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Abstract: Recycled aggregate concrete (RAC), due to its high porosity and the residual cement and
mortar on its surface, exhibits weaker strength than common concrete. To guarantee the safe use of
RAC, a compressive strength prediction model based on artificial neural network (ANN) was built in
this paper, which can be applied to predict the RAC compressive strength for 28 days. A data set
containing 88 data points was obtained by relative tests with different mix proportion designs. The
data set was used to develop an ANN, whose optimal structure was determined using the trial-and-
error method by taking cement content (C), sand content (S), natural coarse aggregate content (NCA),
recycled coarse aggregate content (RCA), water content (W), water–colloid ratio (WCR), sand content
rate (SR), and replacement rate of recycled aggregate (RRCA) as input parameters. On the basis of
different numbers of hidden layers, numbers of hidden layer neurons, and transfer functions, a total
of 840 different back propagation neural network (BPNN) models were developed using MATLAB
software, which were then sorted according to the correlation coefficient R2. In addition, the optimal
BPNN structure was finally determined to be 8–12–8–1. For the training set, the correlation coefficient
R2 = 0.97233 and RMSE = 2.01, and for the testing set, the correlation coefficient R2 = 0.96650 and
RMSE = 2.42. The model prediction deviations of the two were both less than 15%, and the results
show that the ANN achieved pretty accurate prediction on the compressive strength of RAC. Finally,
a sensitivity analysis was carried out, through which the impact of the input parameters on the
predicted compressive strength of the RAC was obtained.

Keywords: recycled aggregate concrete; artificial neural network; compressive strength; mixture
ratio; sensitivity analysis

1. Introduction

As one of the most widely used construction materials, concrete consumes as much as
10 billion tons of natural aggregates on the planet every year. China produces 8 billion tons
of construction wastes on average every year [1]. The demolition and reconstructing of
buildings produces huge amount of construction waste, which further negatively affect
the environment. As a matter of fact, lots of countries in the world lack sufficient land
to dispose of construction waste. Even countries with comparatively vast territories, like
China, face the same difficulty. Without proper treatment, construction waste can result in
adverse impacts on environment [2]. To achieve sustainable development and protect the
ecological environment that we live in, people have been seeking a new environmentally
protective ways of producing concrete for the construction industry [3]. Research on
recycled aggregate concrete (RAC) started towards the end of last century [4,5]. Many
scholars have studied ways of making concrete using recycled aggregate (RA), based on
which, over 75% of construction waste could be reused when making concrete, thereby
reducing CO2 emissions by a huge amount [6–14].

However, due to the powerful absorption performance of RA and the poor adhesion
performance between RA and the cementing material, both the compressive strength
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and the elastic modulus of the RAC are reduced [15]. Many scholars have studied the
factors influencing the compressive strength of RAC, and these mainly include: water
content, replacement rate of recycled aggregate, and water–cement ratio [16,17]. In 1993,
Merlet et al. [18] proposed a new concrete mixed with waste materials for the first time, and
studied its performance when adopting different proportions of fine-grained waste concrete.
Heidari A et al. [19] studied concrete production using waste bricks and conducted tests
for compressive strength and bending strength. Tavakoli et al. [20] studied the replacement
of sand in concrete by clay bricks, and the effects of concrete having its sand substituted by
different ratios of clay bricks. They figured out the optimal clay brick substitution rate, and
finally found no significant changes in concrete performance.

Concrete is the most basic building material. Its quality can seriously affect the safety
of the structure, so that both the construction units and the quality inspection departments
attach great importance to the compressive strength of concrete. The traditional method
of testing the compressive strength of concrete is to reserve a test specimen, which is
complicated to carry out. To better detect the compressive strength of concrete, some
scholars have studied prediction models for concrete compressive strength [21,22]. The
basic properties of RAC must be verified by practical experiments, because concrete
performance can be greatly affected by the composite material types and the amount
of use. However, lab experiments usually require a great amount of manpower, materials,
and funds. In this case, a probability model could be adopted to predict the concrete
performance. However, when there is a great number of variables and complicated relations
between independent variables and dependent variables, the probability model is no longer
applicable [23]. Since RAC is mixed with a large amount of recycled materials and very
complicated components, it is hard to accurately predict its performance using traditional
regression prediction approaches [24–26].

Thanks to the development of information technology, artificial intelligence, big data
and other means have been extensively applied in engineering areas. During recent years,
artificial neural network (ANN), an artificial intelligence algorithm inspired by nature,
has been widely used in the modeling field for practical problems. ANN can perceive
complex nonlinear relationships between dependent variables and independent variables,
and effectively solve many complex engineering problems. It has been widely used in civil
engineering, such as groundwater monitoring, structure recognition, structural damage
monitoring, traffic engineering, material behavior modeling and foundation settlement
prediction, etc. Wagh et al. [27] used an ANN model to detect irrigation use of ground-
water, and showed excellent performance with 13 physical and chemical characteristics
as input parameters. Deshpande et al. [28] predicted the compressive strength of concrete
by means of ANN, model tree and nonlinear regression, and the results indicated that
the ANN model provided the highest accuracy. Xiong et al. [29] obtained structural im-
ages after geological disasters using unmanned aerial vehicles by virtue of ANN image
recognition technology, and judged whether regional structures had collapsed using this
technology, and evaluated the damage after disasters on the basis of structural appearance
characteristics. Lv, Y et al. [30] came up with a model based on a BP neural network and
grey theory to predict the settlement of a foundation pit. The results suggested that both
models boasted favorable predictive capacity. Lots of scholars have used ANN to predict
concrete performance [31–35]. Due to the powerful learning ability of ANN, some scholars
have tried to predict concrete performance using ANN by taking the material components
of the concrete as parameters [36]. Torre et al. [37] constructed a multi-layer perceptron
model to accurately predict the compressive strength of high-performance concrete. Topçu
et al. [38] used ANN to predict the compressive strength and the splitting tensile strength
of recycled aggregate concrete containing silica fume. Khademi et al. [39] adopted three
artificial technologies—ANN, ANFIS and MLR—to predict the compressive strength of
RAC, for which the results showed that ANN was able to predict the compressive strength
of RAC more accurately than the other two. To predict the compressive strength of the
self-compacting high-strength concrete mixed with silica fume, fly ash, and blast furnace
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slag aggregates, Jamaldin et al. [40] established a neural network model, based on which
they obtained good predictions of the experimental results. At present, ANN is mainly used
to predict the compressive strength of natural aggregate concrete and concrete containing
blast furnace slag and fly ash, but similar research has rarely been performed on RAC due
to its complex composition. RAC is a new type of material that is different from traditional
concrete in terms of both the concrete components and its performance. It is hard to predict
the compressive strength of RAC using the regressive statistical method. ANN has the
ability to capture the nonlinear and complex relationships between variables from existing
actual data. Therefore, the application of ANN in the prediction of RAC performance is a
significant research topic.

To make up the gap of using ANN for predicting the RAC compressive strength
and test the compressive strength of RAC in a more efficient manner, in this study, a
RAC compressive strength prediction model was established based on an artificial neural
network. The training data set was obtained through experiments, which was used to
develop the ANN model. Meanwhile, a neural network model with two hidden layers
was constructed, which was trained and tested using 88 groups of data that were obtained
from experiments. The established neural network model had 8 input parameters and
1 output parameter. The prediction results were compared with the test results, verifying
the reliability of the model. Finally, a sensitivity analysis was carried out on the parameters
to analyze the influences of the RAC parameters on its compressive strength.

2. Experiment Plan
2.1. Materials

Portland cement, with chemical and mineral components as shown in Table 1 and
physical properties as shown in Table 2, was adopted in the experiments carried out in this
study. The waste concrete was provided by Changsha Muck Industry Association. Firstly,
its impurities were removed, and then it was crushed using a stone crushing machine
to produce RCA. The production process is shown in Figure 1. The recycled aggregates
adopted in this study contained 97% concrete aggregate and 3% masonry aggregate, with
0–25 mm continuous gradation and a 16% crushing index. Meanwhile, in the experiments
carried out in this paper, the gravel crushed by granite was taken as the natural coarse
aggregate (NCA), with a largest particle size of 25 mm and a crushing index of 12%. After
being washed with water, the silt content of the NCA reached 0. Natural river sand was
used as the fine aggregate, which had a largest particle size of 5 mm. Refer to Figure 2 for
the NCA, RCA, and river sand, and refer to Table 3 for the physical properties of the main
materials. It can be seen from Table 3 that the RCA had a lower density, but a far greater
water absorption rate than the NCA. This is because RCA is porous, and cement mortar is
attached to the surface of the aggregate [41]. The grading of the aggregates was determined
on the basis of the procedures described in the national standard JGJ52-2006 [42], using
test sieves with standard specifications. The gradation results for the RCA, NCA and river
sand are as shown in Figures 3 and 4.

2.2. Design of Mixing Proportion

To better predict the compressive strength of RAC, a total of 88 different concrete
mix proportions were designed. It can be ascertained by reviewing the existing literature
that the compressive strength of RAC is subject to many factors, mainly including cement
content (C), sand content (S), natural coarse aggregate content (NCA), recycled coarse
aggregate content (RCA), water content (W), water–colloid ratio (WCR), sand rate (SR),
and replacement rate of recycled aggregate (RRCA). According to the above factors, before
the experiment, RAC was prepared with different mixing proportions. RRCA was set
as 0–100% of the total volume of coarse aggregate at 10% intervals. The experiment was
divided into two parts: P1 and P2. Each part contained four groups—G1–G4 and G5–G8—
where the sand ratio of G1–G4 was 35%, and the water–cement ratio were respectively
0.5, 0.55, 0.6, and 0.65. As for G5–G8, the sand ratio was 30%, while the water–cement
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ratios were 0.32, 0.37, 0.42, and 0.47, respectively. RAC is characterized by high porosity,
high impurity content, and cement mortar residue on the aggregate surface, all of which
seriously affect its mechanical properties. Therefore, higher requirements need to be met
during the material mixing stage of RAC. To improve the compressive strength of RAC, a
new concrete two-stage mixing approach (TSMA) proposed by Vivian W.Y. Tam et al. [43]
was used in this study. Additionally, specimens were made according to the GB/T50081-
2002 standard [44]. The normal mixing approach (NMA) is first to add half of the coarse
aggregate, then the fine aggregate and cement, and finally the residual coarse aggregate;
after that, water is added, and the mixing machine is immediately started [45]. However,
the TMSA actually divides the mixing process into two parts and divides the required
water into two parts as well, according to specific proportions, to be added at different
times. Figure 5 shows the mixing processes for the two different approaches.

Table 1. Chemical composition and mineral composition of cement.

Composition Item Cement (%)

Chemicals

SiO2 21.4
Al2O3 5.55
Fe2O3 3.46
MgO 1.86
CaO 64.0
K2O 0.54
SO3 1.42

Na2O 0.26

Compounds

C3S 51.0
C2S 23.1
C3A 8.85

C4AF 10.5

Table 2. Physical properties of cement.

Density
(g/cm3) Fineness (%)

Standard Thick
Water

Consumption (%)

Set Time (Min) Compressive Strength (MPa) Flexural Strength (MPa) Specific
Surface

Area (m2/kg)
Initial
Setting Final Set 3 d 28 d 3 d 28 d

3.32 0.25 26.2 155 215 33.4 49.5 6.7 9.1 360
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Table 3. Physical properties of the main materials.

Property NCA RCA Sand

Bulk density (g/m3) 1.536 1.253 1.758
Apparent density 2.758 2.605 2.765

Stacked porosity (%) 46.5 43.0 38.8
Crush index (%) 11.3 19.6 -
Clay content (%) 0.96 0.26 2.56

Water absorption (%) 0.76 4.88 0.89
Maximum particle

size (mm) 25 25 5
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2.3. Experiment Process

During the process of preparing the RAC specimens, a JZC forced drum mixer was
used for mixing. In addition, vibration was applied using a vibrator, and manual tamping
was conducted. Figure 6 shows the RAC specimen preparation process. Step 1: put the
aggregate and half of the water into the mixer to mix for 2 min, then, put the remained
water and materials into the mixer and mix for 2 more minutes; Step 2: pour the concrete
into the mold and tamp it manually, after that, vibrate it using a vibrator for 3 min; Step
3: 24 h after pouring, demold the specimen, and cure for 28 days in the curing room at
a temperature of 20 ± 2 ◦C and 95% relative humidity. A total of 88 different RAC mix
proportions were prepared under the same conditions. A total of 3 samples were made for
each mix proportion. Each specimen was made with a size of 150 mm× 150 mm× 150 mm.
Please refer to Figure 7. After that, in order to test the workability of concrete, a concrete
slump test was carried out according to the JGJ52-2006 standard specifications [42].
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Figure 6. RAC specimen preparation process.

Finally, in accordance with the GB/T50081-2002 [44] standard, a cube compressive
strength experiment was carried out using a TYA-2000 (Shenzhen wance Test Equipment
Co., Ltd., Shenzhen, China) electro-hydraulic compressive tester; the test process is shown
in Figure 8. The specimen failure crack and failure interface morphology are presented in
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Figure 9. It can be seen that the cracks on the RAC surface are mostly vertical. The part
highlighted in red in the figure indicates the fracture failure of the aggregate after specimen
fracture, while the part highlighted in black indicates the peeling failure of aggregate
and mortar. This proves that while the natural aggregate usually exhibits peeling failure
between the aggregate and the mortar, the recycled aggregate mostly exhibits fracture
failure of aggregate itself. This is also one of the reasons causing the low compressive
strength of RAC. Therefore, the bending strength of the recycled aggregate is highly
important to the compressive strength of RAC.
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2.4. Experimental Results

Throughout the experiment, a data set containing 88 different mixing proportions was
obtained, which was used to train the ANN model. Table 5 shows all the experimental
mixing proportion data.

Table 4. Experimental mixing proportion data.

Division Grouping C (kg/m3) S (kg/m3) NCA
(kg/m3)

RCA
(kg/m3)

Water
(kg/m3) W/C SR (%) RRCA (%)

P1

G1

350 532.2 987.2 0 175 0.5 35 0
350 532 888.4 98.7 175 0.5 35 10
350 531.7 789.7 197.4 175 0.5 35 20
350 531.7 691.0 296.1 175 0.5 35 30
350 531.6 592.3 394.8 175 0.5 35 40
350 530.8 493.6 493.6 175 0.5 35 50
350 530.9 394.8 592.3 175 0.5 35 60
350 531.6 296.1 691.0 175 0.5 35 70
350 531.3 197.4 789.7 175 0.5 35 80
350 531.2 98.7 888.4 175 0.5 35 90
350 530.2 0 988.0 175 0.5 35 100

G2

350 526.2 974.8 0 192.5 0.55 35 0
350 525.3 877.3 97.5 192.5 0.55 35 10
350 523.2 780.0 194.9 192.5 0.55 35 20
350 523.1 682.3 292.4 192.5 0.55 35 30
350 523.1 584.8 389.9 192.5 0.55 35 40
350 521.3 487.4 487.4 192.5 0.55 35 50
350 522.3 389.9 584.8 192.5 0.55 35 60
350 522 292.4 682.3 192.5 0.55 35 70
350 522.3 194.9 779.8 192.5 0.55 35 80
350 521.3 97.4 877.3 192.5 0.55 35 90
350 520.3 0 975 192.5 0.55 35 100

G3

350 517.8 962.2 0 210 0.6 35 0
350 517.5 866.0 96.2 210 0.6 35 10
350 516.3 769.7 192.4 210 0.6 35 20
350 516.2 673.5 288.6 210 0.6 35 30
350 515.9 577.3 384.8 210 0.6 35 40
350 515.8 481.1 481.1 210 0.6 35 50
350 515.4 384.8 577.3 210 0.6 35 60
350 515.3 288.6 673.5 210 0.6 35 70
350 515.6 192.4 769.7 210 0.6 35 80
350 515.2 96.2 865.9 210 0.6 35 90
350 515.2 0 961.8 210 0.6 35 100
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Table 5. Experimental mixing proportion data.

Division Grouping C (kg/m3) S (kg/m3) NCA
(kg/m3)

RCA
(kg/m3)

Water
(kg/m3) W/C SR (%) RRCA (%)

G4

350 511.2 949.5 0 227.5 0.65 35 0
350 510.6 855 94.5 227.5 0.65 35 10
350 510.6 759.6 189.9 227.5 0.65 35 20
350 510.3 664.6 284.8 227.5 0.65 35 30
350 510.3 569.7 379.8 227.5 0.65 35 40
350 509.6 474.7 474.7 227.5 0.65 35 50
350 509.3 379.8 569.7 227.5 0.65 35 60
350 508.9 284.8 664.6 227.5 0.65 35 70
350 508.6 189.9 759.6 227.5 0.65 35 80
350 508.2 94.9 854.5 227.5 0.65 35 90
350 508.3 0 950 227.5 0.65 35 100

P2

G5

480 459.3 1070.2 0 153.6 0.32 30 0
480 459.2 963.2 107 153.6 0.32 30 10
480 459 856.1 214.0 153.6 0.32 30 20
480 458.8 749.1 321.0 153.6 0.32 30 30
480 458.6 642.1 428.0 153.6 0.32 30 40
480 458.3 535.1 535.1 153.6 0.32 30 50
480 458.6 428.0 642.1 153.6 0.32 30 60
480 455.3 321.0 749.1 153.6 0.32 30 70
480 456.1 214.0 856.1 153.6 0.32 30 80
480 456.6 107.0 963.1 153.6 0.32 30 90
480 456.5 0 1071.3 153.6 0.32 30 100

G6

480 452.8 1509.2 0 177.6 0.37 30 0
480 452.6 1358.3 150.9 177.6 0.37 30 10
480 452.9 1207.3 301.8 177.6 0.37 30 20
480 451.6 1056.4 452.7 177.6 0.37 30 30
480 451.3 905.5 603.6 177.6 0.37 30 40
480 451.2 754.6 754.6 177.6 0.37 30 50
480 450.5 603.6 905.5 177.6 0.37 30 60
480 450.6 452.7 1056.4 177.6 0.37 30 70
480 450.3 301.8 1207.3 177.6 0.37 30 80
480 450.3 150.9 1358.2 177.6 0.37 30 90
480 450.1 0 1510 177.6 0.37 30 100

G7

480 447 1042.3 0 201.6 0.42 30 0
480 447.2 938.1 104.2 201.6 0.42 30 10
480 447 833.8 208.4 201.6 0.42 30 20
480 446.9 729.6 312.6 201.6 0.42 30 30
480 446.8 625.3 416.9 201.6 0.42 30 40
480 446.5 521.1 521.1 201.6 0.42 30 50
480 446.5 416.9 625.3 201.6 0.42 30 60
480 446.1 312.6 729.6 201.6 0.42 30 70
480 445.8 208.4 833.8 201.6 0.42 30 80
480 445.3 104.2 938.0 201.6 0.42 30 90
480 445.6 0 1042 201.6 0.42 30 100

G8

480 439.5 1025.5 0 230.4 0.47 30 0
480 439.2 922.9 102.6 230.4 0.47 30 10
480 439 820.4 205.1 230.4 0.47 30 20
480 438.6 717.8 307.6 230.4 0.47 30 30
480 438.6 615.3 410.2 230.4 0.47 30 40
480 437 512.7 512.7 230.4 0.47 30 50
480 437.6 410.2 615.3 230.4 0.47 30 60
480 437 307.6 717.8 230.4 0.47 30 70
480 436.5 205.1 820.4 230.4 0.47 30 80
480 436.2 102.5 922.9 230.4 0.47 30 90
480 436.2 0 1026 230.4 0.47 30 100

On the basis of the slump experiment, the effect of the water–colloid ratio on the
slump was obtained; see Figures 10 and 11. The results show that the RAC slump increases
with increasing water–cement ratio, which is similar to ordinary concrete. When the water–
cement ratio is constant, the slump decreases with increasing RRCA. Because RCA has
greater water absorption property compared to NCA, under the same water–cement ratio
conditions, the higher the RRCA, the worse the workability and the lower the slump of the
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RAC. This is a rule concluded under the premise of guaranteeing a dry state of RCA and
actual water–colloid ratio, which is in line with the conclusions obtained by [46,47].
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Figures 12 and 13 show the results of the compressive strength experiments of the
RAC cubic specimens with 88 different mixing proportions. The mean value of three
specimens was taken as the final compressive strength. It can be seen from the figure that
when the RRCA is 70%, the compressive strength of RAC reaches its maximum value; the
compressive strength of RAC using the best mixing proportions reached as high as 63 MPa,
which is equivalent to that of ordinary concrete.
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ships between the input and the output through a mathematical training process, thus 
reducing errors and achieving optimal prediction. Its most outstanding features are the 
ability to learn from existing data, in order to classify and predict data, and to assist in 
making decisions. Based on relative training, ANN is able to map the input parameters to 
the specific output. Compared with traditional numerical value analysis, ANN achieves 
more reliable prediction results [51–54]. The multi-layer feedforward neural network usu-
ally has an input layer and an output layer, as well as multiple hidden layers. Among the 
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3. Strength Prediction Model
3.1. Artificial Neural Network

ANN is composed of many interconnected neurons, each of which is capable of infor-
mation processing [48]. It is actually a complex mathematical model, which simulates the
biological neuron structure and self-learning function; see Figure 14. As a matter of fact,
ANN is quite capable of simulating the human brain, and is able to process information and
make corresponding predictions [49,50]. ANN is able to learn the relationships between
the input and the output through a mathematical training process, thus reducing errors
and achieving optimal prediction. Its most outstanding features are the ability to learn
from existing data, in order to classify and predict data, and to assist in making decisions.
Based on relative training, ANN is able to map the input parameters to the specific output.
Compared with traditional numerical value analysis, ANN achieves more reliable pre-
diction results [51–54]. The multi-layer feedforward neural network usually has an input
layer and an output layer, as well as multiple hidden layers. Among the existing training
algorithms, the error backpropagation algorithm is able to achieve the most satisfactory
results. It can continuously update the weights and thresholds of the network according to
the known errors until the minimum error of the network is reached.
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3.2. Back Propagation Neural Network

Back propagation (BP) is a learning algorithm developed by Rumelhart et al. [55], and
is most commonly used in perceptron networks with hidden units. Meanwhile, the BPNN
is also an ANN structure that nowadays finds wide application. The BP algorithm mainly
includes two processes: first, the input signal is transmitted from the input layer to the
output layer, and then the output result â is compared to the target value a. The error of
each neuron is determined on the basis of the difference between the predicted value and
the target value, which is the back propagation process of error. Second, the weight and
threshold between the predicted value and the target value should be readjusted to reduce
the error between the predicted value and the target values. According to the generalized
delta principle, iterative training is performed through the gradient descent method until
minimal error between the predicted value and the target value is obtained, that is, the loss
function reaches its minimum value. On the other hand, the multi-layer perceptron is a
more complicated perceptron, and is the most widely used [56–58]. It contains an input
layer, multiple hidden layers, and an output layer. Please see Figure 15 for the BPNN
structure of the multi-layer perceptron. Figure 16 shows the information processing of
the single hidden layer neuron. Each neuron needs to cover the input, weight, threshold,
and activation functions. In addition, the process of adjusting the weight to produce the
target output is actually the “training” [59]. Xi = (X1, X2, X3 . . . Xn) represents the input
parameters of BPNN, while Wij = (Wi1, Wi2 . . . Win) represents the corresponding weight
of each input. Formula (1) is the summation function formula. Formulas (2) and (3),
respectively, represent the updated weight and threshold.

Vj =
n

∑
i=1

WijXi + b (1)

w(k + 1) = w(k)− α
∂E(k)
∂w(k)

(2)

b(k + 1) = b(k )− α
∂E(k)
∂b(k)

(3)

where α is the learning rate, for which the value is set to be 0.01; w(k) and b(k) are the
connection weights and threshold vectors among layers at the kth iteration; ∂E(k)

∂w(k) and ∂E(k)
∂b(k)

are the error adjustment gradients of the output errors to each weight and threshold at the
kth iteration.
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3.3. Transfer Function

The transfer function has a great impact on the performance of the neural network. It
can add nonlinear factors to the model, thereby enhancing the expression of the model. The
commonly used activation functions mainly include the sigmoid function, tanh function,
and ReLU function. Previous studies have shown that the S function is the optimal transfer
function [60,61]. Therefore, in this study, the sigmoid transfer function (Log-sigmoid,
tan-sigmoid) was used, as shown in Formulas (4) and (5). All ranges of input data are
acceptable to this function, which can further control the output within a range of [0, 1].

Log− sigmoid : g(x) =
1

1 + e−n (4)
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Tan− sigmoid : g(x) =
2

1 + e−2n − 1 (5)

3.4. Training Algorithm

The BPNN can be trained using many different training algorithms, among which
the gradient descent algorithm, Newton algorithm, conjugate gradient algorithm, Cauchy-
Newton algorithm and Levenberg-Marquardt algorithm are the most widely used ones. The
Levenberg-Marquardt algorithm has been widely applied in ANN prediction, achieving
the best prediction for the nonlinear behavior of concrete. However, this is an algorithm
quite different from the others [62], and was implemented and improved in MATLAB
(MathWorks, r2016A) software.

3.5. Data Standardization

Data standardization is a key step in the soft computing process, and can eliminate
the influences of different dimensions on the data processing results. In the field of neural
networks, the input data are usually scaled to [0, 1]. This not only eliminates the influences
of different dimensions of output parameters, but also reduces the size of the input data
and speeds up the training process of the neural network [63]. Iruansi et al. [64] also
pointed out that data normalization, within an appropriate range, can improve the learning
efficiency of neural networks. In addition, in this paper, the data standardization formula
is as shown below (6).

xn =
x− xmin

xmax − xmin
(6)

where xn is the value after standardization, xmax is the maximum value of para.x, and xmin
is the minimum value of para.x.

3.6. Model Evaluation Parameters

The BPNN model was trained using the training data, and then its accuracy was
evaluated on the basis of the prediction errors obtained using the verification data. Besides
calculating the “goodness of fit” of the model, it is also necessary to analyze the error of the
model in order to conduct better evaluation of the model. In this study, Formulas (7)–(9)
were used to calculate the correlation coefficient (R2), mean square error (MSE), and root
mean square error (RMSE), respectively.

R2 = 1−

n
∑

i=1
(CSE − CSP)

2

n
∑

i=1
(CSE − CSE)

(7)

MSE =
1
n

n

∑
i=1

(CSP − CSE)
2 (8)

RMSE =

√
1
n

n

∑
i=1

(CSP − CSE)
2 (9)

where CSP is the predicted output value of the model; CSE is the mean experimental value;
CSE is the target output (experimental value); and n is the total number of samples.

The correlation coefficient R2 can be used to measure the linear correlation between
variables. The closer the R2 gets to 1, the stronger the correlation between the variables.
MSE and RMSE can be used to evaluate the difference between the predicted value and the
target value. The smaller the MSE or RMSE value, the better the accuracy of the approach
using the prediction model to describe the experimental data [65].
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3.7. Determination of BPNN Structure

The first step of model development is to determine the BPNN structure, which
should be achieved by figuring out the optimal numbers of hidden layers and hidden layer
neurons. Meanwhile, BPNN over-fitting is also a problem that should be considered. The
more complicated the model, the greater the possibility of the occurrence of the over-fitting
problem. Lots of scholars have proposed relative algorithms that avoid over-fitting [66–68].
In this study, a trial-and-error approach was used to determine the optimal BPNN structure,
for which the whole process was realized in MATLAB software.

4. Discussion
4.1. BPNN Architectures

The dimension of the input parameter vector is 1 × 8, which consists of eight parame-
ters: C (kg/m3), S (kg/m3), NCA (kg/m3), RCA (kg/m3), Water (kg/m3), W/C, SR (%),
RRCA (%). The output vector dimension is 1 × 1, namely the RAC compressive strength
(CS). For the numerical value statistics of these parameters, please see Table 6. In addition,
the frequency distribution histogram of the nine variables is as shown in Figure 17. In
addition, the training parameters of the BPNN model are as shown in Table 7.
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[66–68]. In this study, a trial-and-error approach was used to determine the optimal BPNN 
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Figure 17. Histogram of variable frequency distribution.{(a) C (Kg/m3); (b) S (Kg/m3); (c) NCA (Kg/m3); (d) RCA (Kg/m3); 
(e) Water (Kg/m3); (f) W/C; (g) SR (%); (h) RRCA (%); (i) CS (MPa)}. 

Table 6. back propagation neural network (BPNN) model training parameters. 

Parameter Set the Value 
Training algorithm Levenberg–Marquardt Algorithm 

Number of hidden layers 1 to 2 
Number of hidden layer neurons 1–20 

Epochs 500 
Performance evaluation R2, RMSE 

Transfer function Log-sigmoid, Tan-sigmoid 

4.2. BPNN Model Development 
There is still no specified theoretical basis for determining the best structure of the 

BPNN. Most scholars now use a trial-and-error approach to determine it [69,70]. Based on 
different settings of BPNN parameters, a total of 840 BPNN models were studied and de-
veloped. In addition, each model was trained using 62 (70.45%) data, and tested using 26 
(29.55%) data, to verify the model. Then the correlation coefficient R2 was used to sort the 
840 developed BPNNs. Top 10 models in the sorting are as shown in Table 7. As for the 
RMSE of each model, please see Figures 18–21. 

Table 7. BPNN model ranking based on correlation coefficient R2 (TOP10). 

The Sorting Structure The Transfer Function R2 RMSE 
1 8–12–8–1 Log-sigmoid 0.96650 2.42 
2 8–16–5–1 Log-sigmoid 0.96236 3.56 
3 8–3–5–1 Tan-sigmoid 0.95236 4.56 
4 8–15–8–1 Log-sigmoid 0.95233 3.26 
5 8–12–1 Tan-sigmoid 0.95016 5.24 
6 8–8–6–1 Tan-sigmoid 0.95011 6.35 
7 8–13–2–1 Tan-sigmoid 0.94256 2.39 
8 8–2–1 Log-sigmoid 0.94026 3.56 
9 8–12–9–1 Log-sigmoid 0.94002 3.65 

Figure 17. Histogram of variable frequency distribution.{(a) C (Kg/m3); (b) S (Kg/m3); (c) NCA (Kg/m3); (d) RCA (Kg/m3);
(e) Water (Kg/m3); (f) W/C; (g) SR (%); (h) RRCA (%); (i) CS (MPa)}.
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Table 6. Numerical value statistics of experimental parameters.

Input and Output
Parameters Minimum Value Maximum Average Standard Deviation Variance

C (kg/m3) 350 480 - - -
S (kg/m3) 436.2 532.2 484.1 36.6 36.9

NCA (kg/m3) 0 1509.2 532.6 351.9 353.9
RCA (kg/m3) 0 1510 532.6 351.9 354.0
Water (kg/m3) 153.6 230.4 196 25 25.1

W/C 0.32 0.65 - -
SR (%) 30 35 - -

RRCA (%) 0 100 - -
CS (MPa) 26 63 41.3 8.7 8.7

Table 7. Back propagation neural network (BPNN) model training parameters.

Parameter Set the Value

Training algorithm Levenberg–Marquardt Algorithm
Number of hidden layers 1 to 2

Number of hidden layer neurons 1–20
Epochs 500

Performance evaluation R2, RMSE
Transfer function Log-sigmoid, Tan-sigmoid

4.2. BPNN Model Development

There is still no specified theoretical basis for determining the best structure of the
BPNN. Most scholars now use a trial-and-error approach to determine it [69,70]. Based
on different settings of BPNN parameters, a total of 840 BPNN models were studied and
developed. In addition, each model was trained using 62 (70.45%) data, and tested using
26 (29.55%) data, to verify the model. Then the correlation coefficient R2 was used to sort
the 840 developed BPNNs. Top 10 models in the sorting are as shown in Table 8. As for the
RMSE of each model, please see Figures 18–21.

Table 8. BPNN model ranking based on correlation coefficient R2 (TOP10).

The Sorting Structure The Transfer
Function R2 RMSE

1 8–12–8–1 Log-sigmoid 0.96650 2.42
2 8–16–5–1 Log-sigmoid 0.96236 3.56
3 8–3–5–1 Tan-sigmoid 0.95236 4.56
4 8–15–8–1 Log-sigmoid 0.95233 3.26
5 8–12–1 Tan-sigmoid 0.95016 5.24
6 8–8–6–1 Tan-sigmoid 0.95011 6.35
7 8–13–2–1 Tan-sigmoid 0.94256 2.39
8 8–2–1 Log-sigmoid 0.94026 3.56
9 8–12–9–1 Log-sigmoid 0.94002 3.65
10 8–9–9–1 Log-sigmoid 0.93999 3.2

Figure 22 shows the error reduction process during the BPNN training, which provides
an optimal representation of the model training process. The blue line in the figure
represents the network training error, the green line represents the network verification
error, and the red line represents the test error. The training stops when the verification
error reaches the set target or the verification error is no longer decreasing. Figure 23 shows
the training status of BPNN.
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5. Results

All models were realized using MATLAB software according to the above process. A
total of 840 BPNN models were developed based on different numbers of hidden layers,
hidden layer neurons, and transfer functions. It can be seen from Table 8 that the optimal
BPNN structure was 8–12–8–1, with a correlation coefficient R2 of 0.96650; the RMSE
was 2.42, and the activation function was the Log-sigmoid function. This structure has
two hidden layers: the first hidden layer contains 12 neurons, while the second contains
8 neurons; see Figure 24.
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Figure 24. Optimal BPNN structure.

Figures 25 and 26 describe the results predicted by the optimal BPNN model, which
respectively compares the values predicted by the training set and the test set with the
experimental values. Obviously, the proposed 8–12–8–1 BPNN model is capable of making
accurate predictions with respect to RAC compressive strength, and controlling the devia-
tions of all samples to within 15% (points between the two dotted lines). Figure 27 shows
the comparison between the predicted values of all data and the experimental values,
achieving the same conclusions.
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6. Sensitivity Analysis

In the field of neural networks, many scholars have conducted research on new ANN
learning rules, restructuring the architecture of the neural network in order to achieve better
application. ANN is called a “black box”, aiming to convert the input into an ideal output.
Being different from other traditional numerical analysis models, it is difficult to use ANN
to interpret the relations between independent variables and dependent variables. The
input parameters contain the required output information, while the remaining additional
features and information in the input parameters are beneficial for improving the prediction
capability. However, usually, some redundant parameters containing little information are
also included, which do not improve the information, and can affect the performance of the
learning algorithm. The purpose of the sensitivity analysis is to determine the impact of the
input parameters in the mathematical model on the output result, thereby enhancing the
understanding of the input and output variable relationships in the model. The sensitivity
analysis can be used to determine the contribution of a single input parameter to the output
parameter, thus reducing redundant parameters [71]. In this study, a relative analysis
was conducted using the sensitivity analysis method based on weight, as proposed by
Milne [72]; see Formula (10), below:

I IF =

∑nhidden
j=1

wji

∑
ninputs
l=1 |wjl |

·woj

∑
ninputs
k=1

(
∑nhidden

j=1

∣∣∣∣∣ wjk

∑
ninputs
l=1 |wjl |

·woj

∣∣∣∣∣
) (10)

In the formula, I IF is the importance of the input parameters, which are referred to
as contributory factors; w is the connection weight between the two connected neurons;
wji is the connection weight between the input layer and the hidden layer, and woj is the
connection weight between the output layer and the hidden layer (product of the weight
of the first hidden layer and the weight of the second hidden layer). l, i, k all represent the
input layer neuron, ninputs is the number of the input parameters, and nhidden is the number
of hidden neurons (first hidden layer).
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Table 9 shows the connection weight between the input layer neurons and the hidden
layer neurons of the optimal BPNN model. Figure 28 shows the effect of a single parameter
on the prediction of RAC compressive strength. It can be seen that the parameter of cement
content has the most significant impact on predicted compressive strength of RAC, with
an impact factor reaching 19.78%. This indicates that the cement content is the factor that
affected the compressive strength of the recycled concrete the most in this study. The impact
factors of RCA, NCA, and W/C were, respectively, 18.79%, 14.75%, and 12.77%, indicating
that the content of the aggregate has a greater impact on the compressive strength of RAC,
while the RCA has the greatest impact. Second, the impact factors of the RRCA, S, W, and
SR reached 11.06%, 8.49%, 8.15%, and 6.22%, respectively. It can be seen from the results of
the sensitivity analysis that none of the eight input parameters in this study had an impact
factor that was too low (lower than 2%). All eight parameters provided useful information
for predicting RAC compressive strength.

Table 9. Connection weights obtained by optimal BPNN.

Input Parameters Output
Parameter

C S NCA RCA W W/C SR RRCA CS

0.825 0.620 0.316 1.265 0.453 0.022 0.822 0.490 −0.370
0.268 0.048 1.256 0.179 0.537 0.767 1.365 0.166 −0.170
0.620 0.316 0.339 0.320 0.560 0.550 0.320 0.220 −0.140
1.256 0.475 0.179 0.580 0.235 0.560 0.250 0.320 −0.730
0.320 0.210 0.360 0.860 0.330 0.240 0.120 0.240 −0.010
0.020 0.320 0.030 0.240 0.120 0.230 0.320 0.010 0.310
0.690 0.120 0.090 0.100 0.120 0.140 0.230 0.210 0.520
0.230 0.360 0.650 0.350 0.320 0.235 0.320 0.210 −0.170
0.050 0.040 0.050 0.180 0.120 0.140 0.120 0.200 0.000
0.320 0.030 0.240 0.120 0.230 0.320 0.010 0.360 −0.110
0.070 0.120 0.000 0.000 0.070 0.120 0.210 0.230 −0.020
0.020 0.001 0.170 0.150 0.210 0.000 0.030 0.020 0.090
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7. Conclusions

RAC is an environmentally friendly construction material with great development
potential, and is in line with the concept of sustainable development. With a proper design
of mixing proportions, RAC is able to achieve the same performance as ordinary concrete.
However due to the impact of the original mortar and cement residual of the old concrete
on the recycled aggregate, the compressive strength of RAC is usually weaker than that
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of ordinary concrete. To guarantee the safe use of RAC, it is necessary to predict the
compressive strength of the RAC. In this paper, ANN was applied for the prediction of
RAC compressive strength, which verified the usability of the model and allowed the
following conclusions to be drawn:

(1) A total of 88 different mix proportions of RAC were designed, and the effects of
different water–cement ratios and replacement rates of recycled aggregate regenerated
aggregate on RAC compressive strength were studied, with water–cement ratios of
0.35–0.65, and RRCA of 0–100%. The experimental results show that the performance
of RAC produced from recycled aggregate can be comparable to that of ordinary
concrete. With reasonable mixing proportion design, the RAC compressive strength
was able to reach 63 MPa. Under the same water–cement ratio conditions, the RAC
slump decreases with increasing RRCA. In addition, the best RRCA rate is 70%.

(2) A total of 840 BPNN models were developed using a trial-and-error approach, for
which the C (kg/m3), S (kg/m3), NCA (kg/m3), RCA (kg/m3), Water (kg/m3) W/C,
SR (%), and RRCA (%) were taken as the input parameters. Meanwhile, based on
the maximum correlation coefficient R2, the optimal BPNN model (8–12–8–1) was
selected to predict the RAC compressive strength. The predicted values and the
experimental values exhibited good fitting. In addition, the correlation coefficient
between the predicted value and the experimental value was 0.96650, and the RMSE
reached 2.42.

(3) The sensitivity analysis shows that, all eight of the selected variables was able to
greatly affect the compressive strength of RAC; among them, the cement content was
the most influential one with respect to its effect on RAC compressive strength. Its
impact factor reached 19.78%, while the impact degrees of the other parameters were
in the following order: RCA > NCA > W/C > RRCA > S > W > SR.

It can be seen that ANN can help to achieve accurate prediction of RAC compressive
strength, and can be applied in other types of concretes. To improve the prediction accuracy,
more sample data could be collected during the testing stage, thereby increasing the sample
amount of the training set.

8. Limitations

This study may not be perfect due to limitations with respect to the authors’ time and
knowledge. In practical applications, more sample groups can be set in order to achieve
more accurate and reliable prediction.
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