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Alzheimer’s disease (AD) is characterized by cognitive decline and memory loss due to
the abnormal accumulation of amyloid-beta (Aβ) plaques and tau tangles in the brain; its
onset and progression also depend on genetic factors such as the apolipoprotein E (APOE)
genotype. Understanding how these factors affect the brain’s neural pathways is important
for early diagnostics and interventions. Tractometry is an advanced technique for 3D quanti-
tative assessment of white matter tracts, localizing microstructural abnormalities in diseased
populations in vivo. In this work, we applied BUAN (Bundle Analytics) tractometry to 3D
diffusion MRI data from 730 participants in ADNI3 (phase 3 of the Alzheimer’s Disease
Neuroimaging Initiative; age range: 55-95 years, 349M/381F, 214 with mild cognitive im-
pairment, 69 with AD, and 447 cognitively healthy controls). Using along-tract statistical
analysis, we assessed the localized impact of amyloid, tau, and APOE genetic variants on
the brain’s neural pathways. BUAN quantifies microstructural properties of white matter
tracts, supporting along-tract statistical analyses that identify factors associated with brain
microstructure. We visualize the 3D profile of white matter tract associations with tau and
amyloid burden in Alzheimer’s disease; strong associations near the cortex may support
models of disease propagation along neural pathways. Relative to the neutral genotype,
APOE ϵ3/ϵ3, carriers of the AD-risk conferring APOE ϵ4 genotype show microstructural
abnormalities, while carriers of the protective ϵ2 genotype also show subtle differences.
Of all the microstructural metrics, mean diffusivity (MD) generally shows the strongest
associations with AD pathology, followed by axial diffusivity (AxD) and radial diffusivity
(RD), while fractional anisotropy (FA) is typically the least sensitive metric. Along-tract mi-
crostructural metrics are sensitive to tau and amyloid accumulation, showing the potential
of diffusion MRI to track AD pathology and map its impact on neural pathways.
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1. Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by progressive cog-
nitive decline and memory loss. Central to its pathology are the abnormal accumulation of
amyloid-beta (Aβ) plaques and tau tangles in the brain.1–3 The onset and progression of these
pathological processes are influenced by genetic factors such as the apolipoprotein E (APOE)
gene.4 AD pathology not only affects gray matter but also profoundly impacts white matter
tracts, which serve as the brain’s communication mechanism; these tracts connect different
brain regions and facilitate efficient signal transmission. Understanding how amyloid, tau,
and APOE influence white matter integrity is crucial for developing early diagnostic tools and
monitoring the effects of targeted interventions on the brain.

Amyloid-beta peptides aggregate to form plaques, primarily affecting gray matter5 but
also extending to white matter tracts by disturbing cellular function.6,7 Aβ deposition leads to
myelin degradation, which disrupts the insulating layer around nerve fibers, and axonal injury,
which impairs neurons’ ability to communicate effectively. The presence of Aβ can trigger a
chronic inflammatory response, worsening white matter damage through microglial activation
and the release of pro-inflammatory cytokines.

Tau is a microtubule-associated protein that stabilizes microtubules in neurons. In AD,
tau becomes hyperphosphorylated and forms neurofibrillary tangles,8 affecting microtubule
stability, disrupting axonal transport, and impairing neuronal function. The propagation of
tau pathology correlates with synaptic loss and neuronal degeneration, affecting both gray
and white matter regions and leading to widespread brain dysfunction.9,10

The apolipoprotein E (APOE) gene has three common variants: ϵ2, ϵ3, and ϵ4. APOE ϵ2
is the least common, and carriers have a lower risk of developing AD. It may have a protective
effect on white matter structure,11,12 leading to less degeneration compared to those with
APOE ϵ3 or ϵ4, possibly due to enhanced lipid metabolism and repair mechanisms. APOE
ϵ3 is the most common variant and is considered neutral, while the APOE ϵ4 variant is the
greatest known common genetic risk factor for late-onset AD, roughly tripling lifetime risk of
AD per allele carried.13 APOE ϵ4 is less effective in clearing Aβ from the brain, leading to
greater Aβ plaque accumulation and subsequent white matter damage.14 APOE is involved
in lipid transport and metabolism, essential for myelin maintenance. The ϵ4 variant affects
these processes, leading to compromised myelin maintenance. APOE ϵ4 carriers also exhibit
increased inflammation and vascular dysfunction, contributing to white matter lesions and
impaired cerebral blood flow. Even so, relatively little is known about the 3D profile of APOE
effects on white matter microstructure.

Investigating the impact of amyloid, tau, and APOE on white matter is vital for advancing
AD research and treatment. White matter metrics may deteriorate before gray matter atro-
phy and clinical symptoms appear, making them a potential biomarker for early detection or
monitoring interventions. Diffusion MRI, being less invasive than PET, could offer a better
alternative for tracking disease progression if metrics sensitive to these pathologies are identi-
fied. Identifying white matter tracts affected may also help to evaluate targeted therapies to
protect or restore these pathways. Furthermore, understanding how different APOE genotypes
affect white matter may lead to personalized therapeutic strategies, improving outcomes for
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individuals with specific genetic profiles.
Diffusion MRI15–17 measures water diffusion in the brain, revealing the microstructural

properties of the underlying tissue. Tractography, derived from diffusion MRI data,18–20 maps
and visualizes white matter pathways by tracking the directional profiles of water diffusion,
providing a detailed picture of brain connectivity. Tractometry enhances this by quantifying
specific microstructural properties, such as fractional anisotropy (FA) or mean diffusivity
(MD), along the length of individual tracts. This technique maps microstructural alterations
in the brain’s white matter tracts.21–25 It analyzes the coherence of neural connections, allowing
for precise assessment of characteristic changes in neurological conditions such as Alzheimer’s
disease or Parkinson’s disease.26

White matter (WM) microstructure changes with age, and there is a regional variation in
the age-dependent trajectories of maturation and decline for the major white matter metrics
across the lifespan.27,28 Several studies of regional microstructure in Alzheimer’s disease have
used tract-based spatial statistics (TBSS),29 to link microstructural metrics in specific brain
regions to amyloid positivity and clinical dementia severity.30–32 However, the resolution of
TBSS maps is limited by the regions defined in the atlases used.29 To address this, tractometry
methods such as BUAN (Bundle Analytics)33 map microstructural parameters along the length
of white matter tracts, mapping disease effects on neural pathways in 3D and at a finer
anatomical scale.23,25,26,34,35 Recently, Ba Gari et al.34 used a tractography-based medial tract
analysis (MeTa) to enhance the sensitivity for detecting associations of AD, amyloid and tau
with DTI microstructural metrics, compared to TBSS.

In this study, we applied our advanced tractometry method, BUAN (Bundle Analytics),
to evaluate the impact of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructure of
the brain’s white matter tracts. BUAN maps the microstructural properties of white matter
tracts, and fits along-tract statistical models to detect effects on microstructure that are
associated with amyloid plaques, tau tangles, and different APOE genotypes. This is crucial
for understanding the effects of AD pathology on brain connectivity. Overall, we found that a
range of microstructural metrics were sensitive to tau and amyloid, the two key biomarkers for
detecting Alzheimer’s disease, supporting the role of diffusion MRI as a non-invasive measure of
AD pathology. Relative to APOE ϵ3/ϵ3 carriers, microstructural alterations were also identified
in APOE ϵ4 carriers and to a lesser extent in ϵ2 carriers.

Overall, mean diffusivity (MD) was most strongly associated with AD pathology, followed
by axial diffusivity (AxD) and radial diffusivity (RD). Fractional anisotropy (FA) was the
least sensitive metric. The tendency to detect stronger associations in tract regions closer
to the cortex may support propagative or ”epidemic spreading” models of AD pathology,36

which argue that AD pathology spreads dynamically along neural pathways or in functionally
synchronous networks; future longitudinal studies are needed to verify this.

2. Methods

2.1. Data

Data from 730 ADNI3 participants (phase 3 of the Alzheimer’s Disease Neuroimaging Initia-
tive; age range: 55-95 years, 349M/381F, 214 with mild cognitive impairment (MCI), 69 with
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AD, and 447 cognitively healthy controls (CN)) scanned with 7 acquisition protocols (GE36,
GE54, P33, P36, S127, S31, S55) were included. Tables 1 and 2 in Fig. 2 detail demographic
and acquisition protocol information. Aβ-status, i.e., positive (Aβ+) or negative (Aβ–), was
determined by either mean 18F-florbetapir (Aβ+ defined as >1.11)37,38 or florbetaben (Aβ+
defined as >1.20)39,40 PET cortical SUVR uptake, normalized by using a whole cerebellum
reference region. Tau positivity was defined as a tau SUVR > 1.23.

Fig. 1. The brain contains millions of axonal connections; the trajectories of the major neural
pathways can be digitally reconstructed into a whole brain tractogram using diffusion MRI and
tractography techniques. Specific white matter tracts are extracted for visualization and detailed
analysis, offering a more localized and focused examination of pathways within the brain.

2.2. Diffusion MRI Processing

Raw diffusion MRI (dMRI) were preprocessed using the ADNI3 dMRI protocol.41,42 Prepro-
cessing of raw diffusion MRI (dMRI) data involved several steps: denoising raw dMRI data
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Fig. 2. Tables 1 and 2 detail demographic and scanner protocol information for the ADNI3 data
used in our experiments (data from Thomopoulos et al, 2021). The abbreviation table on the right
lists the 38 white matter tracts and four microstructural measures analyzed in this work.

using DIPY’s principal component analysis (PCA) for GE data, and Marchenko-Pastur PCA
for Siemens and Philips data denoising.43,44 Gibbs artifacts were corrected using MRtrix’s
degibbs tool,45,46 and extracerebral tissue was removed (skull stripping) with FSL’s BET.47,48

Eddy currents and motion were corrected using FSL’s eddy cuda tool with additional correc-
tions for slice-to-volume and outlier detection.48,49 Bias field inhomogeneities were corrected
using MRtrix’s dwibiascorrection ANTS function. Preprocessed T1w images from the ADNI
database were further processed and aligned to the dMRI data.46,50 ADNI3 dMRI data lacked
reversed phase-encode blips, so echo-planar imaging (EPI) distortion corrections were made
using nonlinear registrations to T1-weighted anatomical images. The processed dMRI data
were converted back to native space through a series of inversions of the registration matrices,
with final outputs visually inspected and manually adjusted as necessary. The diffusion tensor
imaging (DTI) model was used to extract 4 microstructural measures from processed dMRI:
fractional anisotropy (FA), mean, axial, and radial diffusivity (MD, AxD, RD).

2.3. BUAN Tractometry

We applied a robust and unbiased model-based spherical deconvolution51 reconstruction
method and a probabilistic particle filtering tracking algorithm that uses tissue partial volume
estimation (PVE) to reconstruct 52 whole-brain tractograms. For tracking, the seed mask was
created from the white matter (WM) PVE (WM PVE > 0.5), seed density per voxel was set to
2, and step size was set to 0.5. We extracted 38 white matter (WM) tracts from tractograms
using auto-calibrated RecoBundles 23,53 (see Fig. 2 for full names) using model bundles from
the HCP-842 tractography atlas.54

After extracting WM bundles, we nonlinearly registered each subject’s bundles to model
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bundles in MNI-space using a streamline-based nonlinear registration method, BundleWarp.55

Optimal registration of tracts to atlas bundles is crucial for finding accurate segment corre-
spondences among subjects and populations. This enhances the sensitivity of group statistical
analyses by eliminating errors due to misalignment across subjects.

BUAN creates the bundle profiles for each bundle using 4 DTI-based microstructural
metrics: FA, MD, RD, and AxD calculated in the diffusion native space (see Figure 2 for
full bundle names). Bundle profiles are created by dividing the bundles into 100 horizontal
segments using the model bundle centroids along the length of the tracts in common space.
We cluster our model bundles using the QuickBundles56 method to obtain a cluster centroid
consisting of 100 points per centroid. We calculate Euclidean distances between every point
on every streamline of the bundle and 100 points in the model bundle centroid. A segment
number is assigned to each point in a bundle based on the shortest distance to the nearest
model centroid point. The streamlines are not resampled to have a specific number of points,
and we do not change the distribution of points. Since the assignment of segment numbers
is performed in the common space, we establish the segment correspondence among subjects
from different groups and populations. Microstructural measures such as FA are then projected
onto the points of the bundles in native space. Note that the nonlinearly moved bundles are
only used to assign segment numbers to streamlines (and points on the streamlines) in the
bundles. Actual statistical analysis always takes place in the native space of the diffusion data.
The statistical analysis step uses bundles of the original shape and microstructural measures
in the native space using segment labels given during the assignment step for segment-specific
group analysis.

Bundle profiles are harmonized using the ComBat method57,58 to correct for scanner/site ef-
fects as described in the harmonized BUAN tractometry pipeline.59 After data harmonization,
we assume each bundle type has its own data distribution, which is considered independent
of the rest of the bundles in the brain. For each tract and metric, we pool bundle profiles for a
given tract across all subjects from CN, MCI, and AD groups. Pooled bundle profiles consist
of 100 segments, and each segment is modeled as a feature. Linear Mixed Models are applied
to WM bundles; age and sex are modeled as fixed effects and scanner and subject as a random
effect term, the response variable being each DTI metric. Though we harmonized the profiles
with ComBat, we further account for scanner and/or site effects by adding it as a random
term in the linear mixed models (LMMs)60 to eliminate any remaining artifacts contributed
by scanner/site. We used FURY61 software to visualize tractometry results in this paper.

2.4. Statistics

We used LMMs to test the effects of amyloid positivity, tau positivity, and different APOE
variants on 38 white matter tracts. In each experiment, age and sex were modeled as fixed
effects, and the scanner and subject were modeled as random terms.

2.4.1. Multiple test corrections

Multiple testing correction is a statistical adjustment process that can control the rate or
likelihood of false positives when performing numerous simultaneous tests.62 In neuroimaging
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studies, where thousands of brain regions or voxels are analyzed for significant differences or
correlations, this adjustment is crucial. It ensures the integrity and reliability of the results
by controlling the overall rate of false positives. Common correction methods include the
Bonferroni correction,63 which is stringent and adjusts the significance threshold by dividing
it by the number of tests, and the False Discovery Rate (FDR)64 method, which limits the
proportion of false positives among significant findings. These corrections ensure that detected
effects are truly significant and not due to random variation.

As white matter tracts generated by tractography are not as extensively studied as voxel
or ROI-based methods, selecting the appropriate multiple testing correction is challenging. We
divided each bundle into 100 segments; for tract-specific FDR correction, we use 100 p-values
per bundle to correct for multiple tests using the FDR method. We refer to this bundle-specific
FDR corrected threshold as the local threshold, as it only depends on statistics within that
bundle. Additionally, we performed multiple test corrections across all bundles in the brain by
pooling 100 pvalues from each of the 38 tracts, yielding a total of 3,800 pvalues to determine
the global FDR-corrected threshold. We consider tract effects to be significant if they pass
both local and global FDR thresholds.

3. Results

We ran the following five experiments to detect associations of various variables on 38 white
matter tracts of the brain. We tested microstructural associations (1) with amyloid positivity;
(2) with tau positivity; (3) comparing non ϵ4 carriers ϵ2ϵ3/ϵ3ϵ3/ϵ2ϵ2 with subjects carrying at
least one ϵ4 gene; ϵ2ϵ4/ϵ3ϵ4/ϵ4ϵ4, (4) comparing ϵ3ϵ3 with ϵ3ϵ4/ϵ4ϵ4, and (5) comparing ϵ3ϵ3
with ϵ3ϵ2/ϵ2ϵ2.

As an overview of the results, quantitative quantile-quantile (QQ) plots (Fig. 3) summarize
the overall association signal detected across all 38 white matter bundles between each of the
biomarkers (amyloid, tau, and APOE) and each of the DTI metrics (FA, MD, RD, and AxD).
These plots visually represent the strength of associations between these biomarkers and DTI
metrics, helping to identify which combinations show the most significant relationships.

In the visualization layout, the first row of QQ plots highlights which DTI metric exhibits
the strongest association with each biomarker. Here, the p-values of the 38 tracts were pooled
for each DTI metric and presented in these plots, allowing for a comprehensive assessment of
each metric’s sensitivity to changes in biomarker levels.

The second focuses on the relationship from the opposite perspective: for each DTI metric,
it shows which biomarker shows significant associations (the scale of the y-axis varies across
the QQ plots to adapt to the observed range of p-values).

3.1. Amyloid

We ran BUAN to assess the effect of amyloid positivity on 38 white matter tracts based
on data from 329 amyloid-negative (CN: 235, MCI: 86, Dementia: 8) (156M, 173F) and 277
amyloid-positive (CN: 139, MCI: 87, Dementia: 51) (131M, 146F) participants from the ADNI3
dataset.

We found that the following tracts and measures showed significant differences between
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amyloid negative and amyloid positive: cingulum left (AxD, MD), corpus callosum forceps
major and middle sector (MD, RD), extreme capsule left (MD, RD) and right (AxD, MD,
RD), frontopontine tract left (AxD, MD) and right (AxD), inferior longitudinal fasciculus right
(AxD, MD, RD), middle longitudinal fasciculus left (AxD, MD) and right (AxD, MD, RD),
occipito-pontine tract left (MD), optic radiation right (MD), posterior commissure (AxD),
and spinothalamic tract left (RD).

In significant tracts, diffusivity metrics increase while fractional anisotropy decreases, in
those with higher levels of amyloid pathology (this is in the same direction as the known
effects of dementia on these metrics).

Fig. 3. QQ plots summarize the signal detected by each biomarker (amyloid, tau, and ApoE) and
DTI metric (FA, MD, RD, and AxD) across all 38 bundles, indicating which biomarkers and metrics
show the strongest associations. In the first row, the plots show which metric shows the strongest
association for each biomarker. P -values of the 38 tracts were pooled together for each DTI metric
and visualized in QQ plots. In the second row, we analyze for each metric which biomarker shows
significant associations. Note the y-axis range varies across the plots depending on the observed range
of p-values.

3.2. Tau

We ran BUAN to assess the effect of tau positivity on 38 white matter tracts based on data
from 401 tau-negative (CN: 293, MCI: 95, and Dementia: 13) (192M, 209F) and 168 amyloid-
positive (CN: 60, MCI: 68, and Dementia: 40) (75M, 93F) participants in the ADNI3 dataset.
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Fig. 4. We compare the effects of amyloid and tau on white matter microstructure along the major
white matter tracts. Only tracts showing significant effects, passing both local and global FDR for
amyloid and tau, are visualized. Red highlights significant associations between the measures of
Alzheimer’s disease pathology and the microstructural metrics computed with DTI. We consistently
observe the strongest associations with tau in various white matter tracts, as seen in the QQ-plot
at the right end of the figure. Tau outperforms amyloid in terms of strength of association, for each
microstructural metric.

The following tracts and measures showed significant associations between tau positivity and
microstructure:

Arcuate fasciculus left (MD, RD), cingulum left and right (MD, RD), corpus callosum -
forceps major (MD, RD), forceps minor (FA, MD, RD) and mid (AD, MD, RD), corticospinal
Tract left and right (MD, RD), extreme capsule left and right (AxD, MD, RD), frontopon-
tine tract left (MD, RD) and right (FA, AxD, MD, RD), inferior fronto-occipital fasciculus
right (RD), inferior longitudinal fasciculus left (MD, RD) and right (AxD, MD, RD), middle
longitudinal fasciculus left (AxD, MD, RD) and right (AxD, FA, MD, RD), occipito-pontine
tract left (MD, RD) and right (AxD, MD, RD), optic radiation left (RD) and right (AxD,
MD, RD), and uncinate fasciculus right (MD, RD).

In significant tracts, most diffusivity metrics increase while fractional anisotropy decreases,
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Fig. 5. Visualization of localized effects of Tau on MD metrics detected by BUAN. Each tract is
colored based on p-values, with red indicating p<0.05. The combination of Tau and MD detects the
strongest association signal among amyloid, tau, ApoE, and the four DTI metrics.

in line with the expected direction of microstructural abnormalities previously reported in
dementia. However, in some tracts, changes in AxD vary along the length of the tracts.

In Fig. 4, we compare the impact on white matter tracts as influenced by amyloid and
tau. Only those tracts that demonstrate significant effects, meeting both local and global
false discovery rate (FDR) criteria for amyloid and tau, are included. Significant associations
with each biomarker in conjunction with DTI metrics are highlighted in red. We consistently
observe stronger associations with tau across various white matter tracts, as illustrated in the
QQ-plot at the right end of the figure. For all metrics assessed, tau shows stronger associations
compared to amyloid.

MD metrics exhibit the strongest association signal for both amyloid and tau. We illustrate
the localized effects of tau on MD metrics in Fig. 5. Each tract is color-coded based on p-
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values, with tracts showing p-values less than 0.05 highlighted in red.

3.3. APOE ϵ4 genotype

We ran BUAN to assess the impact of APOE ϵ4 - the major common risk gene for late-onset
Alzheimer’s disease - on 38 major white matter tracts, based on data from 358 non ϵ4 carriers
ϵ2ϵ3/ϵ3ϵ3/ϵ2ϵ2 (CN: 224, MCI: 99, Dementia: 35) (168M, 190F) and 203 participants with at
least one ϵ4 gene; ϵ2ϵ4/ϵ3ϵ4/ ϵ4ϵ4 carriers (CN: 136, MCI: 54, and Dementia: 13) (90M, 108F)
participants from the ADNI3 dataset.

Fig. 6. BUAN results for white matter tract alteration in the subgroup of participants carrying at
least one ϵ4 gene. The first and third rows show pvalue plots for each tract, where the x-axis represents
the segment number along the tract and the y-axis shows a negative logarithm of pvalues. The blue
horizontal line in the plots represents the FDR-corrected threshold. Segments that pass the FDR-
corrected threshold are considered significant. The second and fourth rows visualize pvalues mapped
onto the 3D tracts. Dark orange colors imply lower pvalues and greater strength of association.

Significant effects were detected in the corticospinal tract left (FA), frontopontine tract
left (FA), inferior longitudinal fasciculus right (MD), and middle longitudinal fasciculus right
(AxD). MD, RD, and AD decrease. FA slightly increases. Fig. 6 highlights the significant
tracts, with darker orange indicating areas of significant effects. The color gradient represents
pvalues projected onto the 3D tracts, ranging from 1 to 0. Lighter colors indicate pvalues
closer to 1 (no significant effects found), while darker colors indicate pvalues less than 0.05.
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3.4. APOE ϵ3 vs. APOE ϵ4

We ran BUAN to assess the impact of ϵ4 on 38 major white matter tracts using 310 ϵ3ϵ3
(CN: 191, MCI: 85, Dementia: 34) (140M, 170F) and 192 ϵ3ϵ4/ϵ4ϵ4 (CN:129, MCI:50, and
Dementia:13) (88M, 104F) subjects from ADNI3 dataset.

Fig. 7. BUAN results for group differences between ϵ3ϵ3 neutral gene and subjects with either ϵ3ϵ4
or ϵ4ϵ4 gene in white matter tracts . The first and third row shows pvalue plots for each tract,
where the x-axis represents the segment number along the tract and the y-axis shows a negative
logarithm of pvalues. The blue horizontal line in the plots represents the FDR corrected threshold.
Segments that pass the FDR corrected threshold are considered significant. The second and fourth
rows visualize pvalues mapped onto the 3D tracts. Where dark pink color implies lower pvalues and
more significance.
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Significant findings included frontopontine Tract left (FA), inferior Longitudinal Fasciculus
right (AxD, MD), and Middle Longitudinal Fasciculus right (AxD), and spinothalamic tract
left (MD), and right (AxD). MD decreases, AD changes vary along the length of the tract,
with a slight increase in FA. Tract visualizations shown in Fig. 7 highlight the significant
tracts, with darker pink indicating areas of significant effects. The color gradient represents
pvalues projected onto the 3D tracts, ranging from 1 to 0. Lighter colors indicate pvalues
closer to 1 (no significant effects detected), while darker colors indicate pvalues less than 0.05.

3.5. APOE ϵ3 vs. APOE ϵ2

We ran BUAN to assess the impact of the APOE ϵ2 genotype (which is protective against
Alzheimer’s disease) on 38 major white matter tracts using 310 ϵ3ϵ3 (CN: 191, MCI: 85, and
Dementia: 34) (140M, 170F) and 48 ϵ3ϵ2/ϵ2ϵ2 48, (CN: 33, MCI: 14, and Dementia: 1) (28M,
20F) participants in the ADNI3 dataset.

Fig. 8. BUAN results for group differences between the ϵ3ϵ3 (neutral) gene and participants with
either ϵ3ϵ2 or ϵ2ϵ2 gene in white matter tracts. The first and third rows show pvalue plots for each
tract, where the x-axis represents the segment number along the tract and the y-axis shows a negative
logarithm of pvalues. The blue horizontal line in the plots represents the FDR-corrected threshold.
Segments that pass the FDR-corrected threshold are considered significant. The second and fourth
rows visualize pvalues mapped onto the 3D tracts. Where dark green color implies lower pvalues and
greater significance.
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We found the following tracts and measures to be significant: Middle Longitudinal fasci-
culus right (AxD), spinothalamic tract right (FA, AxD), and uncinate fasciculus right (AxD).
FA increases, MD and RD decrease, and AxD changes vary along the length of the tracts.
Tract visualizations shown in Fig. 8 highlight the significant tracts, with darker green indi-
cating areas of significant effects. The color gradient represents pvalues projected onto the 3D
tracts, ranging from 1 to 0. Lighter colors indicate pvalues closer to 1 (no significant effects
found), while darker colors indicate pvalues less than 0.05.

4. Discussion

Our study employed the advanced tractometry method, BUAN (Bundle Analytics), to inves-
tigate the effects of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructure of white
matter tracts in the brain. The results underscore the significant role of tau and amyloid as
biomarkers for Alzheimer’s disease (AD), revealing their profound impact on white matter in-
tegrity. Tau and amyloid deposition are associated with marked changes in MD, AD, and RD,
with FA being the least sensitive metric. This highlights the critical nature of these biomarkers
in the early detection and monitoring of AD progression.

Tau and amyloid significantly alter the microstructural properties of white matter tracts,
which are essential for neural communication. APOE ϵ4 carriers showed microstructural
changes consistent with poorer white matter integrity, compared to those with the ϵ3/ϵ3
genotype, in line with the heightened genetic risk for AD associated with APOE ϵ4. These
alterations are likely due to the reduced efficiency of amyloid clearance and increased inflam-
mation observed in ϵ4 carriers. Conversely, fewer white matter bundles were affected by APOE
ϵ2, perhaps in line with its protective role against AD-related white matter degeneration.11,12

The findings also revealed that MD is the most affected metric, followed by AxD and
RD, whereas FA is the least sensitive. This is consistent with prior literature studying the
association of DTI metrics with dementia.65,66 This differential sensitivity of diffusion metrics
highlights the importance of selecting appropriate imaging markers for assessing white matter
integrity in AD. MD, in particular, may serve as a more reliable indicator of microstructural
damage in the context of AD pathology.

Our results underscore the significant role of the key Alzheimer’s disease biomarkers in
altering the microstructure of key neural pathways, with profound implications for under-
standing the progression and potential intervention points for AD. Some key tracts - the
cingulum bundles and components of the corpus callosum - showed significant alterations in
MD and RD in the presence of both amyloid and tau. The increased MD and RD indicate
water molecules diffusing more freely in brain tissue - a sign of tissue degeneration and loss of
cellular integrity typical in Alzheimer’s disease. This diffusion behavior reflects the structural
breakdown of neural pathways, which is critical in the progression of Alzheimer’s disease.

Effects of amyloid and tau on crucial neural pathways, such as the cingulum and corpus
callosum, may lead to impaired cognitive function and poorer interhemispheric communica-
tion. The cingulum bundle is critical for cognitive and emotional processing, and disruption of
its microstructure can lead to impaired connectivity between the frontal lobe and other brain
regions, contributing to the cognitive decline in AD patients.67,68 The corpus callosum (CC),
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the largest white matter structure in the brain, facilitates inter-hemispheric communication.
The impact on the corpus callosum (including forces major, forceps minor, and the middle
sector of CC) is of great interest, as it plays a crucial role in coordinating cognitive and motor
functions across the two brain hemispheres.69 Additional tracts, such as the extreme capsule
(EMC) and frontopontine tract (FPT), inferior longitudinal fasciculus (ILF), middle longitu-
dinal fasciculus (ML), optic radiation (OR), and spinothalamic tract (STT), also exhibited
significant changes in diffusivity metrics in relation to amyloid and tau. The EMC tract is
located in the temporal lobe and is involved in auditory and language processing.70 Damage
to this tract can affect communication and language abilities, common areas of decline in AD
patients. The FPT connects the frontal cortex to the pons,19 and its impairment can lead
to issues with motor control and executive functions, which are often observed in AD. The
ILF connects the temporal and occipital lobes, playing a role in visual processing and mem-
ory.71 Disruptions in the ILF can contribute to visual memory deficits. The MLF is involved
in language, semantic memory, and the integration of auditory and visual information.72 Its
impairment may contribute to semantic and memory deficits. OR carries visual information
from the thalamus to the visual cortex, impairment in this tract can affect visual processing,73

which is vital for spatial orientation and navigation. STT is critical for pain and temperature
sensation.74 While not typically associated with Alzheimer’s core symptoms, its impairment
could affect sensory processing. These findings suggest that the effects of AD are not confined
to a single functional domain but instead disrupt multiple neural pathways, leading to the
diverse clinical manifestations of the disease.

Moreover, this study highlights the limitations of earlier methods such as tract-based
spatial statistics (TBSS),29 which, despite identifying significant associations between amyloid
positivity, clinical dementia severity, and specific brain regions[citations], suffers from limited
resolution due to predefined atlas regions. The BUAN method overcomes these limitations
by offering a finer-scale mapping of microstructural changes along the length of white matter
tracts, providing a more detailed and accurate assessment of disease-related alterations. The
pronounced effects detected in specific bundles reveal the vulnerability of these white matter
fiber pathways to Alzheimer’s disease pathology, highlighting their potential as biomarkers
for early detection and monitoring of disease progression. Understanding how these tracts are
compromised allows for more targeted research into therapeutic interventions to preserve or
restore their integrity.

Future work will integrate microstructural measures derived from sophisticated modeling
techniques, such as diffusion kurtosis imaging (DKI),75 or neurite orientation dispersion and
density imaging (NODDI)76 into BUAN. Notably, NODDI shows superior ability in capturing
the microstructural properties of brain tissue, outperforming traditional DTI metrics.77

5. Conclusion

In this study, we employ our advanced tractometry method, BUAN (Bundle Analytics), to
evaluate the impact of amyloid, tau, APOE ϵ4, and APOE ϵ2 on the microstructural prop-
erties of white matter tracts in the brain. Among these factors, we find that microstructural
alterations in white matter tracts are most significantly associated with tau and amyloid - the
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two prominent biomarkers of Alzheimer’s disease. Fewer bundles are affected by APOE ϵ2,
and comparing APOE ϵ4 with APOE ϵ3/ϵ3 reveals stronger microstructural alterations than
comparing APOE ϵ4 with ϵ2 and ϵ3 variants combined.
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