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Simple Summary: Lung cancer is still one of the most commonly diagnosed and deadliest cancers
in the world. Its diagnosis at an early stage is highly necessary and will improve the standard of care
of this disease. The aim of this article is to review the importance and applications of next generation
sequencing in lung cancer diagnosis. As observed in many studies, next generation sequencing has
been proven as a very helpful tool in the early detection of different types of cancers, including lung
cancer, and has been used in the clinic, mainly due to its many advantages, such as low cost, speed,
efficacy, low quantity usage of biological samples, and diversity.

Abstract: Lung cancer is still one of the most commonly diagnosed cancers, and one of the deadliest.
The high death rate is mainly due to the late stage of diagnosis and low response rate to therapy.
Previous and ongoing research studies have tried to discover new reliable and useful cbiomarkers
for the diagnosis and prognosis of lung cancer. Next generation sequencing has become an essential
tool in cancer diagnosis, prognosis, and evaluation of the treatment response. This article aims to
review the leading research and clinical applications in lung cancer diagnosis using next generation
sequencing. In this scope, we identified the most relevant articles that present the successful use of
next generation sequencing in identifying biomarkers for early diagnosis correlated to lung cancer
diagnosis and treatment. This technique can be used to evaluate a high number of biomarkers in a
short period of time and from small biological samples, which makes NGS the preferred technique to
develop clinical tests for personalized medicine using liquid biopsy, the new trend in oncology.

Keywords: lung cancer; next generation sequencing; diagnosis

1. Lung Cancer

Lung cancer remains one of the most common cancers diagnosed in 2020, and one of
the deadliest cancer types. In Europe, the lung cancer incidence rate is 97.6 (men) and 38.3
(women), with a mortality rate of 81.7 (men) and 29 (women), respectively [1]. In Romania,
the incidence is lower in women (28.5) and higher in men (105.3) than the European
incidence rate. The same trend is also observed in mortality, 24.8 (women) and 95.6 in
men [1]. An increased number of deaths due to lung cancer is mainly due to late-stage
diagnosis, mostly because this cancer shows no symptoms in its early stages.

There are several risk factors associated with lung cancer, such as smoking, air pollu-
tion, radon exposure, occupational exposure to different chemicals, heredity susceptibility,
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radiation and diet [2]. Considering these risk factors, it has been observed that specific
subtypes are correlated to exposure to specific risk factors. These subtypes are small cell
lung cancer and non-small cell lung cancer. Small cell lung cancer (SCLC) represents about
15% of lung cancers and is correlated mainly to smoking. Non-small cell lung cancer
(NSCLC) has three main subtypes and accounts for 85% of lung cancer diagnoses. These
subtypes are adenocarcinoma, squamous cell carcinoma and large cell carcinoma [3].

Lung cancer is diagnosed at the late stage mainly because in the early stage it presents
no symptoms, and patients approach a doctor only when they experience chest pain,
persistent cough, and weight loss. Due to this fact, it is very important to identify reliable
methods for screening patients with a high risk for lung cancer. In 2018, the National
Comprehensive Cancer Network (NCCN) defined low-dose computer tomography (LDCT)
as an early screening method for high-risk lung cancer patients [4]. In a German trial,
the LDCT screening helped reduce mortality in women with lung cancer [5]. Two main
disadvantages of this technique are that it is recommended for a specific range of patients,
mainly people that are smoking or are between 50 and 80 years old, and that there are
difficulties in evaluating the correct size and number of lung nodules on CT scans, and
sometimes these nodules are benign. To overcome these limitations, new methods for
lung screening and diagnosis have been developed [6,7]. It is possible to improve lung
cancer screening and diagnosis by using LDCT in combination with different biomarkers,
either from serum or blood [8]. On the other hand, due to a lower treatment success rate
for late-stage lung cancer, its mortality is relatively high. Moreover, lung cancer patients
who smoke present a higher number of somatic mutations, which can give rise to a higher
number of cancer-driven mutations [9]. Computer tomography is still the main method
used for lung cancer screening and diagnosis [10], and the application of genetic testing
is mainly used for treatment selection and guidance. Studies have shown that genetic
testing using NGS has helped identify at least one actionable target that could be used
for targeted therapy [11–13]. Additionally, it was observed that patients treated with
targeted therapies show better survival and response rates [14]. For lung cancer patients,
mainly NSCLC, treatment is still based on chemotherapy for initial stages, but in local,
advanced or metastatic disease, biomarker testing for different genes (EGFR, ALK, KRAS,
ROS1, BRAF, NTRK1/2/3, MET, RET and PD-L1) helps patients benefit from specifically
targeted therapies (anti-EGFR, anti-ALK or anti-ROS) and immune checkpoint inhibitor
therapy [15].

Therefore, by using and corroborating the data provided by next generation sequenc-
ing (NGS) assessment, the early diagnosis and guidance of treatment for lung cancer have
become more precise.

2. Next Generation Sequencing

Next generation sequencing (NGS) is a comprehensive technology used for sequence
(DNA) and gene expression (RNA species) analysis [16–18]. The NGS technique was
developed to overcome the Sanger sequencing limitation, but it evolved into being used in
all areas of genomic research, starting with DNA, RNA, miRNA, ChIP and methylation
sequencing [19–21]. As with any technique, NGS has multiple advantages that have made
it an essential tool in all areas of research and in the clinic [22]. However, even after over
15 years of development, this technique has some disadvantages, such as the need for
powerful bioinformatics tools and specialized personnel for both experimental and data
analysis [20]. Some advantages and disadvantages of NGS are presented in Table 1.

The data provided by NGS have proven valuable and reliable for both research and in
the clinic to improve the diagnosis, prognosis, and treatment of several diseases [23–26],
and are widely used in the oncology field [27,28]. In lung cancer, this technique has
been used for early diagnosis biomarker identification, targeted treatment decisions, and
identification of causative mutations [29–34].
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Table 1. Advantages and disadvantages of NGS technology.

Advantages Disadvantages

Low price Need for specialized software and computers
for data analysis

Short time from library preparation to results No standardization or availability of
standardized material for clinical application

Variety of applications Still expensive in some developing countries

Useful both in research and clinic

High number of commercially available NGS
platforms and specialized kits

3. NGS in Lung Cancer Diagnosis

Lung cancer diagnosis is challenging in the early stages because patients do not present
any symptoms, or symptoms are shared with other pulmonary diseases. In addition, classic
techniques for lung cancer diagnosis have many false-negative results due to different
reasons, such as quality and quantity of the samples or sensitivity of the test [35]. Here, NGS
can be beneficial due to its high sensitivity and specificity, using low amounts of sample.
Additionally, NGS can determine an increased number of alterations simultaneously
from the same quantity of sample. Therefore, NGS has been applied with success in
the identification of lung cancer-specific mutations in paraffin-embedded tissue samples,
with a higher rate than standard PCR testing [36,37]. Recently, studies have shown that
NGS can effectively be used to identify specific lung cancer mutations in circulating tumor
DNA, in a liquid biopsy sample [38–41]. The main applications of NGS in the clinic are
related to genomics, transcriptomics and epigenomics. When using whole genome, whole
exome or targeted DNA analysis, specific information on point mutations, copy number
alterations, small indels or structural variance alterations can be identified. RNA seq
analysis can provide information related to gene fusions, alternative splicing, differential
expression or RNA editing, while Bisuphite seq or ChIP seq are used for the identification
of the methylation profile, histone modification or transcription factor binding alterations.

These important advantages demonstrated by NGS in the evaluation of the alterations
related to lung cancer diagnosis have created a new opportunity for the development
of commercial kits and assays specific to lung cancer. One such kit is the NextDaySeq-
Lung panel, developed by Beijing ACCB Biotech (Beijing, China), with primers for the
amplification of EGFR exon 18, 19, 20, 21, KRAS exon 2, 3, PIK3CA exon 9, 20, and
BRAF exon 11, 15. The mutations in the KRAS gene can predict the efficiency of EGFR-
tyrosine kinase inhibitors [42]. Recently, it was observed that most patients that developed
resistance to TKIs have different EGFR mutations [43,44]. Mutations in BRAF can be
correlated to response to BRAF/MEK inhibitors in NSCLC patients [45–47], while PIK3CA
mutations could render SCLC patients sensible to triciribine treatment [48]. In addition,
there is a study that uses alpelisib, a PIK3CA inhibitor, for breast cancer PIK3CA mutated
patients, who have shown better survival than that of other treatment [49], which could be
implemented in lung cancer as well. The NextDaySeq-Lung panel has been used in several
studies and has demonstrated better results than Sanger sequencing or qRT-PCR [50,51].
Other gene panels specific for lung cancer focus on fusion alterations, based on RNA
sequencing, and evaluate translocations, chromosomal inversions or interstitial deletions.
One such panel is the Ion Ampliseq RNA fusion lung cancer panel offered by ThermoFisher
Scientific, Waltham, USA, which targets 70 known fusion transcripts of ALK, RET, ROS1,
and NTRK. This panel has shown high sensitivity and good concordance with the typical
methods used for fusion testing [52]. For fusion testing, RNA seq has proven to be more
sensitive and is used in parallel with DNA seq for mutation evaluation [53,54]. In addition,
NGS has successfully been used to identify lung cancer patients that had MET exon14
skipping alterations [55]. Some other NGS lung cancer panels are presented in Table 2.
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Table 2. Some commercially available NGS panels for lung cancer testing.

Name Company Type of
Sequencing Gene Targeted

Target
Approach for
Gene Fusion

Analysis

Input
Nucleic

Acid (ng)
Type of Test

AccuFusion
Paragon

Genomics,
Hayward, USA

RNA fusion

ALK, CIT, EML4,
FGFR1, MBIP, MET,

NRG1, NTRK1,
NTRK3, PDGFRA, RET,

ROS1, TACC3.

Amplicon
based 10

Diagnosis and
treatment
selection

OmniFusion
Paragon

Genomics,
Hayward, USA

RNA fusion

ALK, CIT, MBIP, MET,
NRG1, NTRK1,

NTRK3, PDGFRA, RET,
ROS1, TACC3

Amplicon
based 25

Diagnosis and
treatment
selection

Ion AmpliSeq™
RNA Fusion
Lung Cancer

Panel

ThermoFisher
Scientific,

Waltham, USA
RNA fusion ALK, RET, ROS1, and

NTRK
Amplicon

based 10
Diagnosis and

treatment
selection

QuantideX®

NGS RNA
Lung Cancer

Kit

Asuragen,
Austin, USA

RNA
expression
and fusion

ALK, ROS1, RET,
FGFR3NTRK1, NTRK3,
NRG1, FGFR1, FGFR2,
MBIP, PDGFRA, MET,

ABCB1, BRCA1,
CD274, CDKN2A,

CTLA4, ERCC1, ESR1,
IFNGR, ISG15, MSLN,
PDCD1, PDCD1LG2,
PTEN, RRM1, TDP1,
TERT, TLET3, TOP1,

TUBB3, TYMS

Amplicon
based 10 Treatment

selection

TruSight RNA
fusion panel

Illumina, San
Diego, USA RNA seq 507 fusion-associated

genes
Hybrid capture

based

10 total
RNA20–100
FFPE RNA

Treatment
selection

Archer fusion
plex

Comprehensive
Thyroid and

Lung

ArcherDX Inc,
Illumina, San
Diego, USA

RNA seq

gene fusions, SNV,
indels, splicing and

gene expression in 36
genes

AMP based 10 ng Diagnosis

Archer fusion
plex Lung kit

ArcherDX Inc,
Illumina, San
Diego, USA

DNA and
RNA seq

EGFR vIII and MET
exon 14 skipping
events along with

prominent ALK, BRAF,
FGFR, NRG1, NTRK,

RET, and ROS1 fusions
and select point

mutations in 14 key
gene targets associated

with lung cancer

AMP based 10 ng Diagnosis

Lung Cancer-
Targeted Gene
Panel, Tumor

MAYO Clinic,
Scottsdale, USA DNA

EGFR, BRAF, KRAS,
HRAS, NRAS, ALK,

ERBB2, and MET

Amplicon
based NA

Diagnosis and
management
of lung cancer
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Table 2. Cont.

Name Company Type of
Sequencing Gene Targeted

Target
Approach for
Gene Fusion

Analysis

Input
Nucleic

Acid (ng)
Type of Test

Ion AmpliSeq™
Colon and

Lung Research
Panel v2

ThermoFisher
Scientific,

Waltham, USA
DNA

KRAS, EGFR, BRAF,
PIK3CA, AKT1, ERBB2,
PTEN, NRAS, STK11,

MAP2K1, ALK, DDR2,
CTNNB1, MET, TP53,

SMAD4, FBXW7,
FGFR3, NOTCH1,

ERBB4, FGFR1, FGFR2

Amplicon
based 10

Diagnosis and
treatment
selection

AmpliSeq for
Illumina Colon

and Lung
Research Panel

Illumina, San
Diego, USA DNA

KRAS, EGFR, BRAF,
PIK3CA, AKT1, ERBB2,
PTEN, NRAS, STK11,

MAP2K1, ALK, DDR2,
CTNNB1, MET, TP53,

SMAD4, FBXW7,
FGFR3, NOTCH1,

ERBB4, FGFR1, and
FGFR2

Amplicon
based 10

Diagnosis and
treatment
selection

It is well known that cancer is considered a genetic disorder in which somatic mu-
tations accumulate and give cancer cells the ability to over proliferate and avoid apopto-
sis [56,57]. Lung cancer is one of the cancers that exhibit a high degree of mutation burden
and a high number of driven mutations [9]. Consequently, NGS is extremely useful, due
to its many advantages, and the development of different NGS panels is implemented
in the clinical setting. In lung cancer diagnosis, NGS is employed mainly in evaluating
the gene alteration in key genes involved in the development of lung cancer. These genes
are EGFR, BRAF, KRAS, HER2, ROS, ALK, PIK3CA, NTRK, RET and MET [58]. One
example is using CGH NGS-based assay for assessing 51 FFPE samples of adenocarcinoma
to evaluate its efficiency compared to standard mutation testing. The authors observed
that 58% of wild-type patients presented alterations in one of these genes when using the
NGS approach, making them suitable for targeted therapy [35]. In other studies, NGS was
implemented for NSCLC diagnosis due to the small quantity of tissue samples, which
is not suitable for traditional testing methods. Hagemman et al. successfully sequenced
209 samples of NSCLC using a 28 gene NGS panel and identified actionable mutations
in 46% of the tested samples [36]. In the same line, Moskalev et al. used the 454 NGS
system to evaluate EGFR and KRAS mutation in NSCLC samples with a low number of
tumor cells. They were able to identify mutations with an allele frequency of 0.2–1.5%.
When reevaluating 16 cases with low tumor cells that were wild type by Sanger, seven
of them presented mutations in the EGFR gene at a frequency of 0.9–10% [37]. Another
study compared an NGS panel, Sanger sequencing, and qRT-PCR in evaluating muta-
tion in 138 NSCLC FFPE samples. The authors observed that NGS and qRT-PCR have a
higher sensitivity than Sanger sequencing. NGS is better than qRT-PCR because it also
provides information about the mutation sequence and allele frequency, and identifies
mutations that are not in the hotspot area [50]. Liang et al. used a DNA methylation
profile to develop a blood-based test for the early diagnosis of lung cancer. Their method
presented a sensitivity of 75% for stage 1A and 85.7 for stage 1B lung cancer [59]. NGS
has proven to be more sensitive and specific than FISH or IHC when analyzing fusion
alterations in lung cancer, which are the main methods used for fusion detection. Lin et al.
observed a positive rate of 92.7% for ALK rearrangement when using NGS, 82.4% for FISH
and 94.5% for IHC, and a concordance of 87.3% of NGS results with IHC results. They
also concluded that IHC fusion testing is better for screening, while NGS fusion testing
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is more accurate for predicting the clinical benefits of crizotinib treatment [60]. Another
benefit of NGS is the fact that it also provides information on the exact fusion alteration,
which is very important in evaluating the treatment and outcome of patients [61]. To
overcome the problem of harvesting tissue samples from early-stage lung cancer sample
patients, new challenges related to identifying novel non-invasive biomarkers are under
investigation. One such example is the use of miRNA for the diagnosis of lung cancer.
miRNA sequencing was used to identify specific miRNAs for adenocarcinoma and SCLC.
Jin et al. were able to identify miR-181-5p, miR-30a-3p, miR-30e-3p and miR-361-5p as
being specific for adenocarcinoma, and miR-10b-5p, miR-15b-5p and miR-320b for SCLC
(small cell lung cancer) [62]. In addition, taking advantage of the many benefits of NGS,
oncology researchers have developed liquid biopsy testing for lung cancer diagnosis [63].
Leighl et al. observed a very high concordance for NGS results from cfDNA and tissue
DNA in untreated metastatic NSCLC [64]. The same was observed by Mack et al. when
analyzing 8388 cases of NSCLC [65]. NGS testing was successfully recommended in lung
cancer diagnosis by different expert panels [66] and oncology organizations [67]. Gray
et al. performed a thorough survey of the relevant literature regarding liquid biopsy and
observed that the advantages of NGS have helped to develop different assays using liquid
biopsy samples for the early diagnosis, treatment selection, minimal disease detection,
monitoring treatment efficacy and evaluation of tumor burden in lung cancer [63]. Sueoka-
Aragane et al. observed that the analysis of ctDNA by NGS could be a promising tool for
the evaluation of the efficacy of osimertinib in NSCLC with EGFR T790M mutation [68].
Table 3 presents studies correlated to the performance of NGS technology in the diagnosis
and screening of lung cancer [69,70].

Table 3. Studies describing the implication of NGS in lung cancer diagnosis.

Samples Correlation with
Other Techniques NGS Method Type of Lung

Cancer Specificity (%) Sensitivity (%) Ref.

31 tissues lung
samples negative for
mutations by FISH

or PCR

8/31 presented
actionable
mutations

Broad, hybrid
capture-based

NGS
Adenocarcinoma NA NA [70]

40 FFPE tissue with
known fusion (test),

59 FFPE
fusion-negative

(validation)

Good concordance
with FISH, PCR or

Sanger

RNA seq gene
fusion NA 93–100 86–100 [71]

28 fusion positive
FISH sample

16 were positive in
NGS

RNA fusion
and DNA seq NSCLC NA NA [72]

32 FFPE
Good concordance

with FISH and
qRT-PCR

RNA seq NSCLC 100 100 [73]

50 FFPE (35 test
positive for different
fusion alterations, 15

negative)
109 FFPE

(validation)

Good concordance
with FISH

RNA fusion
and DNA seq NSCLC 100 100 [74]

31 FFPE positive for
rearrangement by

FISH

26 were positive in
NGS and were

confirmed by IHC

RNA fusion
and DNA seq NSCLC NA NA [75]

51 tested with FISH,
IHC and NGS

8 samples positive
by NGS and IHC,

only 4 by FISH
DNA seq Adenocarcinoma 100 100 [76]



Biology 2021, 10, 864 7 of 15

Table 3. Cont.

Samples Correlation with
Other Techniques NGS Method Type of Lung

Cancer Specificity (%) Sensitivity (%) Ref.

19 FFPE tested with
IHC and NGS

Good concordance
between NGS and

IHC
DNA seq Adenocarcinoma NA NA [77]

63 tissue, urine and
plasma

NGS testing of urine
and plasma

presented more
EGFR mutated

positive samples
that tissue samples
tested by RT-PCR

DNA seq NSCLC
94 for urine
96–100 for

plasma

80–93 for urine
87–100 for

plasma
[78]

3 cases with
multiple resected

tumors

NGS revealed
different molecular
characteristics that

the normal
pathological

diagnosis

DNA seq Adenocarcinoma NA NA [79]

The research area using NGS for lung cancer diagnosis has been extensively developed
and has made this technique valuable for different clinical trials on lung cancer. Data from cl
inicaltrial.gov include 98 trials on lung cancer that use NGS (https://clinicaltrials.gov/ct2/r
esults?cond=Lung+Cancer&term=next+generation+sequencing&cntry&state=&city=&dis
t=, accessed on 25 July 2021). Some of these trials are already complete; others are recruit-
ing or enrolling. There are clinical trials that evaluate the possibility of NGS to identify
mutations in very small samples (NGS NCT02420405), or improve the personalized treat-
ment (NCT02281214). Table 4 presents data on the clinical trials using NGS for lung
cancer diagnosis.

Table 4. Clinical trials on lung cancer diagnosis using NGS technology.

Trial No Condition Scope of the Trial Sample Type Number of
Patients Results

NCT03558165 Lung adenocarcinoma
stage IV

Diagnostic test: oncomine
comprehensive assay FFPE tissue 100 NA

NCT02420405 Non-squamous NSCLC
stage IIIA-IV

Routine gene testing by
NGS for diagnosis Tissue 78 NA

NCT02297087 Incurable SCLC

Standard of care based on
target(s) identified via

GWAS for diagnosis and
treatment

Blood and
tissue 12 NA

NCT02281214

Bronchial
adenocarcinoma with

metastases, epidermoid
cancer of the lungs

NGS testing for treatment
selection and prognostic

Blood and
tissue 165 NA

NCT03257735 NSCLC with brain
metastasis

Consistency of gene
mutation status between

different types of samples
using NGS

Cerebrospinal
fluid, blood
and tissue

50 NA

NCT04849481 NSCLC

Large-scale NGS analysis
for novel treatment

strategies and deciphering
the mechanisms of drug

resistance

Tissue 500 NA

clinicaltrial.gov
clinicaltrial.gov
https://clinicaltrials.gov/ct2/results?cond=Lung+Cancer&term=next+generation+sequencing&cntry&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=Lung+Cancer&term=next+generation+sequencing&cntry&state=&city=&dist=
https://clinicaltrials.gov/ct2/results?cond=Lung+Cancer&term=next+generation+sequencing&cntry&state=&city=&dist=
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Table 4. Cont.

Trial No Condition Scope of the Trial Sample Type Number of
Patients Results

NCT03244904 SCLC NGS analysis for
biomarkers for SCLC

Blood and
tissue 80 NA

NCT02416726 Non-squamous NSCLC
NGS for gene profile
comparison between

different types of samples

Blood and
tissue 35 NA

NCT04260295 Lung cancer and
non-lung cancer patients

NGS for identification of
microorganisms in lungs Tissue 300 NA

NCT02705404 Multifocal lung cancer
NGS for differentiation of

primary tumors from
metastatic tumors

Blood, cytology
and tissue 100 NA

NCT02705404 NSCLC

Targeted NGS for
mutation profile

concordance in different
types of samples

Blood, fresh
frozen and
FFPE tissue

45 NA

NCT03833934 NSCLC
NGS testing for evaluation

of ALK resistant
mutations

Plasma 300 NA

NCT03220230 NSCLC Concordance between
NGS and IHC ALK status

Tissue and
blood 4240

Accuracy 95.9% for
1450 participants,

sensitivity 54.2% for
83 participants,

specificity 98.4% for
1367 participants

NCT03658460 NSCLC
Gene testing using NGS
with focus on immuno-

oncology markers
Tissue 100 NA

NCT02273336 Lung cancer NGS testing for treatment
selection

Tissue, blood
and cytology 40 NA

NCT02941003 Lung adenocarcinoma NGS for early stage
diagnosis Tissue 540 NA

NCT04238130 NSCLC

NGS assessment of
mutation profile in

personalized analysis of
cancer

Plasma 200 NA

NCT02169349 Stage IIIb and IV NSCLC
NGS evaluation cfDNA
for diagnosis, treatment
and disease progression

Plasma 100 NA

NCT02299622
NSCLC, head and neck

cancer, esophageal
cancer

NGS testing for evaluation
of mutation profile Tissue 200 NA

NCT02778854 NSCLC

Genetic detection of driver
mutation using ddPCR

and NGS for evaluation of
the efficacy of liquid

biopsy in diagnosis and
prognosis

Tissue, plasma
and other
biological

liquids

200 NA

NCT03486262

Lung carcinoma patients
with/withoutidiopathic

pulmonary fibrosis
(IPH)

NGS testing for genetic
alterations identification
in lung cancer patients

with IPH and without IPH

Tissue 100 NA
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Table 4. Cont.

Trial No Condition Scope of the Trial Sample Type Number of
Patients Results

NCT02113852 NSCLC

NGS study for
identification and

characterization of genetic
and transcriptomic

alteration

Tissue and
blood 250 NA

NCT03771404 Operable (stages I-IIIA)
NSCLC Patients

NGS evaluation of the
genetic landscape of each

patient in order to
determine heterogeneity

in early stage NSCLC

Blood and
tissue 50 NA

NCT04698681 Stage IV non-squamous
NSCLC

NGS evaluation for tumor
mutations identification in

the KEAP1 or
NRF2/NFE2L2 genes in

order to determine
potential eligibility for a

biomarker selected clinical
trial

Blood 200 NA

NCT04266483 NSCLC Molecular typing of lung
cancer in China

Blood and
tissue 2500 NA

NCT04624373 Stage IV lung cancer

Molecular analysis to
investigate the sensitivity
of cytology supernatant

DNA for genotyping

Supernatant,
blood and

tissue
50 NA

NCT02718651 NSCLC

New diagnostic test to
detect ALK

rearrangements using
NGS

plasma 70 NA

NCT03576937 Non-squamous NSCLC

Comparison of
blood-based mutational

profile with tissue
mutational profile for

diagnosis

Blood and
tissue 207 NA

NCT03248089 Non-squamous NSCLC
Investigation of the
efficacy of cfDNA

genotyping for diagnosis

Blood and
tissue 186 NA

NCT03317080 I-IV lung cancer eligible
for surgery.

Use of liquid biopsy for
lung cancer detection Blood 1500 NA

NCT04025515 Asian patients with
NSCLC

Comprehensive molecular
profiling of “actionable”

alterations in lung cancer
specimens in order to

determine the prevalence
of each genetic subtype in

the local population.

Tissue 500 NA

NCT03706625
Immune-suppressed

patients suffering from
HIV-related NSCLC

Identify novel biomarkers
such as tumor mutational

profiling and
immunomutanome in
immunosuppressed

patients

Tissue 170 NA
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Table 4. Cont.

Trial No Condition Scope of the Trial Sample Type Number of
Patients Results

NCT03651986
Patients with benign

and malignant
pulmonary nodules

Development of a
blood-based assay for
early differentiation of
benign and malignant
pulmonary nodules

Blood 10,560 NA

NCT02906943 Several cancer including
lung cancer

NGS evaluation of
different types of cancer

for biomarker
identification

FFPE tissue 10,000 NA

NCT03609918 NSCLC

To build NSCLC gene
mutation profile in China

and find related
correlation between gene

mutation panel and
clinical outcome

Fresh frozen
tissues and

FFPE tissues
513 NA

NCT03029065 Lung cancer patients
with brain metastases

To determine whether
cfDNA can be used for

concomitant diagnosis to
improve the treatment

efficacy and prognosis of
patients with brain

(meningeal) metastasis

Tissue, plasma
and

cerebrospinal
fluids

50 NA

NCT03971175 Lung cancer and relapse
NSCLC

To evaluate accuracy of
molecular genetic

characterisation of NSCLC

Tissue,
cytology and
liquid biopsy

540 NA

NCT04692935
Lung adenocarcinoma

from asian and
Caucasian patients

Evaluation of the
mutational profile by race Tissue 450 NA

In addition, recent studies have shown that by implementing NGS-based testing,
clinics can reduce the cost required for evaluating biomarkers specifically for targeted
treatments or agnostic therapy implementation. NGS-based testing can reduce total testing
cost by EUR 30–1249 depending on how comprehensive the analysis is, when compared to
RT-PCR technology [80].

4. Conclusions

NGS has successfully been used both in research and in the clinic, and has become
one of the main tools in lung cancer diagnosis, showing better results that standard
techniques used for lung cancer diagnosis, and being able to identify lung cancer-specific
alteration in a variety of biological samples such as blood, plasma, fresh frozen or FFPE
tissue, urine or other bodily fluids, even where the nucleic acid content is limited and
where classic methods fail. In addition, the cost of NGS is lower than that of standard
testing methods, which makes this technique appealing for the implementation of different
agnostic therapies, targeted therapies and immune checkpoint inhibitor therapies. Its
success was demonstrated in different clinical studies that were developed to obtain better
methods for lung cancer diagnosis. The NGS technique has become the primary tool
for investigating different types of samples and different subtypes of lung cancer, being
implemented in mutation evaluation and fusion alteration identification, due to its great
advantage over FISH and IHC, which are techniques that can have inconsistent results due
to the expertise of the pathologist, and cannot be used on other types of samples, except
tissue. As with any technique, NGS still has its limitations, mostly related to the amount of
data obtained, and the need for a big data storage capacity and a good bioinformatics team.
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Nevertheless, the advantages of NGS make it ideal to be used for evaluating a high
number of biomarkers in a short period of time, from small biological samples, and at a
low price. Therefore, NGS should be the preferred technique to develop clinical tests for
personalized medicine using liquid biopsy, the new trend in oncology.
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