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Climate-induced shifts in the timing of life-history events are a worldwide

phenomenon, and these shifts can de-synchronize species interactions such

as predator–prey relationships. In order to understand the ecological impli-

cations of altered seasonality, we need to consider how shifts in phenology

interact with other agents of environmental change such as exploitation and

disease spread, which commonly act to erode the demographic structure of

wild populations. Using long-term observational data on the phenology and

dynamics of a model predator–prey system (fish and zooplankton in Wind-

ermere, UK), we show that age–size truncation of the predator population

alters the consequences of phenological mismatch for offspring survival

and population abundance. Specifically, age–size truncation reduces intra-

specific density regulation due to competition and cannibalism, and thereby

amplifies the population sensitivity to climate-induced predator–prey asyn-

chrony, which increases variability in predator abundance. High population

variability poses major ecological and economic challenges as it can diminish

sustainable harvest rates and increase the risk of population collapse. Our

results stress the importance of maintaining within-population age–size

diversity in order to buffer populations against phenological asynchrony,

and highlight the need to consider interactive effects of environmental impacts

if we are to understand and project complex ecological outcomes.

1. Introduction
Phenological shifts (i.e. changes in the timing of periodic life-history events such

as reproduction) are among the best-documented ecological impacts of climate

change [1–3]. These shifts may arise through micro-evolutionary processes or

represent phenotypic plasticity in traits affecting phenology [4]. Because species

within the same food web may differ in the magnitude of their responses to

climate change, phenological shifts have the potential to cause temporal mis-

match between interacting species such as predators and their prey [5,6]. It has

been shown recently that strong intrinsic density regulation (e.g. owing to compe-

tition) can buffer population growth against phenological mismatch [7]. This

suggests that the demographic structure of a population, which determines the

type and strength of intraspecific interactions, mediates how shifts in phenology

and trophic interactions translate into changes in population abundance. There-

fore, truncation of the population age–size structure, as commonly caused

by exploitation [8,9] or disease outbreaks, may alter the population response to

phenological shifts associated with climate change.

We test the hypothesis that the demographic structure of a population deter-

mines its sensitivity to phenological mismatch using long-term data on the

phenology and dynamics of a freshwater fish, European perch (Perca fluviatilis,
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67 years), and its zooplankton prey (Cladocera, 40 years) in

Windermere, UK. Perch larvae rely on zooplankton as their pri-

mary food source upon depletion of their yolk reserves shortly

after hatching in late spring, and are subsequently subjected to

intraspecific competition and cannibalism by older perch [10].

Owing to a significant warming of the lake in recent decades

(figure 1a), and a severe age–size truncation of the perch popu-

lation in response to a disease outbreak in 1976 [11] (figure 1b),

this long-term monitoring provides a unique opportunity to

simultaneously study consequences of climatic and demo-

graphic change in a predator–prey system. Specifically, two

mechanisms may contribute to higher population sensitivity

to phenological shifts. First, a broad age–size distribution

may result in a longer reproductive period, and therefore

buffer populations against variability in prey phenology by

reducing the probability of severe mismatch. Second, age–

size truncation can lead to relaxed intrinsic density depen-

dence if older individuals cannibalize or compete with young

recruits, which may weaken the top-down control of recruit-

ment and increase population sensitivity to temporal

mismatch between predator larvae and their prey.
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Figure 1. (a) Time series of annual temperature anomaly, (b) mean size of
perch spawners and (c) predator ( perch larvae, blue) and prey (zooplankton,
grey) phenology. (a) Temperatures in Windermere have increased considerably
since the late 1980s (above average values in red). (b) The mean sizes were
severely reduced due to a disease outbreak in 1976 (arrow). (c) The timing of
hatching of perch larvae is shown as duration (blue bands), peak (thin blue
line) and long-term trend (thick blue line). Note the shorter larval hatching
periods towards the end of the time series. The timing of zooplankton spring
population development is shown as peak (grey circles and line) and long-
term trend (thick dashed grey line). (Online version in colour.)
2. Material and methods
(a) Data
Data are analysed from Windermere in the English Lake District,

UK, one of the most intensively studied lakes in the world [12].

The scientific sampling of perch started in the 1940s and con-

tinues to date with very little change in gear type and fishing

methods. Perch are caught on the spawning grounds for at

least six weeks in spring (April–June) with traps that are unselec-

tive for individuals of 90–300 mm total length [13]. The traps are

retrieved once a week and the total length of each individual is

measured [14]. We used data on the time and size at capture of

mature perch (classified with respect to spawning as either

‘ripe’ or ‘spent’ upon examination) from the Green Tuft spawn-

ing site in the North Basin of Windermere from the years 1946

to 2012. The Windermere perch population experienced a

major disease (pathogen) outbreak in 1976, which induced a

massive mortality, mostly among large mature individuals [11],

and dramatically truncated the demographic structure of the

population for many years [12,15]. Surface water temperature

in Windermere, which has warmed considerably since the late

1980s, was recorded as part of the long-term monitoring at

near daily intervals. Zooplankton are an important component

of the diet of perch larvae, with Daphnia constituting the most

abundant of all food organisms consumed by young perch [16].

Zooplankton abundance was derived from counts of Cladocera

on filter papers used to estimate phytoplankton chlorophyll a
[17]. The analysis of the phenological match/mismatch between

perch larvae and zooplankton was performed for the period

1969–2008, during which consistent methods were used to collect

all data at weekly to fortnightly intervals.

(b) Peak and duration of perch spawning
We estimated the peak and duration of the spawning period for

each year (1946–2012) by fitting normal distributions to the

weekly catches of spawners (electronic supplementary material,

figure S1). We used the mean of the distribution to estimate

the peak spawning and four times the standard deviation (+2

s.d.) in order to estimate the duration of the spawning period

(time during which approx. 95% of fish spawn). Multiple linear

regressions were performed to independently model the peak

and duration of the spawning season, with mean body size
and the total number of mature fish caught as biotic predictors,

and monthly/seasonal mean temperatures and the disease out-

break as abiotic predictors (centred variables). We allowed for

quadratic temperature effects and tested for an interaction

between temperature and the presence/absence of the disease.

We selected the best temperature predictor, constructed the full

model using this temperature measure and all other predictors,

and iteratively dropped predictors/interactions from the model

using leave-one-year-out cross-validation (see below).

(c) Perch larvae – zooplankton match/mismatch
We estimated the time of hatching of perch larvae based on the

temporal spawning distribution and the water temperature

during subsequent egg development. According to experimental

results, the heat sum in degree-days required for perch larvae to
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hatch is constant over a wide range of temperatures, including

those experienced by perch larvae in Windermere [18]. We com-

puted the number of days required for the larvae to hatch based

on the temperature experienced in a given year and a heat sum

of 97 degree-days above a threshold of 4.98C [18]. Peak spawning

in Windermere perch typically occurs at water temperatures

around 128C. At these temperatures, approximately 80% of

larvae hatch within a period of 1–2 days approximately two

weeks after spawning [18]. Using phenology measures for

zooplankton spring population development [17], which is con-

sistent with a normal distribution over time [19], we calculated

the phenological match/mismatch as the difference in days

between the estimated peaks of larval hatching and zooplankton

abundance (electronic supplementary material, figure S2).

(d) Perch recruitment
Recruitment was taken as the abundance of 2-year-old perch (the

youngest age-class caught in the trap survey) from recent esti-

mates of age-specific abundances until 2002 [20]. Multiple

linear regressions were performed to model recruitment (log-

transformed number of recruits) using the following predictors:

the duration of the spawning/hatching period, the annual

match/mismatch index, the number of spawners and average

winter temperature (allowing for quadratic effects of the

match/mismatch index, temperature and the number of spaw-

ners). The number of age 3þ perch present during the year

class’s first year of life was used to test for potential effects of

competition and/or cannibalism among age-classes, which are

known to be important intraspecific processes in perch [10]. All

continuous predictor variables were centred for the analysis.

Interactions were tested for between the two phenological vari-

ables and the degree of competition/cannibalism experienced

by young perch using a dummy variable (low/high) based on

the median number of age 3þ perch. The dummy was used

instead of the continuous predictor in order to avoid over-fitting

of the model. The temperature predictor was selected based on

the best predictive power of a model containing only one temp-

erature measure as covariate. We then built the full model using

this temperature measure and all predictors/interactions under

scrutiny, and iteratively dropped terms from the model using

leave-one-year-out cross-validation (see below).

(e) Model selection and validation
Model selection was performed using backward selection by start-

ing with a full model that contained all predictors and interactions

under scrutiny. At each step, we performed leave-one-year-out

generalized cross-validation by computing the square root of

mean-squared out-of-sample prediction errors (leaving one data

point out at a time). This approach provides a direct measure of

the predictive power of a model [21] and helps to avoid over-fitting

[22]. The cross-validation procedure involved the following

steps: (i) fitting the model to the dataset with one year removed,

(ii) predicting the observation not used when fitting the model,

(iii) calculating the prediction error (predicted-observed),

(iv) repeating the above procedure for all years, and (v) calculating

the square root of the mean-squared prediction errors. Once the

optimal model was selected by minimizing the cross-validation

criterion, we validated the model by testing for autocorrela-

tion, homogeneity and normality of residuals. In addition, we

performed an automated model selection based on AICc, which con-

firmed the results obtained using the leave-one-year-out cross-

validation procedure (see the electronic supplementary material).

( f ) Coefficient of variation in abundance
In order to illustrate changes in population variability, the coeffi-

cient of variation of the perch abundance time series was
calculated for the two periods before and after the main age–

size truncation caused by the disease outbreak in 1976. The coef-

ficient of variation was computed as the ratio of the standard

deviation to the mean for a sliding window of 3–11 years.

All statistical analyses were performed in R (v. 3.0.2 [23]).
3. Results
Since the 1940s, the spawning period of perch (and thus the

hatching of perch larvae) has advanced by about two

weeks and shortened by about one week (figure 1c). This

shift in reproductive timing towards earlier and shorter

spawning seasons is associated with changes in climate and

population size structure (electronic supplementary mate-

rial, figure S3). The linear model of peak spawning (PS)

included the number of spawners (S), the disease outbreak

(P) as factor and linear/quadratic terms of spring tempera-

ture (ST): PSy ¼ b0 þ b1 Sy þ b2 Pþ b3 STy þ b4 STy
2 þ 1y,

where bs are regression coefficients and 1y is an error term

(electronic supplementary material, table S1). The linear

model of the length/duration of the spawning period (LS)

included the mean size of spawners (MS), the number of

spawners (S) and linear and quadratic terms of lake tempera-

ture in May (MT): LSy ¼ b0 þ b1 MSy þ b2 Sy þ b3 MTyþ
b4 MTy

2 þ 1y, where bs are regression coefficients and 1y is

an error term (electronic supplementary material, table S2).

Consequently, both the peak and duration of the spawning

season are associated with warmer STs and the disease-

induced size truncation of the perch that caused a severe

reduction in the mean body size of spawners. In line

with these results, a linear mixed-effects model showed

that the timing of spawning of individual fish is best

explained by changes in temperature, whereas the variance

(i.e. the period over which all individuals spawn in a given

year) is best explained by the mean size (see the electronic

supplementary material).

The phenology of zooplankton spring population develop-

ment advanced even more rapidly than the spawning period of

perch (1969–2008; figure 1c), in response to warmer water in

spring and earlier growth of their phytoplankton food (for

details, see [17]). As a consequence, the time difference between

the peak hatching of perch larvae and the peak zooplankton

abundance (i.e. the annual match/mismatch) has shifted con-

siderably. During the 1970s, peak zooplankton abundance

regularly occurred three to four weeks after the peak hatching

of perch larvae, whereas during the most recent decade

these two phenological events have consistently occurred less

than one week apart (electronic supplementary material,

figure S2). The relationship between the number of perch

recruits at age 2 and the match/mismatch index illustrates

that the relative timing of phenological events affects recruit-

ment in perch (figure 2a). While low recruitment occurs at

any given match/mismatch, highest recruitment occurs

when peak hatching of larvae occurs approximately 10 days

before the zooplankton peak.

The recruitment model for perch provides an explanation

for this relationship. In addition to the number of spawners

(Sy), winter temperature (WTyþ1) and the number of age 3þ
perch (CAyþ1, potential competitors/cannibals) in the first

year of life of the year class, the selected model includes inter-

actions between the degree of competition/cannibalism (D)

and both phenology measures—the duration of the larval
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Figure 3. Effects of the selected multiple linear regression model for perch recruitment. Recruitment depends on the interactions between the level of competition/
cannibalism (‘low’, red bands and solid line; ‘high’, blue bands and dashed line) and both (a) the duration of the larval hatching period and (b) the annual match/
mismatch. Recruitment also depends on (c) the number of spawners and (d ) the number of competitors/cannibals. Lines represent model predictions and the
shaded areas 95% CIs. The non-significant temperature effect is not shown. (Online version in colour.)
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hatching period (LSy) and the match/mismatch index

(PMy): Ryþ2 ¼ b0 þ b1 LSy �Dþ b2 PMy þ b3 PMy
2 �Dþ

b4 Sy
2 þ b5 CAyþ1 þ b6 WTyþ1þ 1y; where bs are regression

coefficients and 1y is an error term. As expected, recruitment

increases with the number of spawners (above a certain

threshold value), but decreases with the number of competi-

tors/cannibals (figure 3). The positive effects of the duration
of the larval hatching period and the quadratic effect of the

annual match/mismatch are significant at low (but not signifi-

cant at high) competition/cannibalism. The model thus

reveals that perch recruitment only depends on the relative

timing of phenological events when competition/predation

within the population is weak (table 1). In other words, a relax-

ing of intrinsic density regulation increases the population
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Table 1. Results of the multiple linear regression model of perch recruitment. Predictors: degree of competition/cannibalism (D), length of larval hatching
period (LSy), predator – prey match/mismatch index (PMy), number of spawners (Sy), number of competitors/cannibals in the first year of life (CAyþ1), WT in the
first year of life (WTyþ1). Significance levels of p-values are denoted by asterisks.

coefficient effect estimate s.e. p-value

b0 11.4828 0.1709 ,0.0001***

b1 LSy� D low 0.8295 0.1312 ,0.0001***

LSy� Dhigh 0.1209 0.2038 0.5593

b2 PMy 0.0607 0.0116 ,0.0001***

b3 PMy
2 � Dlow 20.0033 0.0014 0.0239*

PMy
2 20.0009 0.0018 0.5987

b4 Sy
2 2.2 � 10211 6.9 � 10212 0.0038**

b5 CAyþ1 22.9 � 1025 7.3 � 1026 0.0007***

b6 WTyþ1 20.1637 0.1009 0.1198

***p , 0.001, **p , 0.01, *p , 0.05.
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sensitivity to the timing of phenological events. The degree of

competition/cannibalism in interaction with the phenology

variables explains most of the variance in the perch recruitment

time series. Dropping the interactions and the main effect of

competition/cannibalism, while keeping all other predictors,

decreases the variance explained by the model from 82 to

29%. Furthermore, dropping the phenology variables and

their interactions, while keeping the main effect of compe-

tition/cannibalism, leads to a similar drop in variance

explained from 82 to 38%. The high recruitment variance at

low levels of density regulation is also illustrated by the relation-

ship between the number of recruits and the number of

potential competitors/cannibals during the recruits first year

of life (figure 2b). High recruitment variance translates into

elevated variability in total abundance, because the number of

older fish is reduced and recruits dominate the population.

Accordingly, the perch abundance time series exhibits a

clear increase in population variability associated with the -

disease-induced age–size truncation (figure 4). Consequently,

the effect of the trophic mismatch on overall perch abundance

strongly depends on the demographic structure within

the population.
4. Discussion
Our analyses demonstrate that (i) the age–size structure of a

population, in addition to climate, affects the timing of repro-

duction and trophic interactions, and (ii) age–size truncation

increases population sensitivity to phenological mismatch

and ultimately elevates variability in population abundance

by relaxing intraspecific density dependence (i.e. the intrin-

sic top-down control of recruitment). The study thereby

contributes to our understanding under which conditions

phenological mismatch is likely to be important, and how cli-

mate-induced shifts in phenology may interact with other

agents of environmental change such as disease spread

or exploitation.

Most populations in seasonal environments have distinct

reproductive periods that are temporally linked to the phenol-

ogy of resources and predators [24,25] as a result of past

selection pressures and shared environmental cues. Temporal

mismatch between predator reproduction and the timing of

optimal food supply can decrease population growth of the

predator [26]. In fish populations, the period following larval

hatching is thought to be critical for offspring survival, because
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larvae must quickly find suitable prey upon depletion of their

yolk reserves [24]. Spawning typically occurs over several

weeks, thereby ensuring that at least a small proportion of off-

spring in each year encounter sufficient food to survive. A long

reproductive period potentially reduces interannual variance

in offspring survival [27], as it buffers impacts of environ-

mental fluctuations such as climate-dependent variability in

prey abundance. Accordingly, it has been suggested that

the duration of the spawning period can have a substantial

effect on recruitment variability [28]. Here, we demonstrate

that such a risk-spreading strategy can be undermined by

age–size truncation, if the timing and/or duration of the repro-

ductive period depend on individual body size. Previous

studies have shown that larger, older fish tend to arrive earlier

at spawning sites than first-time spawners, and that the spawn-

ing duration of young age-classes can be only half that of older

individuals [27]. We find that the mean body size of spawners

increases over the reproductive period (electronic supplemen-

tary material, figure S4), suggesting that large individuals

mature over extended periods of time and/or spawn later

when compared with small individuals. A reduction in mean

spawner size thus causes shorter reproductive periods (elec-

tronic supplementary material, figure S3). This demographic

shift in perch reflects direct and indirect effects of the disease

outbreak, which caused a selective removal of larger fish and

induced a phenotypic shift towards a smaller size at matu-

ration, both of which lead to a decrease in the mean size [15].

Analogous changes can be expected in response to size-

selective exploitation such as in fisheries, which reduces the

mean size of a population [27,29], and has been shown to

induce phenotypic shifts in size at maturation [30,31].

In addition to its direct effect on reproductive timing,

demographic structure affects offspring survival after the

larval stage via density-dependent processes, and thus deter-

mines how post-larval abundance translates into adult

abundance. Populations with strong intraspecific competition

are buffered against phenological mismatch [7]. Moreover, it

is known that exploited fish populations show higher varia-

bility and short-term fluctuations in abundance compared

with unexploited populations [9,29,32]. It has been suggested

that the link between age–size truncation and variability in

abundance may be explained by increased population sensi-

tivity to stochastic environmental impacts or changes in

demographic parameters such as density regulation [9]. Our
results demonstrate that changes in density dependence

(i.e. reduced intraspecific cannibalism/competition) due to

age–size truncation can cause elevated population variability.

Our recruitment model further suggests that, once the popula-

tion age–size structure is truncated and density dependence is

relaxed, population variability is mainly driven by changes in

phenology rather than environmental stochasticity in general.

Relaxed density regulation accentuates the effect of phenological

asynchrony on recruitment, because it otherwise reduces survi-

val after the trophic (larvae–zooplankton) interaction. Hence,

while intrinsic dynamics like cyclic behaviour (e.g. due to

cohort resonance effects) are unlikely to be the ultimate cause

of temporal fluctuations in natural populations [33], the lack

of intrinsic density regulation reveals the impact of extrinsic

impacts (e.g. prey phenology) on population abundance.

Increased population variability poses major ecological and

economic challenges as it can diminish sustainable harvest

rates and increase the risk of population collapse [29,34]. Our

findings thus stress the importance of maintaining within-

population age–size diversity as it can buffer populations

against phenological asynchrony associated with climate change.

Finally, if the timing of reproduction is a partly heritable

trait [35], our finding that recruitment was weakly linked

to the phenological timing before the major shift in popu-

lation size structure implies that selection for optimal

spawning date may have been weak prior to the demo-

graphic truncation. Our results thus suggest that age–size

truncation may increase selection pressures on traits affecting

population phenology, because offspring survival is more

tightly linked to phenological events when the demographic

structure has been eroded.
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