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Abstract  Chromosome instability (CIN) is a cancer 
hallmark that drives tumour heterogeneity, pheno-
typic adaptation, drug resistance and poor prognosis. 
High-grade serous ovarian cancer (HGSOC), one of 
the most chromosomally unstable tumour types, has 
a 5-year survival rate of only ~30% — largely due to 
late diagnosis and rapid development of drug resist-
ance, e.g., via CIN-driven ABCB1 translocations. 
However, CIN is also a cell cycle vulnerability that 
can be exploited to specifically target tumour cells, 
illustrated by the success of PARP inhibitors to target 
homologous recombination deficiency (HRD). How-
ever, a lack of appropriate models with ongoing CIN 

has been a barrier to fully exploiting disease-specific 
CIN mechanisms. This barrier is now being over-
come with the development of patient-derived cell 
cultures and organoids. In this review, we describe 
our progress building a Living Biobank of over 120 
patient-derived ovarian cancer models (OCMs), pre-
dominantly from HGSOC. OCMs are highly purified 
tumour fractions with extensive proliferative poten-
tial that can be analysed at early passage. OCMs have 
diverse karyotypes, display intra- and inter-patient 
heterogeneity and mitotic abnormality rates far higher 
than established cell lines. OCMs encompass a broad-
spectrum of HGSOC hallmarks, including a range of 
p53 alterations and BRCA1/2 mutations, and display 
drug resistance mechanisms seen in the clinic, e.g., 
ABCB1 translocations and BRCA2 reversion. OCMs 
are amenable to functional analysis, drug-sensitivity 
profiling, and multi-omics, including single-cell next-
generation sequencing, and thus represent a platform 
for delineating HGSOC-specific CIN mechanisms. In 
turn, our vision is that this understanding will inform 
the design of new therapeutic strategies.
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HGSOC	� High-grade serous ovarian cancer
HR	� Homologous recombination
HRD	� Homologous recombination deficient
HRP	� Homologous recombination proficiency
LGSOC	� Low-grade serous ovarian cancer
IHR	� Impaired homologous recombination
OCM	� Ovarian cancer model
OCMI	� Ovarian carcinoma modified Ince
ODX	� OCM-derived xenograft
PARPi	� PARP-1/2 inhibitor
PC	� Principal component
RNAseq	� RNA sequencing
scWGS	� Single-cell whole-genome sequencing
WGS	� Whole-genome sequencing

Introduction

Many human tumours are characterised by extensive 
copy number variation (CNV), which arises due to an 
underlying chromosome instability (CIN) phenotype 
(Ciriello et  al. 2013). CIN leads to continuous gain 
and loss of chromosomes and/or acquisition of 
structural rearrangements, in turn driving tumour 
heterogeneity, phenotypic adaptation and drug 
resistance (Patch et  al. 2015; Schwarz et  al. 2015; 
McPherson et al. 2016; Naffar-Abu Amara et al. 2020; 
Vasudevan et  al. 2020; Ippolito et  al. 2021; Lukow 
et  al. 2021). Despite an intense focus on the causes 
of CIN, we still do not understand the full spectrum 
of molecular drivers, possibly reflecting the presence 
of multiple mechanisms and/or disease-specific CIN 
drivers.

Our focus is on high-grade serous ovarian cancer 
(HGSOC); one of the most chromosomally unstable 
cancer types (Ciriello et al. 2013). HGSOC is the com-
monest histological subtype of ovarian cancer, repre-
senting approximately 80% of all cases (Jayson et  al. 
2014). It is frequently diagnosed at an advanced stage 
having already undergone metastatic spread beyond the 
pelvic intraperitoneal tissues. While most cases initially 
respond to chemotherapy, most women will develop 
drug-resistant disease (Clamp et  al. 2019) (Fig.  1). 
A known driver of CIN is defective DNA damage 
repair, and in the case of HGSOC, possibly up to 50% 
are homologous recombination deficient (HRD), fre-
quently caused by mutations in the BRCA1 and BRCA2 
tumour suppressor genes (TCGA 2011; Denkert et al. 
2022; Morgan et  al. 2023a). Almost 20 years ago, a 

major advance was the discovery that BRCA1/2-mutant 
cells are exquisitely sensitive to PARP-1/2 inhibitors 
(PARPi) (Bryant et al. 2005; Farmer et al. 2005), pav-
ing the way for new therapeutic strategies that have 
had a major beneficial impact in the clinic (Mirza et al. 
2016; Coleman et  al. 2017; Pujade-Lauraine et  al. 
2017; Moore et al. 2018; Gonzalez-Martin et al. 2019; 
Monk et al. 2022). As such, PARPi provide an excel-
lent paradigm illustrating how CIN mechanisms can be 
exploited to improve patient outcomes. Further exploi-
tation of HGSOC CIN will be important because, in 
addition to the paucity of actionable oncogenic muta-
tions, at most only 50% are HRD and thus predicted to 
respond to PARPi. A major research goal therefore is 
to define the spectrum of CIN mechanisms in HGSOC 
to identify additional tumour-cell-specific vulnerabili-
ties that can be therapeutically exploited.

Delineating the full spectrum of CIN mechanisms 
will require model systems that reflect the diverse 
CIN phenotypes observed in human tumours. Stud-
ies on established human cancer cell lines have been 
instrumental in dissecting some aspects of CIN mech-
anisms, and importantly CIN manifests in HGSOC-
derived cell lines, with evidence of both mitotic 
defects and DNA replication stress (Penner-Goeke 
et al. 2017; Nelson et al. 2020; Tamura et al. 2020). 
However, while cell lines are experimentally tracta-
ble, they have several weaknesses. Often, cell lines 
were established decades ago in sub-optimal culture 
conditions that may have selected specific phenotypes 
(Domcke et  al. 2013; Ince et  al. 2015; Nelson et  al. 
2020). Further propagation in vitro likely selects out 
the fitter subclones best adapted to cell culture condi-
tions, possibly eliminating lesser fit clones that might 
only survive in vivo. Established cell lines also often 
lack detailed clinical annotations (e.g., histology, 
chemotherapy exposure and/or clinical response), and 
matched pre- and post-treatment lines are rare.

A major advance addressing some of the limitations 
of established cell lines is the development of Living 
Biobanks, collections of patient-derived cell cultures 
or organoid models that are clinically annotated and 
better capture the heterogeneity observed in human 
tumours. A key development came from colorectal 
cancer (CRC), with the discovery of culture techniques 
that allowed expansion of CRC tumour cells in orga-
noid structures (Sato et al. 2011). This technology has 
now been extended to other cancers (Gao et al. 2014; 
Boj et al. 2015; Sachs et al. 2018), including ovarian 
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cancer (Kopper et  al. 2019; de Witte et  al. 2020). In 
this review article, we describe our experience devel-
oping a Living Biobank of patient-derived ovarian can-
cer models (OCMs) (Nelson et  al. 2020). OCMs are 
highly purified tumour fractions that have extensive 
proliferative potential and can be analysed at early pas-
sage. They have highly diverse karyotypes, displaying 
extensive intra- and inter-patient heterogeneity that 
falls into several subclasses (Fig. 2), and as such pro-
vide an attractive starting point for delineating CIN 
mechanisms.

Solid sampling versus ascites collection

Standard treatment for ovarian cancer is cytoreductive 
surgery followed by platinum-based chemotherapy 
(Jayson et al. 2014), with ~60% of patients in the UK 

receiving neo-adjuvant chemotherapy. Beyond that, 
maintenance therapy includes the PARPi olaparib or 
niraparib, the anti-angiogenic agent bevacizumab, 
or olaparib plus bevacizumab. Following relapse, a 
variety of chemotherapeutic strategies can be used, 
with treatment decision often based on the platinum-
free interval (McGee et al. 2017) (Fig. 1). Secondary 
cytoreductive surgery is less common, but ascites 
will frequently be removed for symptomatic benefit 
using therapeutic abdominal paracentesis. Our biopsy 
pipeline delivers both solid surgical samples and 
ascitic fluid, and we have developed OCMs from both 
(Nelson et al. 2020), albeit with a clear bias towards 
ascites (Fig. 3).

For histological diagnosis and molecular charac-
terisation, solid specimens (tumour tissue either from a 
diagnostic biopsy or surgical resection) are often con-
sidered the gold standard. Key advantages are the ability 

Fig. 1   Treatment timelines 
of patients with HGSOC. 
Line graphs showing 
CA125 levels, measured via 
blood sampling, for patients 
74 and 110 over time fol-
lowing diagnosis. Graphs 
are annotated to show 
surgery (blue up arrows), 
when ascites were collected 
(orange down arrows), 
which ascites generated 
OCMs (orange stars) and 
when the patient died (black 
star). Vertical coloured bars 
along the top of the plot 
area show the timing of the 
indicated chemotherapy 
treatments
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to sample both primary and metastatic sites, and — via 
analysis of spatially resolved tumour material — probe 

heterogeneity between sites and enable the reconstruc-
tion of evolutionary trajectories (Schwarz et  al. 2015; 
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Fig. 2   HGSOC is characterised by extensive chromosome 
instability. Genome-wide chromosome copy number profiles 
determined by shallow single-cell whole-genome sequencing 
(scWGS) of OCMs derived from patients 38, 64, 152 and 246. 
For each OCM, each row represents a single cell, with chromo-
somes plotted as columns and the copy number indicated by 

the colour. The four OCMs shown represent examples whereby 
genomes are marked by whole-chromosome aneuploidies, 
rearranged chromosomes, tetrasomies or monosomies. Karyo-
types previously shown in Nelson et  al. 2020 and Coulson-
Gilmer et  al. 2021 (Licenses at https://​creat​iveco​mmons.​org/​
licen​ses/​by/4.​0/)
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Fig. 3   Living Biobank ascites pipeline. A Bar graph sum-
marising the biopsy pipeline, showing that from June 2016 to 
March 2023, 715 biobank alerts yielded 454 ascites samples 
from 209 patients, in turn yielding 127 OCMs. B–D Summary 
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McPherson et al. 2016; de Witte et al. 2020; Burdett et al. 
2023). Because secondary cytoreductive surgery occurs 
infrequently in the treatment of HGSOC, solid biopsies 
have limited potential to deliver temporally resolved sam-
ples. Furthermore, single surgical samples may not fully 
capture disease heterogeneity (Hoogstraat et  al. 2014; 
Schwarz et  al. 2015; McPherson et  al. 2016; Morgan 
et al. 2023b). In terms of isolating viable tumour cells, 
solid biopsies can be challenging when tumour mate-
rial is limited, e.g., with core diagnostic biopsies, and 
especially following neo-adjuvant chemotherapy, where 
60–70% of patients achieve a response, i.e. little or no 
primary tumour remaining (Morgan et al. 2021). At this 
point, specimens can be non-viable and so generating a 
culture is unlikely. However, if grossly visible tumour 
material is present and/or tumour-rich regions can be iso-
lated by microdissection, ex vivo cultures can be devel-
oped even following neoadjuvant chemotherapy (Hill 
et al. 2018). Another limitation of surgical biospecimens 
is that they may come from early-stage disease that is 
typically cured with surgery plus platinum chemotherapy 
(Trimbos et  al. 2003; Collinson et  al. 2014). However, 
death from advanced HGSOC is commonly associated 
with chemotherapy-resistant disease, which emerges 
many months or even years later and is not captured at 
the time of primary cytoreductive surgery (Fig. 1).

The accumulation of ascites presents an alternative 
method to sample ovarian cancer cells. The presence of 
tumour cells in the peritoneal cavity can drive fluid build-
up by VEGF-mediated increase in capillary permeability 
and compromised lymphatic drainage (Kipps et al. 2013; 
Ford et  al. 2020). In turn, cytokines, chemokines, and 
growth factors present in ascites can promote tumour cell 
survival and further metastatic spread. Excessive fluid 
is frequently drained for symptom control and, because 
ascites contains large numbers of tumour cells, it pro-
vides excellent opportunities for translational research. 
Moreover, because abdominal paracentesis provides a 
safe method for repeat sampling, it opens the opportu-
nity to collect longitudinal samples, including chemo-
naïve and spanning multiple treatments (Fig. 1). Because 
HGSOC is often diagnosed late, when up to 90% of 
patients will develop ascites (Huang et  al. 2013; Ford 
et al. 2020), this method can capture a wide spectrum of 
disease. Ascitic fluid can also capture intra-tumour het-
erogeneity, with one study demonstrating that >92% of 
somatic mutations detected across multiple intra- and 
extraovarian solid lesions were represented in ascites-
derived tumour samples (Choi et  al. 2017). Moreover, 

genomics datasets from primary disease (generally solid) 
and chemo-resistant disease (generally ascitic) are largely 
consistent (TCGA 2011; Patch et al. 2015). In terms of 
probing biology and exploring therapeutic strategies, 
ascites collection permits access to chemotherapy-resist-
ant disease, since resistant tumour cells may be absent or 
represent only a minor proportion of primary cytoreduc-
tive surgical samples.

Optimisation of culture media

The development of better experimental models 
to study ovarian cancer is a major research focus 
(Bowtell et  al. 2015). Indeed, as reviewed recently 
(Tomas and Shepherd 2023), extensive effort has 
been applied to develop patient-derived 2D cell cul-
tures, more complex spheroid, organoid or co-culture 
models, as well as xenografts (Bertozzi et  al. 2006; 
Shepherd et al. 2006; Latifi et al. 2012; Sueblinvong 
et  al. 2012; Thériault et  al. 2013; Davidowitz et  al. 
2014; Lengyel et al. 2014; Ince et al. 2015; Liu et al. 
2017; Thu et al. 2017; Hill et al. 2018; Kopper et al. 
2019; Maru et al. 2019; Phan et al. 2019; Fritz et al. 
2020; Hoffmann et al. 2020; Maenhoudt et al. 2020; 
Brodeur et al. 2021; Ito et al. 2023; Vias et al. 2023). 
Such efforts have been required because establishing 
primary cell cultures from tumours using traditional 
cell culture techniques has historically been chal-
lenging, with very low success rates due to tumour 
cell ‘senescence’ and with the emerging cell lines 
reflecting rare subclones (Ince et  al. 2015). A major 
breakthrough was the development of highly special-
ised cell culture conditions capable of propagating 
isolated CRC cells as organoids (Sato et  al. 2011), 
an approach then adapted to breast (Sachs et  al. 
2018) and epithelial ovarian cancers (Kopper et  al. 
2019; de Witte et al. 2020). A parallel breakthrough 
was the development of Ovarian Carcinoma Modi-
fied Ince (OCMI) media, by T Ince, with J Brugge, 
G Mills and colleagues, which allows propagation of 
epithelial ovarian cancer cells as 2D monolayers (Ince 
et al. 2015). Prior to adopting OCMI, our attempts to 
develop proliferative ex  vivo HGSOC cultures were 
unsuccessful; while fibroblasts isolated from ascites 
proliferated in traditional RPMI-based formulations, 
the associated tumour cells did not. Adopting OCMI 
had a transformative effect; as of March 1st, 2023, we 
have received 454 ascites samples from 209 patients 
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and thus far generated 127 OCMs (Fig. 3). The ‘take-
rate’ at first pass is approximately 30% and, in some 
cases, OCMs have been generated following second 
and third attempts by fine-tuning initial conditions. 
Importantly, the vast majority of OCMs can also be 
revived after cryopreservation; thus far only two 
OCMs do not revive. Generation of highly purified 
tumour fractions is usually possible in under five pas-
sages, allowing extensive analyses on early passages. 
If the tumour cells are p53-deficient, this process can 
be accelerated by selectively killing p53-proficient 
stromal cells with Nutlin-3 (Nelson et  al. 2020). 
OCMs cultured in OCMI have extensive proliferative 
potential, with some propagated beyond 50 passages. 
Prolonged propagation is anticipated to select for 
the fitter, faster growing subclones that may be more 
chromosomally stable over time (Nelson et al. 2020). 
Indeed, in due course OCMs are anticipated to behave 
like established cell lines.

Ex vivo cultures retain the hallmark 
characteristics of HGSOC

A key question is whether ascites-derived OCMs 
reflect the primary tumour. While at first this ques-
tion seems straightforward, upon closer inspection it 

is more nuanced. In many cases, OCMs and the cor-
responding primary tumour are separated by many 
months if not years (Fig.  1). Considering both the 
extensive genomic plasticity caused by CIN, and 
significant selection pressures exerted by multiple 
rounds of chemotherapy, one might expect the tumour 
cells sampled in ascites to have diverged considerably 
from the original primary tumour.

OCMs derived from patient 64 illustrate this incred-
ible plasticity (Nelson et  al. 2020). OCMs 64-1 and 
64-3 were generated from ascites collected from the 
same patient 49 days apart, the first and third abdomi-
nal drains respectively, almost 2.5 years after surgery. 
Microscopy revealed that many cells in OCM.64-3 
had similar morphology to those in OCM.64-1, with 
large, atypical nuclei, and negative PAX8 and EpCAM 
expression (Fig. 4). However, we also identified a sec-
ond population in OCM.64-3 that had smaller nuclei 
and were positive for both PAX8 and EpCAM. By 
exploiting the differential EpCAM status, we physi-
cally separated the two sub-populations to create 
OCM.64-3-Ep+ and OCM.64-3-Ep-. This revealed 
that the EpCAM-negative population expressed high 
levels of MYC and had a gene expression profile that 
more closely resembled OCM.64-1 (Fig. 4).

Karyotype analysis revealed that OCM.64-1 was 
dominated by tetrasomies (Fig. 2) (Nelson et al. 2020). 
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Fig. 4   Chromosome instability generates highly divergent 
subclones. A scWGS-derived karyotypes of EpCAM-positive 
and EpCAM-negative subpopulations present in the OCM gen-
erated from the 3rd ascites sample collected form patient 64. 
B Table summarising characteristics of OCMs 64-1 and the 

two 64-3 subpopulations. C Speculative ploidy reversal event 
to explain how the two 64-3 subpopulations might have been 
generated. Karyotypes in A adapted from Nelson et  al. 2020 
(License at https://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/)
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By contrast, OCM.64-3-Ep- harboured disomies and 
trisomies, while OCM.64-3-Ep+ harboured numer-
ous monosomies (Fig. 4). Importantly, the p53 muta-
tion — p.V216M — was identical, and unique in the 
collection to date, indicating a clonal origin (Fig.  4). 
Interestingly, the disomies in OCM.64-3-Ep- were mir-
rored by monosomies in OCM.64-3-Ep+ (Fig. 4). One 
possible explanation is that an unequal mitosis resulted 
in a ploidy reversal event, giving rise to the two cell 
types found in 64-3 (Fig. 4). Note that ploidy reversal 
has been described in polyploid hepatocytes as part of 
a mechanism to generate genomic diversity (Duncan 
2013). If ploidy reversal did occur, this would repre-
sent an additional mode of punctuated tumour cell 
evolution, yielding very rapid genomic divergence. 
Nevertheless, this subset of OCMs illustrates the 
remarkable plasticity of HGSOC cells in terms of key 
tumour markers, gene expression profiles and karyo-
type. In turn, illustrating that perhaps beyond truncal 
TP53 mutations, we should be cautious in terms of 
our expectations when comparing primary tumours 
and ascites-derived cells, especially when separated 
by extended periods of time and/or chemotherapy 
regimens.

Despite the complexity outlined above, we have 
compared OCMs with their corresponding archi-
val tumour blocks using a panel of standard markers 
used to diagnose HGSOC in the clinic. Analysis of 
CK7, PAX8, WT1 and p53 expression (Fig. 5), aided 
by specialist pathology support, was remarkably 

congruent (Nelson et al. 2020; Coulson-Gilmer et al. 
2021). In addition, targeted amplicon sequencing of 
primary tumour DNA by a clinically accredited diag-
nostic service, using a multi-gene panel that included 
TP53, showed excellent congruence with Sanger 
sequencing of RT-PCR products from matched 
OCMs.

A related, but perhaps more relevant, question is 
whether the OCM workflow generates models that 
reflect the tumour sampled by the respective ascites. 
Importantly, the pioneering study of Ince et al., dem-
onstrated that the OCMI media maintain the genomic 
and transcriptomic landscape of the original tumour, 
and that xenograft tumours show morphology typical 
of human tumours (Ince et  al. 2015). Moreover, by 
generating OCMs within 5–6 passages, our workflow 
enables analysis before the expansion of subclonal 
populations. Additional evidence supporting the gen-
eration of reflective models comes from the analysis 
of OCMs prepared from sequential ascites; in many 
cases the karyotypes and gene expression profiles are 
similar (Fig. 6).

With a take rate of ~30%, another key question is 
selection bias; does the workflow only select for a 
subset of HGSOC subtypes? OCM gene expression 
profiles do display substantial heterogeneity (Fig. 6). 
In addition, analysis of TP53 mutations shows that the 
proportion of missense mutations versus truncating 
mutations is similar to that described by the TCGA, 
as is the nature of the missense mutations (Fig.  7) 
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Fig. 5   Primary HGSOC can display very different histopathol-
ogies. Representative 20× immunohistochemistry images 
of the primary tumours from patients 92 and 109, stained to 
detect p53, PAX8, WT1 and Cytokeratin 7. Patient 92 images 

adapted from Coulson-Gilmer et  al. 2021 (License at https://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/). Scale bar, 100 μm. 
Panels are representative images from single experiment
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(TCGA 2011; Cerami et  al. 2012; Gao et  al. 2013). 
Interestingly however, of the 42 OCMs sequenced so 
far, we are yet to identify an R273 missense mutation, 
despite this mutation being the most frequent in the 
TCGA analysis.

It has been suggested that ex  vivo culture may 
select against BRCA1/2-mutant tumours (Hill et al. 
2018; Hoffmann et  al. 2020; Vias et  al. 2023). 
When we screened a subset of 32 OCMs, 8 were 
found to be sensitive to PARP inhibition, suggest-
ing an HR-defect (Coulson-Gilmer et  al. 2021). 
Also, in a subset of 20 OCMs derived from patients 
with known BRCA1/2 status, seven had germline 
BRCA1/2 mutations (Barnes et  al. 2021; Coulson-
Gilmer et  al. 2021). When we analysed OCMs 
from four of these seven, three harboured BRCA1/2 
mutations (Coulson-Gilmer et  al. 2021). Thus, 
while the number of OCMs fully analysed to date is 
still relatively small, there is no obvious evidence 
yet of a selection bias against BRCA1/2-mutant 
or HRD tumours. Indeed, some OCMs appear to 
reflect the complex mechanisms responsible for 
drug resistance in patients. Using Rad51 foci for-
mation in response to ionising radiation as a func-
tional readout of HR status, we established that 
OCM.109 is HRD and harbours a BRCA1 muta-
tion (Coulson-Gilmer et  al. 2021). However, it is 
PARPi-resistant suggesting a resistance mechanism 
that bypasses the HR defect. OCM.246 was derived 
from a patient with a germline BRCA2 mutation 
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who received olaparib maintenance monotherapy 
prior to biopsy sampling. Interestingly, this OCM 
harbours a putative intragenic reversion predicted 
to restore the BRCA2 open reading frame, reflect-
ing reversion mechanisms previously described in 
patients (Christie et al. 2017; Burdett et al. 2023), 
and the OCM displays intermediate PARPi resist-
ance (Coulson-Gilmer et al. 2021).

Another mechanism of acquired drug resistance 
in HGSOC is chromosome translocation events lead-
ing to upregulation of the drug efflux pump encoded 
by ABCB1 (Patch et al. 2015; Christie et al. 2019). A 
number of OCMs demonstrate upregulated ABCB1 
expression and can be re-sensitized to paclitaxel 
using the efflux inhibitor Elacridar (not shown). 
Taking all this together, our experience to date is 
consistent with the notion that the biopsy pipeline 
and OCM workflow have generated a diverse collec-
tion of ovarian cancer models that reflects the dis-
ease heterogeneity observed in traditional sample 
collections. Plus, the biobank reflects various drug 
resistance mechanisms that have been described 
previously. As such, the Living Biobank  provides 
a unique opportunity to probe aspects of HGSOC 
biology and explore novel therapeutic strategies.

OCMs display ongoing CIN

While HGSOC is driven by CIN, mutations in genes 
directly involved in chromosome replication and seg-
regation are extremely rare in cancer (Matthews et al. 
2022). To delineate CIN mechanisms, HGSOC has 
been studied by whole-genome sequencing (WGS). 
One landmark study defined two mutational trajec-
tories, the first characterised by HRD, with BRCA1/2 

mutations, amplification of MYC and loss of RB1; the 
second characterised by homologous recombination 
proficiency (HRP) with foldback inversions (FBI) 
correlating with CCNE1 amplification and PTEN 
loss (Wang et al. 2017). While elegant, this dualistic 
model is likely an oversimplification and indeed, a 
second key study using shallow WGS identified seven 
CNV signatures, including two HRD signatures and 
five HRP signatures (Table 1) (Macintyre et al. 2018).

Matched deep sequencing assigned potential 
pathways to CNV signatures; one HRD signature 
was associated with BRCA1/2 mutations and loss 
of PTEN, while the other was non-BRCA1/2-related 
with MYC amplification (Macintyre et al. 2018). HRP 
signatures were associated with various trajectories 
including oncogenic RAS, inactivation of CDK12, 
or cell cycle deregulation (Table  1). Multiple signa-
tures were observed to co-exist in the same sample, 
including HRD and HRP signatures. Also, the com-
posite signature was predictive, e.g., patients with a 
high degree of signature 1 had poor prognosis. More 
recently, a study of 7880 tumours from 33 different 
tissues was used to devise 17 pan-cancer CNV sig-
natures, including three signatures associated with 
impaired homologous recombination (IHR) alongside 
varying degrees of replication stress (Drews et  al. 
2022). One of these IHR signatures correlated with 
the two HRD signatures identified in ovarian cancers. 
Another recent study identified 21 pan-cancer CNV 
signatures, nine of which were present in ovarian can-
cer, including one that may be unique to ovarian can-
cer that could not be assigned to a biological process 
(Steele et al. 2022).

While ground-breaking, these studies expose 
important new questions. The presence of multiple 
signatures is complicated by bulk sequencing archival 

Table 1   CNV signatures 
with associated genomic 
hallmarks and molecular 
features. Adapted from 
(Macintyre et al. 2018)

Signature Genomic hallmarks Molecular features

1 Breakage-fusion bridge Oncogenic RAS-MAPK signalling, e.g. NF1 loss
2 Tandem duplication CDK12 inactivation
3 HRD type 1 Mutated HR genes (including BRCA1/2); PTEN loss
4 Whole-genome doubling Cell cycle deregulation type 1: MYC, CDK12, 

Cyclin-E1, PI3K–AKT signalling
5 Chromothripsis Unknown
6 Focal amplification Cell cycle deregulation type 2: Cyclin-E1, PI3K–

AKT, CCND1, MYC
7 HRD type 2 MYC, Wnt/Interleukin signalling
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material; single-cell analyses will be required to dis-
entangle whether individual cells exhibit multiple 
signatures, or whether this reflects intra-tumour het-
erogeneity and/or specific microenvironments (Shah 
2018). Thus, well-defined in  vitro models and/or 
derived subclones amenable to functional experi-
ments will be required to test hypotheses correlat-
ing signatures with cell behaviours (Macintyre et al. 
2018).

Our vision is that Living Biobanks will provide 
opportunities to address these issues. Indeed, a key 
advantage of viable cultures is the ability to analyse 
highly purified tumour fractions unfettered by con-
taminating, genetically normal stromal cells, and the 
microenvironment. Moreover, they are amenable to 
single-cell analyses, including both shallow WGS and 
RNA sequencing (Nelson et al. 2020). But most sig-
nificantly, as viable, proliferating cultures, they can 
be subjected to functional experiments designed to 
probe the status of specific signalling and cell cycle 
pathways, thereby enabling hypotheses that emerge 
from interrogation of molecular features to be tested 
more rigorously using phenotypic assays.

As proof-of-principle, to assess CIN functionally 
in OCMs, we analysed patterns of mitotic chromo-
some segregation using time-lapse microscopy, facili-
tated by stable integration of a GFP-tagged histone 
to visualise the chromatin (Nelson et al. 2020). This 
revealed highly chaotic and heterogeneous mitoses, 
with rates of abnormalities far higher than previously 
observed in established cell lines. Rates of lagging 
chromosomes, anaphase bridges and cytokinesis/
abscission failures were all elevated. The difficulties 
with chromosome alignment very often resulted in a 
protracted mitosis, indicating a robust spindle assem-
bly checkpoint. And indeed, when challenged with 
microtubule toxins, OCMs underwent longer mitotic 
delays. Interestingly, because of the self-imposed 
protracted mitosis, we observed several instances of 
cohesion fatigue (Daum et  al. 2011; Stevens et  al. 
2011); to our knowledge this is the first time this has 
been seen without experimentally blocking mitosis 
(Nelson et al. 2020).

While many of the highly abnormal cell divisions 
did give rise to viable progeny, and certainly suf-
ficient to maintain a proliferative culture, cell fate 
profiling revealed a number of dead-ends, consistent 
with the notion some genomes are incompatible with 
life (Nelson et  al. 2020). Nevertheless, the extent of 

mitotic chaos was surprising and suggests that a key 
feature of HGSOC is deactivation of post-mitotic and/
or apoptotic pathways that would normally eliminate 
genetic deviants. Moreover, it also supports the notion 
that OCMs provide interesting alternatives to estab-
lished cell lines for analysing HGSOC CIN mecha-
nisms. Indeed, although established cell lines exhibit 
ongoing CIN (Lengauer et  al. 1997; Penner-Goeke 
et  al. 2017; Tamura et  al. 2020), a limited number 
of subclones tend to dominate (Wangsa et al. 2018), 
presumably because they represent the fittest, fastest 
growing cells (Domcke et al. 2013; Ince et al. 2015; 
Nelson et  al. 2020). Accordingly, one might expect 
that OCMs that start out highly heterogenous would 
become less complex over time, as the fitter sub-
clones give rise to more progeny with every passage. 
Empirical evidence supports this. When we analysed 
spindle poles as a proxy for CIN, comparing OCMs at 
early and late passages, complexity reduced over time 
with bipolar spindles becoming more dominant, pre-
sumably because they are both already fitter and more 
likely to give rise to viable daughters (Nelson et  al. 
2020). This further highlights the advantages of being 
able to analyse OCMs at early passage when the pop-
ulation is still complex. Ideally, one would want to be 
able to isolate and expand different subclones; while 
this is possible (Naffar-Abu Amara et al. 2020), it can 
be challenging to expand single cells in vitro. How-
ever, advances in bar coding technology mean that 
it is possible to trace lineages without the need for 
exerting the stress associated with single-cell clon-
ing (Gutierrez et al. 2021). Such bar-coding technolo-
gies open up exciting opportunities to study genome 
evolution and the emergence of drug resistance in 
patient-derived tumour material.

The heterogenous mitoses described above were 
observed when the OCMs were cultured as 2D mon-
olayers (Nelson et  al. 2020). Interestingly, it has 
been found that tissue architecture can impact chro-
mosome segregation fidelity (Knouse et  al. 2018). 
In particular, when mouse epithelial cells were cul-
tured as 3D spheroids the rates of chromosome mis-
segregation were very low, but this rate increased to 
~7% in 2D culture. This raises the possibility that the 
mitotic errors observed in OCMs may in part be an 
artefact of in  vitro 2D culture. We suspect that this 
is not the case. In the OCMs, chromosome mis-seg-
regation rates were often around 50%, far higher than 
was observed in the primary mouse epithelial cells. 
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Moreover, when we specifically grew the OCMs in a 
3D environment, we observed equally high rates of 
segregation error (Nelson et al. 2020). Moreover, we 
observed additional classes of abnormal mitoses in 
3D, including chromosome ejection at anaphase, pos-
sibly reflecting the ability of a 3D environment to bet-
ter anchor ectopic spindle poles.

Taking together the various WGS studies, plus our 
OCM-derived observations (shallow scWGS karyo-
typing, time-lapse microscopy, and more traditional 
M-FISH-based karyotyping) (Nelson et  al. 2020), a 
very consistent picture emerges — HGSOC genomes 
are highly dynamic, undergoing persistent and high 
rates of CIN. A key next step will be to align these 
different modalities and integrate CIN signatures with 
mutational profiles derived from bulk WGS data and 
gene expression signatures from RNA sequencing. 
This multi-omics data can then be aligned with clini-
cal outcome data, as well as functional phenotypes 
derived from cell-based analysis and drug-sensitivity 
profiling to test hypotheses (see below). Thus, the 
OCMs represent an invaluable resource to delineate 
mechanisms underlying aberrant mitoses and CIN in 
HGSOC cells. Of particular value will be matched 
longitudinal OCMs, especially those that include 
OCMs from both chemotherapy-naïve and post-treat-
ment disease, to better understand how CIN drives 
the emergence of drug resistance in patients.

A platform for drug discovery

CIN has the ability to drive the emergence of drug 
resistance in patients; for example, chromosome trans-
locations within ABCB1 can lead to overexpression 
of the MDR1/p-glycoprotein drug efflux pump (Patch 
et al. 2015; Christie et al. 2019). Importantly, we iden-
tified ABCB1 translocations in a number of OCMs and 
have shown that drug sensitivity can be restored by co-
exposure with efflux inhibitors (not shown). Interest-
ingly, in OCM.246 we identified three different ABCB1 
translocations (Williams et al. 2020), as well as a puta-
tive BRCA2 reversion mutation (Coulson-Gilmer et al. 
2021), illustrating both the incredible capacity of CIN 
to alter the genome and the intense selective pressure 
that chemotherapy exerts. Also, these observations 
provide further evidence that OCMs provide a window 
into the drug resistance mechanisms seen in patients 
(Patch et al. 2015; Christie et al. 2017; Christie et al. 

2019; Burdett et  al. 2023), and that OCMs provide a 
potentially interesting platform for drug-sensitivity 
profiling to complement multi-omics analyses.

To measure drug sensitivities of OCMs, we have 
optimised a high-throughput assay that uses object 
counting to measure proliferation (Nelson et al. 2020; 
Coulson-Gilmer et  al. 2021; Golder et  al. 2022). In 
brief, OCMs expressing a GFP-tagged histone are 
analysed by time-lapse microscopy and changes in 
green object count over time are used as a proxy for 
proliferation. The doubling time is then calculated 
by determining the inverse gradient of the linear por-
tion of a log2 transformation of the fluorescent object 
count, normalised to t = 0 h (Golder et al. 2022). This 
approach has advantages over traditional end-point 
viability assays that infer cell viability by measur-
ing ATP metabolism, which can be confounded by 
cytostatic effects whereby cells stop proliferating 
but remain metabolically active (Niepel et al. 2019). 
Moreover, the approach is very data rich, providing 
single-cell-level resolution over time. Interrogating 
time-lapse sequences can provide additional infor-
mation in terms of cell fate and behaviour simply 
not apparent in population-based end-point assays. 
Using this approach, we have measured proliferation 
rates of numerous OCMs (Pillay et al. 2019; Nelson 
et al. 2020; Coulson-Gilmer et al. 2021; Golder et al. 
2022).

Analysing proliferation in response to drug exposure 
then enables drug-sensitivity profiling. In brief, 
we determine the half maximal growth inhibition 
concentration of drug (GI50) using dose-response 
curves generated by measuring the area-under-the-
curve of fluorescent object count over time for a range 
of drug concentrations (Golder et al. 2022). The high-
throughput nature enables multiple technical replicates 
and the tractability of the OCMs enables biological 
replicates to be analysed in quick succession. Various 
parameters can influence multi-well assay readouts, 
and recently we explored a number of parameters 
including cell seeding density and assay duration, as 
well as analytical approaches to account for variability 
in cell cycle duration (Golder et  al. 2022). While 
there is heterogeneity due to the complex nature of 
the OCMs, estimates of doubling times were largely 
consistent when remeasured 18 months apart, and 
ex vivo responses to platinum largely reflected patient 
responses (Nelson et al. 2020; Golder et al. 2022). Thus 
far, we have evaluated OCM sensitivity to cisplatin, 
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paclitaxel and inhibitors targeting PARP-1/2 and the 
PAR glycohydrolase (Pillay et  al. 2019; Nelson et  al. 
2020; Coulson-Gilmer et  al. 2021). More recently, 
screening a panel of 16 diverse OCMs, using all 
possible one-, two-, three- and four-drug combinations 
of four inhibitors targeting the DNA replication stress 
response at GI10 concentrations (240 assays in total), 
demonstrated that the low-dose combination of ATR 
and CHK1 inhibitors had significant activity against 
15 OCMs, identifying a potentially novel therapeutic 
strategy (Golder et al. 2022).

Due to the extensive proliferative potential of OCMs, 
drug sensitivity can also be assessed by longer-term 
colony formation assays, thereby complementing the 
shorter-term time-lapse-based proliferation assays 
(Coulson-Gilmer et  al. 2021). While OCMs can be 
cultured in a 3D context, thus far we have measured 
drug sensitivity of 2D monolayers. Because the 
microenvironment can influence drug sensitivity, it 
will be interesting to analyse in  vitro chemotherapy 
responses in more complex 3D and co-culture models 
(Tomas and Shepherd 2023). However, it is noteworthy 
that sensitivity and resistance to PARPi, which arguably 
represent the most significant advancement in recent 
years for treating patients with HGSOC, manifests 
very clearly when analysing OCMs as 2D monolayers 
(Coulson-Gilmer et  al. 2021). Indeed, our focus is on 
exploiting cell cycle vulnerabilities intrinsic to the 
tumour cells, vulnerabilities that may be less sensitive to 
the tumour microenvironment. Furthermore, the impact 
of the microenvironment on response to therapy is highly 
complex, for example extracellular matrix components 
have been associated with both chemotherapy sensitivity 
and resistance (Ahmed et  al. 2007; Etemadmoghadam 
et al. 2009; Helleman et al. 2010; Kozlova et al. 2020; 
Guo et  al. 2021). Clearly, these interactions bring 
about additional complexity, therefore our approach 
in the first instance is to focus on dissecting intrinsic 
tumour cell properties and drug responses. Armed 
with this knowledge, we will be better placed to 
explore how the microenvironment modulates tumour 
cell biology. Importantly, a number of OCMs have 
been successfully engrafted in immunocompromised 
mice to form xenograft tumours. These OCM-derived 
xenograft (ODX) models retain the molecular features 
of the original OCM, both in vivo and ex vivo following 
excision and disaggregation (not shown). Such ODX 
models will provide excellent opportunities to test new 

therapeutic strategies in  vivo that emerge from drug 
sensitivity profiling of 2D monolayers.

Future perspectives

The Living Biobank currently contains over 120 
OCMs from more than 80 patients and is expanding 
at a rate of 2–3 new OCMs per month. Fifteen ascites-
derived OCMs are chemo-naïve and, as the biobank 
grows, the number of longitudinal cohorts with 
matched post-treatment OCMs will expand. While 
focused on HGSOC, we are also collecting smaller 
cohorts of OCMs derived from other ovarian cancer 
subtypes as these provide interesting comparators. 
Although ascites offer various advantages, we have 
recently received more solid samples (and currently 
have eight solid-derived OCMs), which increases 
the potential to broaden the diversity of the biobank. 
Thus, in summary, the pipeline and workflow we have 
developed has allowed assembly of a large and diverse 
collection of ovarian cancer models that reflect the 
diversity of HGSOC. Importantly, the experimental 
tractability of OCMs in terms of integrating multi-
omics data, including single cell approaches, with 
functional assays, including high-resolution cell 
biology approaches and drug-sensitivity profiling, 
opens up new opportunities to delineate the molecular 
mechanisms responsible for driving CIN in this 
particular disease. An important future goal is also 
to collate the wealth of data associated with the 
OCMs in a searchable format, so that it is available 
to researchers in the ovarian cancer community 
alongside the OCMs.
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