Sustained Ca2+ disregulation can trigger apoptosis

leading to premature neuronal death, a characteristic feature seen in AD. Although the accu-

mulation of Aβ has been linked to the progression of AD by altering Ca2+ signaling processes

within neurons and neuroglia, the mechanisms for how and why this occurs are not fully

understood.

Our goal is to use mathematical modeling to describe various conditions under which Aβ
can lead to aberrant Ca2+ signaling. The amyloid hypothesis suggests that the accumulation of

Aβ in the brain is the primary driving force of AD pathogenesis [9–12]. In this hypothesis, the

formation of Aβ plaques and fibrils are a consequence of the imbalance between the formation

and sequestration of Aβ. The slow accumulation of Aβ peptides can alter Ca2+ signaling pro-

cesses leading to synaptic failure and neuronal death. Although it is unclear how Aβ disrupts

intracellular Ca2+ homeostasis, there is growing evidence that Aβ directly affects the produc-

tion of inositol triphosphate (IP3) [7], calcium-induced calcium release (CICR) through the

ryanodine receptor (RyR) [13, 14], and the plasma membrane [15, 16]. We use the results of

these works to make simplifying assumptions for how Aβ affects various Ca2+ signaling mech-

anisms in a simplified whole-cell model.

In this study we present a theoretical approach to better understand the driving mecha-

nisms for various Ca2+ oscillatory patterns within an AD environment. By developing a mathe-

matical model for intracellular Ca2+ regulation, we can begin to study how Aβ affects Ca2+ flux

through various individual channels and pumps. Investigating model solutions can also pro-

vide important information on the impact of Aβ on Ca2+ basal levels over various timescales.

Due to current experimental limitations, mathematical and computational models can provide

insights for targeting specific mechanisms in order to restore neuronal function, and to suggest

symptomatic improvement strategies. In fact, according to Liang et al. (2015) there is growing

momentum to study Ca2+ dynamics in AD, specifically through computational and mathemat-

ical modeling, and this work outlines such an approach.

Methods

Calcium model formulation

In order to study the effects of Aβ on intracellular Ca2+, we first build a simplified whole-cell

Ca2+ model by making use of the vast array of work on modeling Ca2+ dynamics and the cal-

cium signaling “toolkit” (see [17–20] for example). Once this model is developed, we add the

influence of Aβ by altering various components of the model. We then analyze model solutions

by investigating the dynamical structure for various parameter regimes in order to draw out

conditions that lead to changes in basal Ca2+ levels and aberrant signals. For our purposes, we

characterize aberrant signals as non-periodic oscillations over a timescale of about 100-200

seconds.

We model Ca2+ dynamics using traditional methods by tracking the flux in and out of the

cytoplasm. Let c denote the concentration of free Ca2+ ions in the cell cytoplasm, then the rate

of change in intracellular Ca2+ is governed by

dc
dt
¼ ~J in �

~J out; ð1Þ

where ~J denotes flux. We assume a spatially homogeneous cell whose volume is fixed and track

Ca2+ concentration changes in time. As such, the ER and cytoplasm coexist at each point of

the cell. Although these simplifying assumptions make the model limited, such an approach
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has been extremely useful in quantifying and identifying key mechanisms behind certain Ca2+

signaling patterns. We take this position to study the influence of Aβ on Ca2+ dynamics using

a simplified whole-cell model. Many different mathematical approaches have been used to bet-

ter understand Ca2+-mediated neuroglia function (see [21] for an overview of these) and we

have utilized this body of work to develop our model below.

Our model structure was selected to account for the major components that have been

shown to be influenced by Aβ and that can lead to Ca2+ dynamics on the timescale of sec-

onds. We assume that intracellular Ca2+ in-fluxes (into the cytoplasm) are those correspond-

ing to IP3 receptors (IPR), RyRs, a general membrane leak Jin, and we include a fast Voltage

Gated Ca2+ Channel (VGCC) in Jvca to account for membrane permeability. The out-fluxes

(out of the cell or sequestered into Ca2+ pools such as the ER) are modeled using a plasma

membrane pump Jpm, and a sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) pump

JSERCA. A diagram of the major fluxes outlined in the model is given in Fig 1. Also included in

the diagram are the model assumptions of the interaction of Aβ with respect to individual

flux term.

We assume that the ER is homogeneously distributed throughout the interior of the cell

and that the fluxes of Ca2+ through the IPR and RyR are proportional to the difference in the

concentration of Ca2+ between the ER and the cytoplasm. Under these standard assumptions,

Fig 1. Two pool model diagram. This figure shows the critical flux terms utilized in the formulation of the model. In

addition, the relevant fluxes affected by Aβ are highlighted.

https://doi.org/10.1371/journal.pone.0202503.g001
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using conservation of fluxes, our general Ca2+ model takes the form

dc
dt
¼ JIPR þ JRyR � JSERCA þ Jin � Jpm þ Jvca ð2Þ

dce

dt
¼ � gðJIPR þ JRyR � JSERCAÞ ð3Þ

where ce denote the concentration of Ca2+ in the ER, and γ is the ratio of cytoplasmic volume

to the ER volume. The individual contributions of each flux can vary from a simple Hill func-

tion to more complicated forms involving numerous parameters and additional terms. We

provide a description of each of the flux terms we use in our model below. We also provide

background information on their development and why it may be well suited for our purposes.

Each term was chosen in order to balance meaningful biophysical quantities while maintaining

a tractable mathematical structure.

The term Jvca in (2) links membrane potentials with other Ca2+ signaling mechanisms. Ca2+

regulation and changes in membrane potential do depend on each other and a model that con-

nects their influence may be critical for advancing our understanding of the long term effects

of Aβ on Ca2+ signaling. To address this, we include a section in our results that incorporates

the effects of membrane potentials into our model and provide some examples of the impact

of Aβ on the dynamics. Although a full exploration of the role of membrane potential on Ca2+

dynamics is beyond the scope of the current study, we do provide the base structure from

which to build a more complete whole-cell model.

Ca2+ regulation in non-excitable cells, such as astrocytes, is extremely complex and influ-

enced not only by membrane potential but also Ca2+ buffering. Cytoplasmic Ca2+ buffering

plays a significant role in calcium’s ability to move throughout the cell. Almost all of the avail-

able Ca2+ is bound to buffers and free cytoplasmic Ca2+ cannot move very far before being

bound [18]). Because Ca2+ diffusion plays an important role in spatiotemporal signaling, non-

linear buffering may provide some insights behind certain types of oscillatory patterns and

Ca2+ waves. However, compared to the temporal release and uptake of Ca2+ into internal

stores, buffering occurs on a much faster timescale. In our model we have assumed that Ca2+

buffering is fast, immobile, and has low affinity. Using these assumptions, we have scaled the

model to account for fast and linear buffers even though an explicit description of buffering is

not provided (further details on buffering can be found in [18]).

IP3 receptor model. IP3 is a ligand produced by phospholipase C (PLC) when activated

by a G-protein coupled receptor reacting to an external stimulus such as neurotransmitters,

hormones, and growth factors [22]. As a key secondary messenger, IP3 regulates many impor-

tant cellular functions, including the release of Ca2+ from the ER through the IP3 receptor [23].

We assume that the flux from the IP3 receptor follows a saturating binding rate model of the

form found in [24, 25]. Thus, we write

JIPR ¼ ðkf P0 þ JerÞðce � cÞ ð4Þ

where kf controls the density of the IP3 receptor, Jer is a leak from the ER to the cytoplasm, and

P0 is the open probability of the IPR. The leak term is necessary to balance the ATPase flux at

steady state. To model P0, we use a version of the Sneyd and Dufour (2002) model that is based

on previous models found in [26–28]. The model assumes that the receptor can be in one of

six states, with R the resting state, O the open state, A the active state, S the shut state, and I1

and I2 both represent inactive states. The transitions between states can depend on Ca2+ and

IP3 concentration p. As such, the IP3 receptor will be in various states depending on the value

of p.

Model of amyloid beta on calcium
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In this model, the receptor open probability is given by

P0 ¼ ða1Oþ a2AÞ
4

ð5Þ

where α1 and α2 are parameters that control the individual contributions of the open and

active states of the receptor. As in [24], we assume that α1 = 0.1 and α2 = 0.9. In the model, it is

assumed that the receptor has four identical and independent subunits and that Ca2+ flows

when all four subunits are in either the O or A state. The equations for the transitions between

the states are given in [24], but have also been included in the Supplementary Appendix for

completeness. This model was chosen since it does respond reasonably well to changes in Ca2+

concentration and IP3 concentrations [25].

RyR model. To model the contribution of the RyR, we utilize the algebraic model of Friel

(1995). The receptor is modeled as a simple leak channel, with a flux through the channel pro-

portional to the concentration difference between the ER and cytosol. This model was used to

investigate Ca2+ oscillations in a sympathetic neuron. Thus, the flux through the RyR is given

by

JRyR ¼ k3ðce � cÞ: ð6Þ

To more accurately model CICR, the rate constant k3 is defined as an increasing sigmoidal

function of intracellular Ca2+ concentration and takes the form

k3 ¼ k1 þ
k2cn

kn
d þ cn

; ð7Þ

where k1, k2, and kd are parameters. We use n = 3 to match the experimental results obtained

in [29]. The parameter k1 in (7) is the zero calcium concentration level leak. This term is often

used to ensure a physiologically significant resting Ca2+ level [18]. The term kd corresponds to

the RyR channel sensitivity for CICR, and k2 is the maximal rate of the channel. The simple

nature of the Friel model makes it a viable choice especially since data for the contributions of

Ca2+ flux through the RyR in the presence of Aβ are minimal.

Leak, membrane pump, and SERCA. The membrane leak Jin is modeled using a linearly

increasing function of IP3 concentration [30]. Although this increase may be due to various

mechanisms, here we only include a linearly increasing contribution to make sure that steady-

state Ca2+ concentration depend on p. Thus,

Jin ¼ a1 þ a2p; ð8Þ

where a1 and a2 are parameters.

When modeling Ca2+ dynamics both the SERCA pump and the plasma membrane pump

play an important role in maintaining concentration gradients. Different models of these

pumps exist and vary in complexity. Here we model the plasma membrane pump using a sim-

ple Hill equation of the form

Jpm ¼
Vpmcn

Kn
pm þ cn

; ð9Þ

where Vpm is the maximal velocity and Kpm is the channel sensitivity. We have chosen a stan-

dard Hill coefficient of 2 as is found in [31].

Model of amyloid beta on calcium
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To describe the behavior of the SERCA pump we utilize a simplified four state bidirectional

Markov model (as found in [20]) of the form

Jserca ¼
c � K1ce

K2 þ K3cþ K4ce þ K5cce
ð10Þ

to model the SERCA pump. In (10), Ki for i = 1, . . ., 5 are constants. Notice that this choice of

model is more complicated than a simple Hill equation. Experimental evidence show that the

rate of the pump may be modulated by the level of Ca2+ in the ER [32, 33], and this model pro-

vides a way to account for both c and ce.

Voltage dependent calcium channel. The flux due to changes in membrane potential is

given in our model by Jvca. When the volume of the cell is constant, Ca2+ flux and current are

related by the equation

Jvca ¼
� Ica

2Fw
; ð11Þ

where Ica is the current through the VGCC, F is Faraday’s constant, and w is the cell volume.

Since Ica depends on the membrane potential V and Ca2+, we need a way to track membrane

potential. Here, we assume that the membrane potential follows a Hodgkin and Huxley formu-

lation [34] that satisfies

Cm
dV
dt
¼ �

X
Ix; ð12Þ

where Cm is the cell capacitance, V is the membrane potential, and the sum is over all ionic

currents across the cell membrane. In the case of non-excitable astrocytes, current flow across

its membrane is characterized by potassium (K+)-selective membrane conductance [35] and

voltage dependent channels [36, 37]. As such, our membrane equation takes the form

Cm
dV
dt
¼ � IkirðVÞ � InaðVÞ � IlðVÞ � IcaðVÞ þ Iapp; ð13Þ

where Ikir, Ina, Il, and Ica correspond to an inward rectifying potassium, sodium, leak, and Ca2+

current, respectively, and Iapp is an applied current. In (13), we utilize a formulation for Ikir(V)

similar to [38] and write

IkirðVÞ ¼ � gkir

ffiffiffiffiffi
K0

p

1þ expððV � Vka � Va2Þ=Va3Þ

� �

ðV � Vka � Va1Þ; ð14Þ

where gkir is the maximal channel conductivity, Vka is the Nernst K+ potential, K0 is the extra-

cellular K+ concentration, and Va1, Va2 and Va3 are constants. In the model of [38], K0 is time

dependent and depends on proximal neuronal activity (further details of this formulation can

be found in [38]). Here, we simplify this and assume that the external compartment is satu-

rated with K+ and as such consider K0 to be constant. Each of the remaining currents have the

form Ix = gx(V − Vx), where gx is the conductance and Vx is the Nernst potential of each

channel.

Although many alternative formulations for Ica exist (such as the Goldman-Hodgkin-Katz

current approximation), we use a T-type like channel (as that found in [39]) of the form

IcaðVÞ ¼ �g caTm2

caThcaTðV � VcaÞ; ð15Þ

where �g caT is the maximal conductance, Vca is the Ca2+ Nernst potential, and mcaT and hcaT are

gating variables similar to those used for the Na+ channel in the Hodgkin and Huxley model.

Model of amyloid beta on calcium
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A T-type Ca2+ current has a low-threshold activation with an inactivating gating variable that

exhibit sub-threshold oscillations and inhibitory rebound bursts. Although other types of Ca2+

currents (such as L-type, Ca2+-dependent potassium channels, etc.) can also be included in the

model, here we simply illustrate how one can link membrane potential with other Ca2+ regula-

tory mechanisms together into a single model and use that model to investigate the role of Aβ
on Ca2+ dynamics. As such, the T-type Ca2+ channel described in (15) is sufficient for studying

how changes in membrane potentials could impact intracellular Ca2+. Full details of the mem-

brane potential model are provided in the Supplementary Appendix.

Amyloid beta assumptions

The influence of Aβ on individual pumps, channels, and exchangers remains largely

unknown. However, some studies provide insight on the effects of Aβ on Ca2+ regulation

and we utilize these findings in making our assumptions about the effects of Aβ. For exam-

ple, De Caluwé and Dupont (2013) formalized a theoretical model to describe a possible

feedback loop between Ca2+ and Aβ. Their model showed that the existence of a bistable

steady-state region can exists in the presence Aβ. The model suggests that over time, cyto-

solic Ca2+ proliferation as a result of Aβ could trigger the onset of AD. In this study, we are

interested in the generation of aberrant Ca2+ signals on a relatively short timescale. Since the

accumulation of Aβ can occur over months, years, and even decades, Aβ concentrations

changes occur on a very long timescale compared to changes in Ca2+. As such, we assume

that Aβmay be present in the environment, but make no attempt to track changes in Aβ con-

centration over time.

The formation of Aβ plasma membrane pores can alter Ca2+ signaling by creating addi-

tional influx into the cytoplasm [15, 16, 40, 41]. In order to incorporate the possible influence

of Aβ generated plasma membrane pores, we use a similar mechanism as found in [42]. Let a
represent a fixed level of Aβ concentration present in the environment. Then, we include the

term kβ am in Jin and write an altered membrane leak flux as

Jin ¼ a1 þ a2pþ kbam; ð16Þ

where m represents a cooperativity coefficient, and kβ is a rate constant (see [42] for details).

Although it is well known that Aβ can disrupt RyR-regulated Ca2+ signals, the mechanisms

for how this happens remains controversial [43–45]. Several studies have addressed the role of

RyR-regulated Ca2+ disruptions in AD [46–49]. Paula Lima et al. (2011) report that Aβ can

generate prolonged Ca2+ signals in vitro through RyR in primary hippocampal neurons of rat

embryos as a result of NMDAR-dependent Ca2+ entry through the plasma membrane. These

results agree with studies showing that Aβ can cause substantial Ca2+ influx through NMDAR

[50, 51]. In our model these types of fluxes are combined and accounted for in Jin, although in

a somewhat crude fashion. Futhermore, Aβ can increase RyR channel open probability on a

short timescale [4, 14]. In order to account for this, we alter the RyR channel sensitivity term

and assume that it is affected by Aβ. Thus, our altered RyR model takes the form

k3 ¼ k1 þ
k2cn

ðkd þ kaaÞn þ cn
; ð17Þ

where kα is positive and controls the strength of the influence of Aβ. Notice that an increase in

a corresponds to an increase in the RyR sensitivity.

Calcium model formulation with amyloid beta. The simplified whole-cell Ca2+ model

described above tracks changes in cytosolic Ca2+ concentration as a function of time in the

presence of Aβ. By putting the different channels, exchangers, and pumps together, our Ca2+
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model takes the form

dc
dt
¼ kf ð0:1Oþ 0:9AÞ4 þ k1 þ

k2c3

ðkd þ kaaÞ3 þ c3

 !

ðce � cÞ

�
c � K1ce

K2 þ K3cþ K4ce þ K5cce
þ ða1 þ a2pþ kbamÞ �

Vpmc2

K2
pm þ c2

� ps�g caTm2
caThcaTðV � VcaÞ;

ð18Þ

dce

dt
¼ � g

"

kf ð0:1Oþ 0:9AÞ4 þ k1 þ
k2c3

ðkd þ kaaÞ
3
þ c3

 !

ðce � cÞ

�
c � K1ce

K2 þ K3cþ K4ce þ K5cce

#

:

ð19Þ

Notice that this model has twelve dynamic equations, with five of those controlling the IP3

receptor (R, O, A, I1, and I2), three controlling the membrane potential (V, m, and h), and an

additional two variables controlling the gating variables mcaT and hcaT (a description of these

additional equations are provided in the Supplementary Appendix). We have also added a scal-

ing and control parameter ps to simplify the contribution from the VGCC flux. When ps = 0,

the impact of membrane potential on Ca2+ signaling are ignored. When ps > 0, changes in

membrane potential do influence the dynamics of intracellular Ca2+. The large set of parame-

ter values was selected to closely match those of previous studies whenever possible and can be

found in Table 1.

In the formulation of our model we have assumed that the presence of Aβ can increase

membrane permeability by creating plasma membrane Aβ pores, and have used the work of

Table 1. Parameter values of the Ca2+ model (18) and (19).

Parameters

kf 0.98 s−1 γ 5.4

RyR

k1 0.013 s−1 kd 0.13 μM

k2 0.18 s−1 kα .75

SERCA

K1 0.0001 K2 0.007 s

K3 0.06 μM−1 s K4 0.0014 μM−1 s

K5 0.007 μM−2 s

Transport

a1 0.003 μM s−1 kβ 1 s−1

a2 0.02 s−1 m 4

Vpm 2.8 μM s−1 Kpm 0.425 μM

K+ Channel

gkir 60 pS K0 2 mM

Va1 -14.83 mV Va2 34 mV

Va3 19.23 mV Vka -65.2 mV

VGCC

�g caT .45 mS �ms−1 Vca 100 mV

https://doi.org/10.1371/journal.pone.0202503.t001
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[42] to alter our membrane in-flux. Additionally, we have assumed that the presence of Aβ
increases RyR sensitivity and have incorporated additional terms in the RyR component of the

model. Currently in our model, IP3 acts as the primary agonist that can then trigger Ca2+

release from IP3 receptors. In addition to affecting the IP3 receptor open probability, Ca2+

release activates RyR and subsequent CICR. In the next chapter we separate our analysis for

the model under three assumptions. We first characterize the solutions of the model for con-

stant levels of IP3 and when the effects of membrane potential are ignored. Second, also in the

absence of membrane potentials, we expand our model to include a dynamic variable for IP3

production. Lastly, we include the effects of membrane potential on Ca2+ dynamics by incor-

porating flux through VGCC under various levels of fixed IP3. We further look to characterize

the impact of VGCC on model solutions in the presence of Aβ.

Numerical solutions of the differential equations systems were obtained using explicit

Runge-Kutta (4,5) algorithms implemented in Matlab [52]. Bifurcation analyses were done

using the AUTO [53] extension of XPPAUT [54]. AUTO is a software program used to analyze

the bifurcation structures of systems of ordinary differential equations such as (18) and (19).

In the bifurcation diagram illustrated in this manuscript, the bifurcation parameter is plotted

on the x-axis and the projection of stable and unstable steady-state solutions, upper and lower

branches of periodic orbits, and critical transitions points (such as Hopf and period doubling)

are labeled accordingly. Hopf bifurcations occur when a steady-state solution loses it’s stability

as a result of small changes in a parameter. Mathematically, this occurs when complex eigen-

values (of the linearization) cross the imaginary axis away from the origin. Period doubling

bifurcations occur when a small change in a bifurcation parameter causes the period of an

oscillatory system to double. These and other types of bifurcations can be used to describe sys-

temic changes in dynamics and in our case, transitions from single-mode oscillations to

mixed-mode oscillations (MMOs). The program AUTO allows us to readily compute the loca-

tion of these bifurcations as model parameters are varied. Initial conditions for all simulations

were set at c0 = 0.05 and ce = 10 with R0 = 1 and all other IP3 receptor initial conditions are set

to zero. Initial conditions for the membrane potential are V0 = −65, m0 = 0.05, n0 = 0.32, h0 =

0.6, mcaT0 = 0.29, and hcaT0 = 0.01.

Results

In all three sections below, the model dynamics show that aberrant Ca2+ can emerge in the

presence of Aβ. These aberrant signals can occur under various conditions suggesting a com-

plex link between the influence of Aβ and the model components. As such, we break down the

dynamics of the model by tracking solutions as a result of altering one or two parameters

within a specific signaling component. We first look at model solutions when IP3 concentra-

tion is fixed and persists and is not influenced by membrane potential. We then allow for IP3

to change dynamically and simulate the response in Ca2+ with and without the influence of

Aβ. Lastly, we incorporate the influence of membrane potentials and investigate model solu-

tions for various levels of Aβ when IP3 concentration is fixed.

Calcium model with constant IP3 and no membrane potential

Simulations of (18) and (19) with ps = 0 show that incorporating Aβ in a simplified Ca2+ model

can lead to aberrant Ca2+ signaling through dynamical transitions into MMOs. Particularly,

we look to track the influence of Aβ on the location of Hopf points (labeled HB), period dou-

bling points (labeled PD), and regions of MMOs (shaded) in order to better understand Ca2+

steady-states and oscillatory patterns. From a phenomenological perspective, a transition

through MMO may explain why Aβ can trigger persistent aberrant Ca2+ signals. Although the
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long-term accumulation and influence of Aβ remains difficult to model, our approach illus-

trates that aberrant Ca2+ signals can occur under the influence of Aβ for a variety of parameter

regimes.

IP3 influence on model dynamics. Experimentally, IP3 can be photoreleased simulta-

neously through out a cell. In such conditions, IP3 diffusion is minimized and can be treated as

constant. By varying the amount of IP3 available in the cytosol, the model can exhibit Ca2+

oscillations as typically found in various cell types. These oscillatory patterns are critical in

order for cells to maintain appropriate concentration gradients and to re-establish homeostasis

levels after a triggering event. In the absence of Aβ, model Ca2+ oscillations appear and disap-

pear as a result of transitions through Hopf bifurcations as the parameter p increases. Although

these stable oscillatory patterns are predictable for a large domain of the parameter p, the

model does exhibit MMOs for small parameter regions near the Hopf points. It is these MMO

patterns that we are most interested in. Our results show that in the presence of Aβ, the regions

of MMOs can grow and become larger. This leads to an increased possibility for aberrant Ca2+

signals. We hypothesize that aberrant Ca2+ signals observed experimentally can be described

as dynamic transitions through MMOs. The complicated patterns in MMOs are often charac-

terized by sub-threshold oscillations interspersed within large relaxation types of oscillations

[55–57].

Illustrated in Fig 2A and 2B are numerical simulations of the model, with a = 0 that exhibit

sustained Ca2+ oscillations as the amount of p is increased from p = 5 to p = 10. An increase in

frequency occurs as p increases within the predictable region and can be seen by comparing

Fig 2A and 2B. In Fig 2C, a partial bifurcation diagram showing the stable maximum and min-

imum periodic amplitudes is given along with the regions of MMOs and the critical transitions

points. Fig 2D shows the solution of the model for p = 18.5. For this p-value, the model under-

goes MMOs with varying oscillatory patterns of mixed amplitude, but we do not characterize

it as aberrant Ca2+ signaling since it is periodic. Notice that no Ca2+ oscillations occur for

small and large values of p. This is due to the assumption that the IP3 receptor is unlikely to

open at high and low concentrations of IP3. Although our model does not exhibit a typical

Hopf bubble, it has the overall qualitative patterns of a robust Ca2+ model as described in [18].

The presence of amyloid beta. We consider an AD environment where some accumula-

tion of Aβ has occurred but assume that this amount is fixed during the timescale of our simu-

lations. As such, we assume that a is constant and that the value correlates to the concentration

of Aβ in μM. That is, the value of a in the model may be thought of as reflecting the stage of the

progression of the disease. For example, a small value of a corresponds to a small amount of

Aβ that may have accumulated in the early stages of AD, while a larger value of a may corre-

spond to a late stage AD. As the parameter a is varied, we can then study how the dynamics of

the model change as the level of Aβ changes. Our ultimate goal is to better understand the

implications of various levels of Aβ on Ca2+ so that we may gain knowledge about the possible

progression of AD.

The effects of Aβ on calcium steady-state levels. The accumulation of Aβ can lead to

increased steady-state levels as well as large amplitude oscillations even in the absence of IP3

signaling. To better understand the effects of Aβ on model solutions, we simulate the model

and look at the effects of changing the parameter a on steady-state levels. Various experimental

studies have used Aβ levels of 0.5 and 1.0 [13, 50, 51]. As such, we consider a range of values

for a that matches these types of levels.

In the case when no IP3 is present, the accumulation of Aβ increases the steady-state of

Ca2+ and can even lead to large-amplitude Ca2+ oscillations. Illustrated in Fig 3A is a bifurca-

tion diagram generated by changing the parameter a when p = 0. Notice that the steady-state

value slowly increases as a increases until solutions transition into stable periodic oscillations
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between the two Hopf points HBa1 and HBa2. As a increases towards the value of 1.293, the

steady-state asymptotes and solutions quickly become non-physical. Fig 3B shows a solution

where large amplitude oscillations exist for a = 1.15. Fig 3C shows the solution for a = 1.276.

Notice that in this case, the solution first undergoes a large Ca2+ increase before settling in on a

steady-state value. When the model is presented with levels of Aβ greater than a = 1.29, solu-

tions become intractable and are not analyzed.

Two Parameter Analysis. Since both a and p can affect the dynamics of the model, we

look at their effects together. Given in Fig 4A is a partial two-parameter bifurcation set for the

whole-cell model (18) and (19) when ps = 0 using p and a as the bifurcation parameters. The

solid lines correspond to the Hopf bifurcation manifolds, while the dashed lines correspond to

the period-doubling manifolds. The shaded area in Fig 4A corresponds to the parameter values

that elicit MMOs. Notice that in addition to the large MMO region between the dashed lines,

there is a small thin region near the Hopf bifurcation manifold labeled HB2 m. These MMOs

vanish for values of a> 0.275. This bifurcation diagram has a number of interesting features

that can bring to light important behavior in Ca2+ regulation. For example, when 0.415<

a< 0.472 the bifurcation diagram has four Hopf points. This leads to small amplitude

Fig 2. Calcium dynamics for constant IP3 levels. Properties of the Ca2+ model when IP3 concentrations are fixed and no Aβ
is present (i.e., a = 0). A and B show the numerical solution with p = 5 and p = 10, respectively. For these parameter values, the

frequency of oscillations increases as p increases. C illustrates the partial bifurcation diagram for the model with p as the

bifurcation parameter. The middle curve crossing the diagram correspond to the steady-state values (solid for stable, dashed

for unstable). Also shown are the maximum and minimum amplitudes of the periodic orbits of the model (solid curves above

and below the steady-state curve). Key bifurcation points are labeled HBp1 and HBp2 (Hopf), and PD (period-doubling). The

shaded area corresponds to the regions where MMOs are present. D shows MMOs for p = 18.5.

https://doi.org/10.1371/journal.pone.0202503.g002
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oscillations for certain ranges in the parameter p. Fig 4B shows the bifurcation diagram when

a = 0.45. In this diagram, three of the Hopf bifurcations have been labeled as HB1 since all

three points lie on the Hopf manifold labeled HB1m in Fig 4A.

To help us understand this bifurcation structure, various solutions are plotted in Fig 5 and

compared to the bifurcation structure given in Fig 4. In Fig 5, a = 0.45 is kept fixed while vari-

ous values of p are used. The corresponding model solutions show different types of behaviors

ranging from steady-state Ca2+ levels, stable periodic solutions, aberrant Ca2+ signals, and

MMOs. Illustrated in Fig 5A is solution that exhibits small amplitude oscillations with p = 5.

This solution corresponds to the region where the small Hopf bubble exists as shown in Fig

4B. Fig 5B shows a solution that reaches a stable steady-state when p = 20. Fig 5C and 5D show

two different solutions that exhibit MMOs for p = 26 and p = 45.5, respectively. Fig 5D shows

aberrant Ca2+ signals when p = 45.8. Notice that this solution enters aberrant oscillations as

the bifurcation structure transitions through period doubling points within the MMO region.

Fig 5D shows sustained Ca2+ oscillations when p = 50.

Fig 3. The effects of Aβ on steady-state levels. This figure shows the effects of Aβ on the steady-state Ca2+ levels in the absence of IP3. A shows a bifurcation diagram

with a as the bifurcation parameter. Two Hopf bifurcations, labeled HBa1 and HBa2, give rise to a Hopf bubble with relatively large oscillation amplitude. The steady-

state level quickly becomes unphysical as the amount of Aβ increases towards a = 1.3. B shows stable Ca2+ oscillations for a = 1.15. C shows the solution when

a = 1.276.

https://doi.org/10.1371/journal.pone.0202503.g003

Fig 4. Two parameter bifurcation. A shows a two parameter bifurcation diagram when p and a are varied. The solid curves in the diagram

correspond to the Hopf bifurcation manifolds and are labeled HB1m and HB2m. The dashed lines correspond to manifolds of period doubling

points. The shaded regions (between the dashed lines and near the bottom of HB2 m) correspond to regions where MMOs occur. B shows a

bifurcation diagram for a = 0.45. Notice that for this value of a, four Hopf bifurcations exist and three of them have been labeled with HB1 while

the last is labeled HB2. This figure also illustrates the intermediate region of MMOs between the labels PD1 and PD2.

https://doi.org/10.1371/journal.pone.0202503.g004
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The results of the two parameter bifurcation analysis seem to suggest that Aβ not only

increases the steady-state level, but also influences the regions of MMOs. Particularly, the

internal range where MMOs emerge between the Hopf manifolds increases for a large parame-

ter range of a. As such, the model suggests that Aβmay drive aberrant Ca2+ signals as transi-

tions through MMOs. However, as the simulated amount of Aβ increases towards a = 1, the

region of MMOs decreases and stable periodic orbits exist for most of the p parameter range.

This condition is illustrated in Fig 6 where two solutions are shown for relatively large values

of a. Fig 6A shows the solution for a = 1 with p = 30, while B shows the solution for a = 1.2 and

p = 20. In these cases, Ca2+ oscillations have much larger amplitudes than in the absence of Aβ.

Fig 5. Calcium oscillations in the presence of Aβ. This figure shows various solutions when a = 0.45. A shows small amplitude oscillations

when p = 5 while B shows a stable-steady state solution when p = 20. C and D both show MMOs with multiple sub-threshold oscillations when

p = 26 and p = 45.5, respectively. E shows aberrant Ca2+ signals when p = 45.8. F shows sustained Ca2+ oscillations when p = 50.

https://doi.org/10.1371/journal.pone.0202503.g005

Fig 6. Effects of a and p on Ca2+ oscillation amplitudes. This figures shows two examples of sustained Ca2+ oscillations for

two sets of parameter selections of a and p. A shows Ca2+ oscillations with peak amplitudes around 2 corresponding to a = 1

and p = 30. B shows similar oscillations with peak amplitude closer to 3 corresponding to a = 1.2 and p = 20.

https://doi.org/10.1371/journal.pone.0202503.g006
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Contribution of Aβ on calcium signaling through the ryanodine receptor. To better

understand the influence of Aβ on Ca2+ signaling, we now turn our attention to the contribu-

tions of the RyR. Recall that in our model we assume that Aβ affects the RyR by altering the

receptor’s sensitivity for CICR. To determine the specific contribution of this altered sensitiv-

ity, we first simulate the model for fixed a and p and describe the dynamics of varying the

parameter ka. Our simulations show that in the presence of Aβ, changing the parameter kα can

produce aberrant Ca2+ signals. These aberrant signals result as transitions through MMOs for

fixed Aβ levels. However, we also show that we can control these signals by increasing k2, the

maximal kinetic rate of the RyR.

Fig 7 shows four Ca2+ traces with kα = 0.5, 0.9, 1, and 1.25 when a = 0.25 and p = 10 are

fixed. Notice that for kα = 1 aberrant Ca2+ signals emerge. Also included in Fig 7A is the corre-

sponding partial bifurcation diagram for a = 0.25 using kα as the bifurcation parameter. Notice

that MMOs exist for a large parameter set of kα. In Fig 7A there are four period doubling bifur-

cations that each have been labeled as PD. These occur around the parameter values of kα =

{0.5893, 0.7599, 1.01, 1.026}, respectively. The single Hopf bifurcation occurs around the

parameter value kα = 1.313. The bifurcation diagram in A provides us with a way to predict the

Ca2+ signals for a large set of the parameter kα. Notice that stable periodic solutions occur for

the parameter intervals kαs = (0, 0.5893) [ (1.026, 1.313). We have MMOs for the parameter

interval kαmmo = (0.5893, 1.026) with various sub-threshold oscillations patterns. Fig 7D shows

aberrant Ca2+ signals as the parameter kα remains close to the period doubling value 1.01. Fig

7E shows small stable periodic oscillations for the value kα = 1.25 near the Hopf point.

Each trace illustrated in Fig 7 shows a different type of Ca2+ response based on the value of

kα. One possible way of dealing with the aberrant signals and MMOs is to drive the maximal

reaction rate of the RyR up. This corresponds to increasing the value of k2 in the model. Fig 8A

shows a two-parameter bifurcation diagram with kα on the x-axis and k2 on the y-axis. What

Fig 7. The effects of kα on Ca2+ signals in the presence of Aβ. This figure shows a bifurcation diagram and four Ca2+ traces. A shows a partial

bifurcation diagram for the parameter kα. In this figure, a number of period doubling points have been labeled as PD. The shaded region

corresponds to MMOs. The single Hopf bifurcation point has been labeled with HB. B-E show four solutions for the parameter values kα = 0.5,

0.9, 1, and 1.25, respectively. D shows aberrant Ca2+ signals.

https://doi.org/10.1371/journal.pone.0202503.g007
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this diagram illustrates is the region of MMOs produced by the model for the parameter ranges

of kα and k2 given in the figure. Suppose that for a fixed kα value, Ca2+ signals undergo aberrant

signals or MMOs. By increasing the parameter k2 sufficiently, passage into stable periodic solu-

tions will occur. This suggests that the maximal rate of the RyR kinetics may help to control

both aberrant Ca2+ signals and MMOs. To see this, Fig 8B shows the solution corresponding

to those in Fig 7C with kα = 0.9 when k2 = 0.18 is increased to k2 = 0.5. Similarly, Fig 8C shows

the solution corresponding to those in Fig 7D with kα = 1 when k2 = 0.18 is increased to k2 =

0.65. Notice that although solutions do settle into stable periodic orbits that the amplitude of

the signals increase. Thus, increasing the parameter k2 may help to stabilizes aberrant oscilla-

tions at the cost of increasing Ca2+ oscillation amplitude. A similar stable region also exists

below the region of MMOs. This region would also help control signals but may be more diffi-

cult to precisely isolate the appropriate range of k2.

Dynamic levels of IP3 with no membrane potential. The model dynamics exhibited in

the figures above are triggered by a constant value of IP3 in the cytosol. Recall that in vivo, IP3

production is typically a result of an agonist activated G-couple protein. The rates of IP3 pro-

duction and degradation are both modulated by intracellular Ca2+, and as such, the release of

Ca2+ through the IP3 receptor can directly alter the IP3 signaling pathway. Furthermore, there

is growing evidence that Aβ also affects the IP3 signaling pathway [7]. Thus, we extend our

model to include a dynamic variable for IP3 production and degradation, and look to include

the influence of Aβ on this signaling mechanism when ps = 0. More specifically, we include an

additional equation for IP3 and model the influence of Aβ on the production of IP3.

We make use of the hybrid model formulated by Politi et al. (2006) to track IP3 production

and degradation. Their model takes the form

tp
dp
dt
¼ VPLC

c2

K2
PLC þ c2

�
Zc2

K2
3K þ c2

þ ð1 � ZÞ

� �

p; ð20Þ

where

tp ¼
1

k3K þ k5P
; and Z ¼

k3K

k3K þ k5P
:

The first term on the right hand side of (20) corresponds to the production of IP3 and the sec-

ond term is the degradation. In (20), VPLC is the maximal production rate, KPLC characterizes

Fig 8. Changing the maximal reaction rate of the RyR. This figures shows the effects of changing the parameter k2 on model solutions. A shows a two parameter

bifurcation diagram with kα and k2 as the bifurcation parameters. The shaded region corresponds to the region of MMOs. The solid curve corresponds to the manifold

of Hopf bifurcation points. The two dots on the left side represents the locations of the parameter values of k2 used to generate the Ca2+ traces in Fig 7C and Fig 8B.

The two dots on the right side represents the locations of the parameter values of k2 used to generate the Ca2+ traces in Fig 7D and Fig 8C. B and C show the stable

periodic oscillations that occur when k2 is increased to k2 = 0.5 and k2 = 0.65, respectively.

https://doi.org/10.1371/journal.pone.0202503.g008
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the sensitivity of PLC, K3K is the half saturation constant for the degradation term. The con-

stants k3K and k5P correspond to the IP3 phosphorylation and dephosphorylation rates, respec-

tively. KPLC and η are parameters used to adjust the positive and negative feedback of Ca2+,

respectively. One of the advantages for using this hybrid model is that it can easily be altered to

reproduce both class I and class II mechanisms (see [18] for details). Another advantage, is

that this model breaks the IP3 process into two components: a production and a degradation.

This will make it easier for us to incorporate the effects of Aβ on the IP3 production process.

In their experiment, Demuro and Parker (2013) showed that introducing Aβ directly into

Xenopus oocytes causes an increase in Ca2+ dependent fluorescence (a measure for the amount

of intracellular Ca2+). Even though their experiments are in oocytes, the ubiquitous properties

of IP3 signaling may make their results relevant to other cells including neurons. Their findings

suggest that Aβ does not interact directly with the IP3 receptor, but instead they propose that

intracellular Ca2+ liberation evoked by Aβ involves opening of IP3 receptors as a result of stim-

ulated production of IP3 via G-protein-mediated activation of PLC. As such, in the presence of

Aβ, IP3 are actively stimulated and persist for many minutes or hours even though IP3 is

metabolized within tens of seconds [58]. Based on these findings, we assume that VPLC takes

the form

VPLC ¼ vPLC þ mPLCa; ð21Þ

and KPLC can be written similarly as

KPLC ¼ kPLC þ kPLCa; ð22Þ

where the parameters μPLC and κPLC control the strength of the linear influence of Aβ on each

term, respectively. For our purposes, we set both of these values to be μPLC = κPLC = 1. Thus,

we add the following equation to (18) and (19) and look to determine the impact of Aβ on

model solutions

tp
dp
dt
¼ ðvPLC þ mPLCaÞ

c2

ðkPLC þ kPLCaÞ þ c2
�

Zc2

K2
3K þ c2

þ ð1 � ZÞ

� �

p: ð23Þ

In our simulation we use the work of [59] to set a number of parameter values. However,

we assume that both positive and negative feedback are present simultaneously and as such

make parameter adjustments as needed. The parameter values that we use for our simulations

are given in Table 2. With these additional contributions, we now have a model that includes

the impact of Aβ on multiple Ca2+ signaling mechanisms. Although the model has a large

number of variables and parameters, we seek to characterize model solutions by investigating

the dynamical properties of the model in the presence of Aβ.

In the absence of Aβ, model solution with initial condition for IP3 = 0.01 shows a small

Ca2+ influx followed by a transition to it’s steady-state level close to 0.5 μM. This is consistent

with what we expect as the amount of IP3 is dynamic and depends on Ca2+. It will take some-

time for enough IP3 to be present in order to trigger a signaling event throught the receptor.

Fig 9A and 9B show the model solution for Ca2+ and IP3, respectively in the absence of Aβ.

Notice that the amount of IP3 also reaches a steady-state level.

Table 2. Parameter values of the IP3 model (23).

IP3 parameters

vPLC 1.5 μM s−1 k5P 0.25 s−1 K3K 0.4 μM

kPLC 1 μM k3K 0.5 s−1

https://doi.org/10.1371/journal.pone.0202503.t002
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Since we are interested in understanding the potential effect of Aβ on Ca2+ signals, we use a
as a bifurcation parameter and investigate model solutions. Fig 10A shows a partial bifurcation

diagram with a as the bifurcation parameter. This diagram has two oscillatory regions sepa-

rated by a region of a single stable-steady state. The four Hopf bifurcations are labeled along

with a number of period doubling points. Notice that there are four regions of MMOs (shaded

regions) that appear close to each Hopf point. In addition to the Hopf bifurcation points, four

period doubling points have also been labeled with two limit points (LP). We provide the value

of each of these points in Table 3 and use them to identify solution patterns. As the parameter

Fig 9. Dynamic IP3 without Aβ. A shows Ca2+ and B shows IP3 as a function of time in the absence of Aβ. A spike of Ca2+ occurs once enough IP3 has

accumulated but does not lead to sustained oscillations. The amount of IP3 settles to a steady-state level in B.

https://doi.org/10.1371/journal.pone.0202503.g009

Fig 10. Calcium signals in the presence of Aβ with dynamic IP3. This figure shows a bifurcation diagram and four Ca2+ traces for the model

with dynamic IP3. A shows a partial bifurcation diagram where two oscillatory regions are separated by a single steady-state region. The shaded

regions near each of the four Hopf bifurcations correspond to MMOs. Numerous period doubling bifurcations occur around the shaded

regions. Two important limit points have been labeled LP1 and LP1. These points are important in the description of solutions. B-D show model

solutions for a = 0.75, 0.875, 1, and 1.256, respectively. The various patterns in these figures are predicted by the bifurcation diagram in A.

https://doi.org/10.1371/journal.pone.0202503.g010
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a increases to LP3 = 1.274, solutions become unphysical. Thus, we limit our investigation for

values of a between 0 and 1.274. Fig 10B–10D show Ca2+ traces predicted by Fig 10A for vari-

ous values of a. Notice that aberrant signals are also present for the model with a dynamic

equation for IP3.

Calcium model with influence of membrane potential

In our simulations below, we examine the effects of changes to membrane potentials by first

incorporating the membrane into the model and by stimulating the membrane with a constant

applied current pulse. The impact of such an applied current on the voltage V and the resulting

Ca2+ current are shown in Fig 11. A stimulating current of 300 nA applied for t = 0.1 seconds

initiated at t = 2 generates the potential response shown in Fig 11A. Fig 11B and 11C show the

response due to an applied stimulus lasting for one and ten seconds, respectively. These

changes in membrane potential cause the inward currents through the VGCC illustrated in

Fig 11D–11F, for t = 0.1, t = 1, and t = 10 seconds, respectively. Notice that in Fig 11C the

membrane voltage saturates as the duration of the applied current is increased. Although the

mechanisms for generating these signals is fairly simplistic, our results align well with experi-

mental data showing similar saturating levels in astrocytes [38]. The effects of the inward Ca2+

through the VGCC are included in the flux term Jvca and as such, allows us to study the impact

of membrane potentials on Ca2+ signals. In all subsequent figures, we have applied a constant

current pulse at t = 100 for a duration of 50 seconds. Such an applied current does not capture

an in vivo-like representation of membrane potentials, but it does offer a way to link the model

with typical voltage clamp experiments where the amplitude and duration of the applied cur-

rent can be controlled.

To investigate the impact of a constant current pulse on Ca2+ signaling, we first simulate

(18) and (19) with constant values of IP3. In these simulations we set ps = 1 and plot Ca2+ con-

centrations as a function of time. Tracking the membrane potential and including it into the

model will have an effect on Ca2+ signals. Specifically, the membrane will alter the dynamics of

the effect of p on model solutions. In order to illustrate this point we have plotted the model

responses when no Aβ is present for various values of p in Fig 12. When these solutions are

compared to Fig 2, we can see that the inclusion of the membrane potential increases the

response frequency and MMOs occur for smaller values of p (for example p = 13 here instead

of p = 17 in Fig 2).

Notice that in Fig 12D–12F Ca2+ signals seem to stabilize in single-mode oscillations upon

the release of the stimulus before transitioning back into MMOs. This may provide one

Table 3. Solution behavior for model with dynamic IP3.

Parameter a interval Point type Description of solution pattern

(0, 0.2783) (0, HB1) Stable steady-state solutions

(0.2783, 0.8318) (HB1, LP1) Stable periodic solutions

(0.8318, 0.8857) (LP1, PD1) Mixed-mode oscillations

(0.8857, 0.909) (PD1, HB2) Stable periodic solutions with small amplitude

(0.909, 1.103) (HB2, HB3) Stable steady-state solutions

(1.103, 1.109) (HB3, PD2) Stable periodic solutions with small amplitude

(1.109, 1.16) (PD2, LP2) Mixed-mode oscillations

(1.16, 1.255) (LP2, PD3) Stable periodic solutions with large amplitude

(1.255, 1.256) (PD3, PD4) Mixed-mode oscillations with elevated Ca2+ levels

(1.256, 1.257) (PD4, HB4) Stable periodic solutions with small amplitude but with elevated Ca2+ levels

(1.257, 1.274) (HB4, LP3) Stable high Ca2+ steady-state solutions

https://doi.org/10.1371/journal.pone.0202503.t003
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possible path for stabilizing Ca2+ signaling. In an in-vivo like environment, membrane poten-

tials vary based on intrinsic response mechanisms to a stimulus. Our results show that artifi-

cially triggering membrane stimulation could potentially help to stabilize Ca2+ signals.

Furthermore, Fig 12E shows that the model solution can exhibit a large number of sub-thresh-

old oscillations before triggering a larger spike. This type of MMO is different from those

Fig 11. Ca2+ flux due to changes in membrane potential. This figures shows the Ca2+ current Ica in response to

changes in membrane potential. A-C show changes in the membrane potential of the astrocytic model when a current

of 300 nA is applied for a duration of 0.1 second (A), 1 second (B), and 10 seconds (C). The current was applied at t = 2

seconds and is represented by the black bar at the bottom of each figure. D-F show the corresponding VGCC current

Ica as defined by (15).

https://doi.org/10.1371/journal.pone.0202503.g011

Fig 12. The influence of IP3 on Ca2+ signals with membrane potential. This figures shows the impact of membrane

potential on Ca2+ signaling. In each figure, membrane potentials are included as a response to a sustained applied

current of 300 nA lasting from t = 100 to t = 150. Figs A, B, and C show intracellular Ca2+ signals when p = 5, p = 10,

and p = 12 with a = 0, respectively. Figs D, E, and F show the response when p = 13, p = 13.5, and p = 14, respectively.

Note that the inclusion of the membrane potential filters MMOs and can help establish transient single-mode

oscillations upon the termination of the applied current (D,E).

https://doi.org/10.1371/journal.pone.0202503.g012
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illustrated previously and shows that membrane potentials can have an impact on global Ca2+

signals and play an important role in Ca2+ regulation. A full analysis for understanding these

transitions is beyond the scope of this work but could prove useful for predicting how mem-

brane stimulation may be used to control and/or stabilize aberrant Ca2+ signals.

Model solution patterns are not only linked to the amount of IP3 and the inclusion of mem-

brane potential, but also by the amount of Aβ present in the model. To better understand the

roles of IP3, membrane potentials, and Aβ on Ca2+ signaling, we simulate the model and pro-

vide the solutions when p = 10 and p = 15 with various levels of Aβ for ps = 1. Illustrated in Fig

13 are six model solutions that illustrate the impact of Aβ and membrane potentials on Ca2+

signaling. When p = 10 is fixed and a is altered, model behavior is directly impacted by the

application and removal of a constant current pulse. This is illustrated in Fig 13A–13C where

a = 0.2, a = 0.25, and a = 0.28. Specifically, Fig 13C shows that upon the termination of the

applied stimulus, Ca2+ signals do not go back to MMO patterns but instead transition to stable

single-mode oscillations. This shows that stimulation of the membrane can alter intrinsic

dynamical patterns and be used to stabilize various types of Ca2+ signals. Fig 13D–13F show

model solutions for p = 15 with a = 0.2, a = 0.25, and a = 0.28, respectively. It is interesting to

note that when we apply a constant current pulse, Ca2+ solutions can transition into steady

MMOs as the level of Aβ increased towards a = 0.28. Although we do not analyze the bifurca-

tion structure, the inclusion of membrane potentials in the model appears to have altered the

parameter dependance where regions of MMOs can occur as well as transitions from single-

to mixed-mode oscillations. Further analysis may be beneficial for drawing out the underlying

mechanisms in the stable oscillatory patterns when a constant current is applied in the model.

Because the impact of membrane potentials are controlled by ps, we have also provided

model simulations when this parameter is altered. Small values of ps correspond to small influ-

ence of membrane potential while larger values can be used drive the amplitude of Ca2+ sig-

nals. Fig 14 shows four simulations for four different values of ps. When ps = 0.5, Fig 14A

shows that the effects of membrane potentials are small and no significant changes in Ca2+ are

observed other than a slight increase in the subtreshold oscillations. When ps = 0.75, Fig 14B

Fig 13. The influence of Aβ on Ca2+ signals with membrane potential. This figures shows the impact of membrane

potential on Ca2+ signaling. In each figure, changes in membrane potential are included as a response to a sustained

applied current of 300 lasting from t = 100 to t = 150. Figs A, B, and C show intracellular Ca2+ signals when p = 10 and

when a = 0.2, a = 0.25, and a = 0.28, respectively. Figs D, E, and F show the response when p = 15 and when a = 0.2,

a = 0.25, and a = 0.28, respectively.

https://doi.org/10.1371/journal.pone.0202503.g013
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suggests that the effects of membrane potentials are large enough to alter the amplitude of

Ca2+ oscillations during the applied current. Fig 14C shows that when p = 1, contributions

from membrane potentials increase overall Ca2+ signaling amplitude. With these values of p
and a, the solution transitions from single mode oscillations with amplitude around 0.45 to

MMO with an increased amplitude to around 0.7. Fig 14D shows that a large influence of

membrane potentials (when p = 1.5) does not alter the signal amplitude or oscillatory mode

significantly.

Although much analysis remains to fully understand the dynamics of the model, the results

of our simulations suggest that Aβ can alter Ca2+ regulatory mechanisms in a way that leads to

both MMOs and aberrant signaling. We have shown that bifurcation regions for dynamical

transitions from single mode to MMOs can increase in the presence of Aβ. By altering RyR

receptor dynamics, we show that transitions from MMO back to single-mode oscillations can

occur. Furthermore, we show that stimulation of the membrane can also be used to control

various types of Ca2+ signals. Although we have made a number of simplifying assumptions in

the model development, our approach can be easily altered to include other more complex

interactions and mechanisms that influence Ca2+ regulation.

Discussion

Intracellular Ca2+ is a critically important second messenger within the nervous system. In

neurons, Ca2+ is known to mediate the signaling pathways that control neurotransmitter

Fig 14. The impact of scaling Ica on model solutions. This figures shows various model solutions when the scaling

parameter ps is altered. In each figure, p = 10, and the amount of Aβ is fixed at a = 0.258. A-D show the response of (18)

and (19) when ps = 0.5, ps = 0.75, ps = 1, and ps = 1.5, respectively. Notice that B shows that Ca2+ can enter aberrant

oscillatory patterns when the membrane is stimulated by a constant applied current. C shows that Ca2+ signals can

enter MMOs with altered amplitudes when the applied current stimulus is turned off.

https://doi.org/10.1371/journal.pone.0202503.g014
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release, gene expression, metabolism, plasticity, development, proliferation, and cell death

[60]. As such, Ca2+ may play a major role in the pathogenesis of AD. Unfortunately, the com-

plexity of Ca2+ signaling makes it difficult to precisely understand how Aβ impacts different

intracellular regulation mechanisms and components. Various studies have decoupled particu-

lar components and merging these theories together to form a whole-cell computational

model can help us better understand intracellular Ca2+ regulation and what leads to aberrant

signaling. One of our goals is to model Ca2+ in a simplified whole-cell environment that has

predictable qualitative structure so that we can study the effects of Aβ on the dynamics. As

such, the qualitative features described in this study give us a way to track Ca2+ patterns using

dynamical systems theory.

The simulations presented in this study occur on the order of seconds to minutes while the

progression of AD occurs on the timescale of months to years. However, in our model we are

using the accumulation of Aβ to describe the potential stage in the evolution of AD. Even

before toxic Aβ plaques can aggregate, the slow accumulation of Aβ peptides can trigger alter-

ations in Ca2+ signaling patterns. Our model shows that aberrant signals and changes in

homeostasis levels can emerge as the amount of Aβ is increased. In an in vivo environment

these changes may be subtle and actually evolve over days or months. Any alterations in intra-

cellular Ca2+ homeostasis can affect the apoptotic signaling cascade. Both the mitochondria

and the ER play a significant role in apoptosis and are sensitive to changes in Ca2+ levels.

Although we have not considered mitochondrial effects, we do track ER Ca2+. Further analysis

that looks at the time evolution of ce could be useful in predicting chronic changes of Ca2+

homeostasis in AD.

Developing a whole-cell Ca2+ model that has predictable qualitative structure in the pres-

ence of Aβ is challenging. Although Aβ influences many Ca2+ regulatory mechanisms, the par-

ticular way which Aβ affects these mechanisms is generally not known. Additionally, the

temporal influence of Aβ on certain mechanisms could occur on the order of milliseconds, sec-

onds, days, months, or years. As such, any computational model will necessarily make a num-

ber of simplifying assumptions. Even by exploiting these simplifications, our model includes a

large number of parameters that make mathematical analysis limited. Unfortunately, we do

not have robust estimates for many of the parameters involved in the model. However, we

have attempted to provide justification for many assumptions and parameter choices based on

the literature and the experimental data currently available. We do recognize that many of

these assumptions may need to be altered as we continue to improve our understanding of the

effects of Aβ in an AD environment.

The ubiquitous nature of the Ca2+ regulatory mechanisms used in our model makes it

easily adaptable for studying various cell types with spatial components. Specifically, Aβ has

been shown to cause complex Ca2+ signals in astrocytes [61, 62]. In these astrocytes, Ca2+

waves and oscillations signals can occur on timescales even slower than those typical of other

non-excitable neuroglia. Although our modeling approach does not include spatial compo-

nents, additional mechanisms can be constructed to account for wave generating behaviors.

Furthermore, astrocytes can facilitate synaptic transmission and plasticity through the uptake

of neurotransmitter [63] and complex models between neurons and astrocytes have been

developed to study these interactions [38, 64, 65]. Both microglia and astrocytes have been

described as modulators for Aβ clearance and degradation [66] and our approach may be use-

ful for better understanding these mechanisms.

It is clear that Aβ plays an essential role in the cognitive decline in AD by directly affecting

synaptic transmission [11, 67–70]. However, synaptic transmission is typically precipitated by

a presynaptic potential which allows Ca2+ ions to flow into the cell through VGCC. The contri-

butions of fast local Ca2+ signals with slow global Ca2+ patterns, especially under the influence

Model of amyloid beta on calcium

PLOS ONE | https://doi.org/10.1371/journal.pone.0202503 August 22, 2018 22 / 27

https://doi.org/10.1371/journal.pone.0202503


of Aβ, may help explain why breakdowns in synaptic efficacy can occur in an AD environment

[11, 45, 67, 69, 71, 72]. The accumulation or presence of Aβmay directly, or indirectly, impact

various Ca2+ driven mechanisms during synaptic transmission. The simplified whole-cell Ca2+

model presented here could be linked with a synaptic Ca2+ model to investigate how global

aberrant Ca2+ signals may impact synaptic transmission on multiple timescales. Simulations

over long timescales may help explain how slow global whole-cell Ca2+ signals interfere with

fast local Ca2+ signals at the synapse.

Different individual models exist for the various signaling components used in our simpli-

fied whole-cell model development. For example, we used the Sneyd and Dufour (2002) for-

mulation for the IP3 receptor model. Although this model is sound and well-suited for our

purposes, it does increase the number of necessary variables considerably. One could use a two

equation model for IP3 (such as those described in [26, 73]), but the number of parameters will

remain large. Similarly, alternative models for the RyR may tease out alternative conclusions

when influenced by Aβ (such as using a model as in [74]). As such, we encourage further devel-

opment of the model as experimental data becomes available. Matching model dynamics with

experimentally recorded data can help select the component model best suited for the particu-

lar study.

Our model solutions are highly sensitive to certain parameters and the oscillatory responses

presented here only occur under certain scenarios. Because of the complexity of Ca2+ regula-

tion along with understanding the impact of Aβ, any computational model would benefit from

both local and global sensitivity analysis. Although we have not performed any sensitivity anal-

ysis, we do understand that much of the analysis and many of our conclusions may be valid for

a small set of parameters. Further, the sensitivity of a particular parameter may influence how

the model transitions into aberrant Ca2+ signals. As such, we recommend that sensitivity anal-

ysis be performed as a next step in order to better understand the role of parameters on model

dynamics.

In conclusion, we have shown that aberrant Ca2+ signals can occur in a simplified whole-

cell model under the influence of Aβ. Furthermore, we showed that regions of MMOs can

expand as a consequence of increasing the amount of Aβ in the model. This may partially

explain how Ca2+ signals are impacted by Aβ from a dynamics perspective within an in vivo
like environment. Continued refinement of the model in conjunction with experimental data

matching will help make the model more useful. In turn, this can help us determine how to

control for both aberrant signals and increased homeostasis Ca2+ levels. The model can then

be used to better understand the impact of Aβ on Ca2+ fluxes through individual regulatory

components (such as IP3, RyR, and plasma membrane). This computational model can help us

study complex cellular behavior in an AD environment by tracking the influence of many

interconnected biological mechanisms.
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