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Pathophysiologic Mechanisms and Potential
Biomarkers in Diabetic Kidney Disease
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Although diabetic kidney disease (DKD) remains the leading cause of end-stage kidney disease eventually requiring chronic kid-
ney replacement therapy, the prevalence of DKD has failed to decline over the past 30 years. In order to reduce disease prevalence,
extensive research has been ongoing to improve prediction of DKD onset and progression. Although the most commonly used
markers of DKD are albuminuria and estimated glomerular filtration rate, their limitations have encouraged researchers to search
for novel biomarkers that could improve risk stratification. Considering that DKD is a complex disease process that involves sev-
eral pathophysiologic mechanisms such as hyperglycemia induced inflammation, oxidative stress, tubular damage, eventually
leading to kidney damage and fibrosis, many novel biomarkers that capture one specific mechanism of the disease have been de-
veloped. Moreover, the increasing use of high-throughput omic approaches to analyze biological samples that include proteomics,
metabolomics, and transcriptomics has emerged as a strong tool in biomarker discovery. This review will first describe recent ad-
vances in the understanding of the pathophysiology of DKD, and second, describe the current clinical biomarkers for DKD, as
well as the current status of multiple potential novel biomarkers with respect to protein biomarkers, proteomics, metabolomics,
and transcriptomics.
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INTRODUCTION

Diabetic kidney disease (DKD) occurs in 25% to 40% of pa-
tients with diabetes mellitus (DM), and is the leading cause of
kidney failure worldwide [1]. Given this high-risk of progres-
sive kidney function decline, resulting in end-stage kidney dis-
ease (ESKD) eventually requiring kidney replacement therapy,
early identification of high-risk patients is important. Al-
though our understanding of this disease process has im-
proved over the years, unlike other diabetic complications, the
prevalence of DKD has failed to decline over the past 30 years
[2].

Clinically, DKD is defined as persistent albuminuria of an
albumin-to-creatinine ratio above 30 mg/g of creatinine, with

a progressive decline in kidney function. It is a microvascular
complication of diabetes, characterized by hyperfiltration and
mesangial matrix expansion, leading to kidney hypertrophy,
thickening of the glomerular basement membrane, subsequent
podocyte and glomerular injury, as well as tubular damage, all
of which result in glomerulosclerosis and tubulointerstitial fi-
brosis. The pathogenesis of DKD is multifactorial with numer-
ous structural, hemodynamic, and inflammatory pathophysio-
logical processes being involved in the initiation and progres-
sion of the disease [3,4].

According to the Kidney Diseases: Improving Global Out-
comes (KDIGO) clinical practice guideline for the diagnosis
and management of chronic kidney disease (CKD), both func-
tional and structural markers are used to diagnose and classify
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CKD, where estimated glomerular filtration rate (eGFR) is
used for functional assessment, and albuminuria is used to as-
sess structural damage of the kidney [5]. Both biomarkers are
strong predictors of kidney disease progression, cardiovascular
disease (CVD) and mortality in DKD patients [6]. However,
the prognostic significance of these two biomarkers is not spe-
cific to DKD. In order to improve the risk stratification of pa-
tients with DKD, although several novel biomarkers have been
developed and their predictive value have been extensively
tested, most studies to date have only reported modest im-
provements in prediction of novel biomarkers over conven-
tional biomarkers such as eGFR and albuminuria.

The aim of this review is first to describe recent advances in
the understanding of the pathophysiology of DKD, and sec-
ond, to describe the current clinical biomarkers for DKD, as
well as the current status of multiple novel biomarkers with re-
spect to protein biomarkers, proteomics, and metabolomics.

PATHOPHYSIOLOGY OF DIABETIC KIDNEY
DISEASE

Hyperglycemia

In clinical studies, intensive glucose control reduced the inci-
dence of albuminuria by 50% [7], and each ~1% reduction in
glycosylated hemoglobin (HbA1c) reduced the risk of micro-
albuminuria by 33% [8]. In two landmark trials, intensive glu-
cose control was associated with lower rates of albuminuria,
although not in patients with type 2 diabetes mellitus (T2DM)
and advanced CKD [9,10]. Although strict glycemic control
may slow DKD progression in those with higher levels of albu-
minuria, it may not be able to completely halt disease progres-
sion [11,12]. This notion is supported by the fact that approxi-
mately 20% of patients with T2DM develop DKD in the ab-
sence of albuminuria [13]. Hyperglycemia is known to cause
hypertrophy of the kidneys by generating advanced glycation
end products (AGEs), oxidative injury, and hypoxia (Fig. 1).
Several pathways such as the polyol, protein kinase C (PKC),
and the hexosamine pathway are also involved in the develop-
ment of DKD from hyperglycemia. All of these pathways are
known stimulate several growth factors that include insulin
like growth factor-1, epidermal growth factor, platelet-derived
growth factor, vascular endothelial growth factor, transform-
ing growth factor-p (TGF-p), and angiotensin IT (Ang IT) [14-
17]. Of the several growth factors, TGF-f has been one of the
most studied growth factor involved in the pathogenesis of
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DKD. In experimental diabetic models, TGF-f neutralizing
antibodies attenuated kidney hypertrophy and preserved kid-
ney function [18,19]. However, administration of TGF-f neu-
tralizing antibodies failed to reduce albuminuria [19]. Similar-
ly, in a randomized clinical trial of 77 subjects with diabetic
nephropathy, administration of pirfenidone, an inhibitor of
TGEF-p production, failed to reduce urine levels of TGF-f3 [20].

Hypertension

Hypertension is another significant factor that contributes to
the progression of DKD [21,22]. Normotensive patients with
DKD show slower disease progression than those with hyper-
tension [23]. In type 1 diabetes mellitus (T1DM), the cause of
hypertension is primarily due to parenchymal disease, and
blood pressure starts to increase only when the patient pro-
gresses from micro- to macroalbuminuria. In contrast, in pa-
tients with T2DM, hypertension is found in about one-third of
patients at the time of diagnosis, suggesting that hypertension
in T2DM may be a feature of metabolic syndrome [24]. Never-
theless, regardless of the type of DM, studies have indicated
that uncontrolled hypertension accelerates the development of
DKD. In the Action in Diabetes and Vascular Disease: Preterax
and Diamicron Modified Release Controlled Evaluation (AD-
VANCE) trial that included 11,140 participants with T2DM, a
reduction in the systolic blood pressure resulted in a relative
risk reduction of 9% for DKD complication [9]. However, in
the more recent Action to Control Cardiovascular Risk in Dia-
betes (ACCORD) blood pressure trial (ACCORD-BP) and the
International Verapamil-Trandolapril (INVEST) trial, lower-
ing systolic blood pressures to below 130/80 mm Hg failed to
substantially reduce clinical endpoints compared to standard
anti-hypertensive therapy [25,26].

The optimal blood pressure target for patients with DKD re-
mains controversial. The American Heart Association and
American College of Cardiology joint 2017 guidelines recom-
mend the lower target of <130/80 mm Hg [27], whereas the
American Diabetes Association and Joint National Committee
8 recommend the higher target of 140/80 mm Hg for patients
with DKD [28,29]. Although the recent Systolic Blood Pres-
sure Intervention Trial (SPRINT) showed benefits of targeting
lower blood pressures of <120 mm Hg, but the trial was per-
formed mainly in non-diabetic elderly patients [30]. In a post
hoc analysis of SPRINT-eligible participants in the ACCORD-
BP trial, intensive blood pressure control reduced CVD out-
comes in a cohort of participants with T2DM and additional
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CVD risk factors [31]. However, further studies are needed to

assess whether lower blood pressure targets also benefit pa-
tients with DKD.

Inflammation

Hyperglycemia causes cellular injury, which triggers the re-
lease of proinflammatory mediators that include chemokines
such as tissue necrosis factor-a, (TNF-a) and interleukin-1 (IL-
1), adhesion molecules, and damage-associated molecular pat-
terns (Fig. 1) [15-17]. This results in the recruitment of inflam-
matory cells such as macrophages, monocytes, activated T
lymphocytes, and nod-like receptor protein-3 (Nlrp-3) inflam-
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masomes, to the kidney [32,33]. Accumulation of macro-
phages in the glomerulus produces cytokines, reactive oxygen
species (ROS), and proteases, which cause kidney damage and
fibrosis, leading to DKD progression [34]. In mouse models of
both T1IDM and T2DM, deletion of the C-C motif chemokine
2 (CCL2; also known as monocyte chemoattractant protein-1)
and intracellular adhesion molecule 1 (ICAM-1), which are
known promote macrophage infiltration in the kidneys, de-
creased albuminuria and inflammation levels [35-37]. Due to
the beneficial effects of CCL2 inhibition, clinical trials of the
CCL2 inhibitor emapticap pegol (emapticap; NOX-E36, Noxx-
on Pharma AG, Berlin, Germany) are currently ongoing. In
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Fig. 1. The pathophysiology of potential and novel biomarkers of diabetic kidney disease classified by their target pathophysiolog-
ical pathways. AGE, advanced glycation end products; PKC, protein kinase C; IGF-1, insulin like growth factor-1; EGE epidermal
growth factor; PDGE, platelet-derived growth factor; VEGE vascular endothelial growth factor; TGF-f, transforming growth
factor-f; Ang II, angiotensin II; TNF-a, tissue necrosis factor-a; INF-y, interferon-vy; IL-1, interleukin-1; IL-6, interleukin-6; Nlrp-
3, nod-like receptor protein-3; ROS, reactive oxygen species; CCL2, C-C motif chemokine 2; ICAM-1, intracellular adhesion
molecule 1; TNFRI, tissue necrosis factor receptor 1; TNFR2, tissue necrosis factor receptor 2; PAI-1, plasminogen activator in-
hibitor-1; VCAM-1, vascular cell adhesion protein-1; CRP, C-reactive protein; Nrf2, nuclear factor erythroid 2-related factor;
NOS, nitric oxide synthase; 8-OHdAG, 8-Hydroxy-2"-deoxyguanosine.
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one phase 1II trial, a 29% reduction in albuminuria was ob-
served with this inhibitor [38].

Of the inflammatory cytokines, TNF-q, has been the most
extensively studied molecule to date [39]. Patients with DKD
are generally known to have higher TNF-q, levels compared to
healthy individuals. Of these patients, those with albuminuria
have even higher TNF-¢ levels, when compared to those with-
out albuminuria [40]. Due to the role of TNF-q in the progres-
sion of DKD, many therapeutic agents have been developed to
target this inflammatory cytokine. Pentoxifylline, which is a
phosphodiesterase inhibitor that has anti-inflammatory prop-
erties, as well as the ability to reduce TNF-q, interferon-y, IL-1,
and IL-6 levels, is one of the therapeutic agents that is currently
being extensively studied [41]. In a prospective study of 61 pa-
tients with DKD and residual albuminuria, the addition of
pentoxifylline to Ang II receptor blockade resulted in an addi-
tive anti-proteinuric effect associated with a reduction of uri-
nary TNEF-q, excretion [42]. A post hoc analysis of the Pentoxi-
fylline for Renoprotection in Diabetic Nephropathy (PREDI-
AN) trial also indicated that pentoxifylline also increased se-
rum and urinary klotho levels, suggesting that pentoxifylline
most likely provides anti-proteinuric effect by decreasing in-
flammation levels [43]. However, a recent meta-analysis of 17
studies and a total of 991 participants indicated that although
pentoxifylline seemed to offer some beneficial effects in kidney
function improvement and reduction in albuminuria, most
studies were poorly reported, insufficient in sample size, and
methodologically flawed. Further prospective, large-scale
studies are needed to develop recommendations for routine
use of this medication in patients with DKD [44].

Oxidative stress
Chronic hyperglycemia also stimulates the production of
AGEs, the polyol pathway, and activates PKC, all of which leads
to the increase in levels of ROS and oxidative stress (Fig. 1)
[15-17]. Increase in ROS levels of the kidneys lead to damage
of essential cellular components and DNA [45-47], as well as
endothelial dysfunction, which is a hallmark feature of T2DM
and DKD [3,48]. Endothelial dysfunction is characterized by
reduced bioavailability of nitric oxide and increased oxidative
stress [48]. Reduced endothelial nitric oxide synthases, result-
ing in enhanced production of ROS and oxidative stress are as-
sociated with the progression of DKD in experimental animal
models [49,50].

Early animal studies of antioxidants in animal models of
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DKD have indicated that administration of GKT137831, a
small molecule inhibitor of Nox1 and Nox4, in diabetic mice
provided similar degree of renoprotection when compared to
that observed in Nox4 knockout mice [51]. This was further
investigated in a study of OVE26 mice, a model of T1DM,
where administration of GKT137831 significantly reduced
glomerular hypertrophy, mesangial matrix expansion, urinary
albumin excretion, and loss of podocyte [52]. More recently, a
novel pan-Nox inhibitor, APX-115, was shown to prevent kid-
ney injury such as albuminuria, glomerular hypertrophy, tubu-
lar injury, podocyte injury, fibrosis, inflammation, and oxida-
tive stress in diabetic mice. Observed effects were similar to
those observed after losartan treatment of diabetic mice [53].
Although the results of animal studies have been promising,
therapeutic effects of antioxidants in human studies have been
largely unconvincing [17]. Currently, most therapies mainly
target oxidative stress reduction by means of strict glucose
control by anti-diabetic agents, as well as use of anti-hyperten-
sive and anti-dyslipidemic agents [54,55]. For example, piogli-
tazone has been shown to markedly reduce glomerular sclero-
sis, hypertrophy, tubulointerstitial fibrosis, and albuminuria in
a DKD animal model [56]. These effects may decrease levels of
oxidative stress by means of reduction of hyperglycemia and
insulin resistance. More recently, whether sodium-glucose co-
transporter 2 (SGLT2) inhibitors can reduce oxidative stress
and improve endothelial function has been investigated [57].
In mouse models, SGLT2 inhibitors protected against endo-
thelial dysfunction, but vasodilatory effect was also found to be
primarily due to reduced inflammation and reductions in oxi-
dative stress levels [58]. Results from human studies have been
more conflicting. In the randomized, controlled Dapagliflozin
Effectiveness on Vascular Endothelial Function and Glycemic
Control in T2DM (DEFENCE) study of 80 patients with
T2DM, use of dapagliflozin (Farxiga, AstraZeneca, Cam-
bridge, UK) improved endothelial function, as measured by
change in flow-mediated dilation [59]. However, in the Effect
of Empagliflozin on Endothelial Function in Cardiovascular
High Risk Diabetes Mellitus: Multi-Center Placebo-Controlled
Double-Blind Randomized Trial (EMBLEM), which included
patients with T2DM and established CVD, use of empa-
gliflozin (Jardiance, Boehringer Ingelheim, Ingelheim, Germa-
ny) failed to improve endothelial function [60], suggesting that
CVD benefits associated with the use of SGLT2 inhibitors may
have been attributable to mechanisms other than reduced in-
flammation and endothelial dysfunction [61]. Although posi-
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tive kidney outcomes from the Canagliflozin and Renal End-
points in Diabetes with Established Nephropathy Clinical
Evaluation (CREDENCE) trial, which enrolled patients with
T2DM and DKD, led to U.S. Food and Drug Administration
approval of canagliflozin (Invokana, Janssen, Beerse, Belgium)
for the treatment of DKD [62], uncertainties regarding the use
of SGLT?2 inhibitors remain due to the lack of long-term clini-
cal trials testing the kidney protective effects of every SGLT2
inhibitor in a broad range of patients with T2DM [63].

In addition to the above anti-diabetic agents, the develop-
ment of antioxidants that more specifically target oxidative
stress has been ongoing. Most recently, in The Phase 2 Study of
Bardoxolone Methyl in Patients with Chronic Kidney Disease
and Type 2 Diabetes (TSUBAKI) study, administration of bar-
doxolone methyl (Reata Pharmaceuticals, Plano, TX, USA), an
activator of nuclear factor erythroid 2-related factor (Nrf2)
that protects against oxidative stress, improved measured glo-
merular filtration rate [64]. However, considering that the
phase 3 Bardoxolone Methyl Evaluation in Patients with
Chronic Kidney Disease and Type 2 Diabetes Mellitus: the Oc-
currence of Renal Events (BEACON) study indicated that bar-
doxolone methyl increased the risk of early-onset fluid over-
load in patients with risk factors for heart failure [65], further
studies examining safety concerns are needed before use in
routine clinical practice [66].

CURRENT GUIDELINES OF DKD
EVALUATION

To date, the most commonly used markers of DKD are albu-
minuria and eGFR [67]. These markers have strong predictive
abilities of not only DKD progression, but also CVD and all-
cause mortality. However, these two markers have several limi-
tations. Approximately 30% of patients with DKD do not have
albuminuria and therefore, eGFR is the only biomarker avail-
able to predict DKD development and progression [13,68]. Al-
though the metabolic syndrome, which is associated with in-
sulin resistance, obesity, and hypertension, is strongly associat-
ed with the development of CKD and albuminuria [69], not all
patients with the metabolic syndrome and T2DM develop al-
buminuria [70]. Moreover, not all DKD patients with microal-
buminuria progress to macroalbuminuria, as some patients
may also regress to normoalbuminuria [71]. This makes it dif-
ficult to predict development and progression of DKD using
albuminuria. Limitation of using eGFR to predict disease pro-
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gression include different equations used to eGFR such as the
Chronic Kidney Disease Epidemiology Collaboration (CKD-
EPI), Modification of Diet in Renal Disease (MDRD) equa-
tion, and eGFR calculated using cystatin C instead of creati-
nine [5], which may under- or overestimate risk of DKD devel-
opment or progression depending on the equation used to cal-
culate eGFR. In a study of diabetic adults to investigate the
population based incidence rate of CKD depending on the
eGFR equation used, incident rates of CKD were higher when
the MDRD equation was used, compared to when the CKD-
EPI equation was used [72]. Moreover, considering that creati-
nine is released from muscle tissue, creatinine based eGFR
equations may fail to accurately reflect actual kidney function,
particularly in patients with low muscle mass. Although the
cystatin C, which is independent of muscle mass, overcomes
this limitation of creatinine, several other factors such as in-
flammation and fat mass are also known to affect serum levels
of this molecule [73], and thus may potentially confound the
predictive ability of eGFR in DKD development or progres-
sion.

POTENTIAL BIOMARKERS OF DKD

In order to improve the prediction of DKD progression, the
search for novel biomarkers to improve early identification of
high-risk patients has been ongoing. Over the last decade,
there have been numerous studies investigating novel bio-
markers for DKD [74]. Such novel biomarkers will not only
improve risk stratification of patients with DKD, but will also
provide further insights into the complex pathophysiology of
the disease, as well as potential novel therapeutic targets. Typi-
cally, such biomarkers capture one specific mechanism of the
disease process such as glomerular or tubular damage, inflam-
mation, or oxidative stress (Table 1) [75]. However, consider-
ing that DKD is a heterogeneous disease with a complex
pathophysiology, it is more likely that no one biomarker may
be able to predict the prognosis of DKD, and a multi-marker
approach may be needed to predict disease progression.

Biomarkers of tubular damage

Markers of tubular damage include kidney injury molecule 1
(KIM-1), neutrophil gelatinase-associated lipocalin (NGAL),
a-1-microglobulin, N-acetyl-B-D-glucosaminidase (NAG),
cystatin C, and liver-type fatty acid-binding protein (L-FABP).
The markers that have been most extensively studied are KIM-
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1, NGAL, L-FABP, and cystatin C.

KIM-1 is a protein expressed on the apical membrane of the
proximal tubule cells of the kidney. Urinary concentrations of
KIM-1 increase in response to acute kidney injury [76]. In a
nested case-control study and a prospective cohort study,
KIM-1 was independently associated with higher risk of eGFR
decline in persons with early or advanced DKD [77]. More re-
cently, in a case-cohort study of 894 participants with DKD
from the Chronic Renal Insufficiency Cohort (CRIC) cohort,
higher plasma levels of KIM-1 were associated with increased
risk of progression of DKD [78].

NGAL is a 25 kDa protein belonging to the lipocalin super-
family that was initially found in activated neutrophils, but also
produced in kidney tubular cells in response to tubular dam-
age. Elevated levels of urinary NGAL have been shown to be
present in DKD patients with normoalbuminuria [79], and it
has also been demonstrated to precede microalbuminuria in
T1DM [80,81]. In another study of 117 patients with T2DM,
high values of urinary NGAL have been observed in T2DM
patients with normoalbuminuria, and rose progressively in
those with micro- and macroalbuminuria, suggesting that tu-
bular injuries may be occurring even in very early stages of
DKD [79].

Urinary L-FABP levels have been shown to be associated
with DKD progression. In patients with T1DM, high levels of
urinary L-FABP predicted the initiation and progression of
DKD and all-cause mortality, independent of the severity of al-
buminuria and other established risk factors [82]. In another
cross-sectional and longitudinal study of 140 patients with
T2DM without DKD and 412 healthy control subjects, urinary
L-FABP levels accurately reflected the severity of DKD, and
these levels were particularly high in those with normoalbu-
minuria [83]. High urinary L-FABP levels were found to be a
strong and independent predictor of progression of DKD [84].

Cystatin C, which is a 13-kDa molecule that is freely filtered
across the glomerulus and then completely reabsorbed and
metabolized by the proximal tubule, is another marker of tu-
bular damage that is commonly used in current practice. Con-
sidering that urinary cystatin C concentrations rise after tubu-
lar damage, the urinary cystatin C to creatinine ratio has been
demonstrated to independently predict development of CKD
stage 3 in patients with T2DM. However, in a separate analysis
of patients with eGFR >60 mL/min/1.73 m* and without base-
line albuminuria, the ratio was not associated with the rate of
eGFR decline [85].
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Biomarkers of inflammation

Markers of inflammation such as TNF-¢ and IL-1§ are also
known to predict DKD progression [39]. The possibility that
both markers could contribute to the development of DKD
was first postulated in a study of diabetic mouse, where macro-
phages incubated with glomerular basement membranes pro-
duced significantly greater levels of both TNF-¢, and IL-18
than those incubated with membranes of normal non-diabetic
mouse [86]. TNF-a binds to type 1 (TNFR1) and type 2
(TNFR2) TNEF-q receptors, and both are found in circulation
as soluble forms. TNF-a is known to exert cytotoxic effects on
glomerular and mesangial cells, and thus, induces kidney inju-
ry [87]. Animal and human studies have suggested that uri-
nary TNF-q excretion and serum TNF-q levels are both ele-
vated in DKD [88]. Studies of TNFR levels have also suggested
that circulating TNFR levels may be good predictors of ESKD
in patients with DKD [89]. More recently, in the Joslin cohort,
TNEFR2 levels were the strongest determinant of eGFR decline
in patients with TIDM and albuminuria [90].

Other inflammatory markers that have been studied include
serum E-selectin, IL-6, plasminogen activator inhibitor-1
(PAI-1), ICAM-1, vascular cell adhesion protein-1 (VCAM-1),
and C-reactive protein (CRP). In the Diabetes Control and
Complications Trial (DCCT) study, which enrolled 1,237 pa-
tients who were both free of albuminuria and CVD at baseline,
high levels of inflammatory markers, mainly E-selectin and
soluble TNFR1 and TNFR?2 levels were important predictors
of incident albuminuria in patients with TIDM [91]. In the
Joslin cohort, although markers that included TNE ICAM-1,
VCAM-1, PAI-1, IL-6, and CRP were studied, only elevated
concentrations of circulating TNFR in patients with T2DM
were strong predictors of subsequent progression to ESKD in
individuals with and without albuminuria [90].

Biomarkers of oxidative stress

8-Hydroxy-2’-deoxyguanosine (8-OHdG) is a product of oxi-
dative DNA damage, and is excreted in the plasma and urine
upon DNA repair by nuclease activity [92]. This allows
8-OHdG to be used as a biomarker of oxidative DNA damage.
As such, several previous studies have indicated that individu-
als with T2DM generally have higher levels of 8-OHdG com-
pared to healthy individuals [93]. A recent cohort study of pa-
tients with TIDM also similarly demonstrated that higher
plasma concentrations of 8-OHdG were independently associ-
ated with increased risk of kidney disease, suggesting that
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8-OHdG may be useful in evaluating the progression of DKD
[94]. However, another study suggested that measurements of
urinary 8-OHdG did not improve prediction of progressive
DKD over and above measuring albuminuria [95].

OMICS BASED NOVEL BIOMARKERS OF
DKD

The omics platform-based approach

Over the past years, the use of high-throughput omic ap-
proaches to analyze biological samples that include proteomics,
metabolomics, and transcriptomics has significantly increased.
An omics test is an assay composed of multiple molecular mea-
surements that allows quantification of all RNAs, proteins, and
metabolites present in biological samples. Advantages of omics
platforms are that not only can they measure a full spectrum of
peptides or metabolites in a short amount of time, but they also
produce large sets of unbiased data that can be used for diag-
nosis, outcome prediction, and treatment responses. As a re-
sult, this omics platform-based approach has emerged as a
strong tool in biomarker discovery in recent years (Table 1).

Proteomics

Proteomics allows for the full assessment of proteins present
within plasma, serum, or urine. Since urine collection is rela-
tively simple, non-invasive, and available in abundant volumes,
urinary proteomics has gained much attention as a tool for the
identification of diagnostic and prognostic biomarkers of kid-
ney diseases [96]. For example, in a study of patients with DKD
from the Veterans Affairs Diabetes Trial (VADT), urinary hap-
toglobin was identified as a candidate biomarker to predict
early kidney functional decline [97].

At present, the most studied and validated proteomic classi-
fier is the capillary electrophoresis-mass spectrometry-based
urinary peptide classifier, CKD-273. This mass spectrometry-
based method combines data of 273 urinary peptides into a
combined score that has high accuracy of predicting the new
onset of albuminuria. The diagnostic utility of this proteomic
classifier was first developed in a cross-sectional study of 3,600
CKD patients with different CKD etiologies, where the classifi-
er showed a sensitivity of 85% and a specificity of 100% for the
diagnosis of CKD [98]. This classifier was subsequently vali-
dated across several cohorts consisting of patients with T2DM,
where CKD-273 was shown to predict both development and
progression of albuminuria in patients with DKD. In a pro-
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spective study of 35 patients with either TIDM or T2DM,
CKD-273 was able to predict progression to macroalbumin-
uria 5 years prior to actual onset [99], and another study indi-
cated that CKD-273 was able to predict development of albu-
minuria independent of any other kidney biomarker used to
predict DKD development or progression [100]. Most recently,
in a study of 1,014 individuals with TIDM or T2DM, baseline
eGFR 270 mL/min/1.73 m? and normoalbuminuria, CKD-
273 was able to identify patients with DM who will progress to
eGFR <60 mL/min/1.73 m* in the absence of albuminuria, in-
dependent of age, blood pressure, and baseline eGFR [101].

In the Proteomic Prediction and Renin Angiotensin Aldo-
sterone System Inhibition Prevention of Early Diabetic ne-
phropathy In Type 2 Diabetic Patients with Normoalbumin-
uria (PRIORITY) trial, the efficacy of CKD-273 in predicting
development of DKD was investigated in a prospective cohort
comprised of 1,775 patients with T2DM and normoalbumin-
uria. After a median follow-up of 2.5 years, high-risk patients
defined by CKD-273 were more likely to develop microalbu-
minuria, even after adjustments for baseline risk factors such
as HbAlc, systolic blood pressure, baseline albuminuria and
eGFR [102]. In a post hoc analysis of the Diabetic Retinopathy
Candesartan Trials-progression of retinopathy in T2DM (DI-
RECT-Protect 2) study that consisted of patients with T2DM
and normoalbuminuria, the CKD273-classifier predicted de-
velopment of albuminuria during follow-up independent of
treatment, age, sex, blood pressure, albuminuria, eGFR,
HbA1c, and diabetes duration, suggesting that proteomics may
help identify high-risk normoalbuminuric patients for preven-
tion of DKD [103].

Although both plasma and serum are alternatives to urine
samples, proteomics derived from blood samples are not as
common as urine proteomics. Profiling of circulating proteins
in the blood is difficult to perform due to the large heterogene-
ity and spread in abundance of proteins in blood and high ex-
posure to proteolytic activity, which may confound the inter-
pretation of the blood proteome [104]. Regardless of the sam-
ple used for proteomic analysis, use of proteomics for early di-
agnosis of DKD is limited by the absence of a robust and well-
validated diagnostic criteria. Further validation studies are
needed before widespread implementation of proteomics
analyses in DKD.

Metabolomics
Metabolomics is the measurement of low weight intermediates

Diabetes Metab ] 2022;46:181-197  https://e-dmj.org



Pathophysiologic mechanisms and biomarkers in DKD

and small end products of biochemical processes in biological
fluids. They have emerged as another potential tool in the dis-
covery of novel biomarkers for kidney diseases. Compared to
biological information from the genome, transcriptome, and
proteome, metabolomes are often regarded as a better platform
in the assessment of a patient’s molecular phenotype. However,
their results are often difficult to interpret due to various con-
founders, including lifestyle, medications, and nutritional sta-
tus [105].

There are numerous cross-sectional studies that have inves-
tigated the progression of kidney disease in patients with
T2DM. Most studies have investigated products of lipid me-
tabolism that include esterified and non-esterified fatty acids,
phospholipids, as well as amino acid metabolism, carnitine,
nucleotide metabolism. In those that investigated plasma
phospholipids, one study demonstrated that non-esterified
and esterified fatty acid discriminated albuminuria stages in
T2DM [106]. In another study of 78 diabetic patients, combi-
nation of 19 serum metabolites enabled accurate discrimina-
tion of patients with DKD. For example, when five metabolites
that included y-butyrobetaine, symmetric dimethylarginine
(SDMA), azelaic acid and two unknowns were selected from
the panel of metabolites, the area under curve (AUC) value for
diagnosis of DKD was 0.927 for the whole data set [107]. An-
other study that included healthy controls and patients with
T2DM indicated that serum metabolite levels of leucine, dihy-
drosphingosine and phytosphingosine were significantly dif-
ferent in these two patient groups [108]. However, all of the
aforementioned studies are cross-sectional, and does not allow
for the assessment of the predictive value of these metabolites.

There are even fewer prospective studies in the field of me-
tabolomics. In a study of 90 patients with T2DM, urine hexose,
glutamine, tyrosine, plasma butenoylcarnitine and histidine
levels predicted development of albuminuria, independent of
baseline albuminuria, eGFR and use of RAS-blockers [109]. In
the Surrogate markers for micro- and macro-vascular hard
end points for Innovative diabetes Tools program (SUMMIT)
study, a total of 207 serum biomarkers were measured, of
which 30 biomarkers showed significant associations with rap-
id progression, all adjusted for clinical characteristics. A panel
of 14 biomarkers increased the predictive ability, where the ad-
dition of biomarkers to clinical data improved baseline AUC
from 0.706 to 0.868. Biomarkers included in the predictive
model consisted of fibroblast growth factor-21, the symmetric
to asymmetric dimethylarginine ratio, 2-microglobulin, C16-
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acylcarnitine, and KIM-1 [110]. Another study from the CRIC
consisting of 1,001 participants with diabetes and CKD, after
adjustments for clinical variables, levels of metabolites 3-hy-
droxyisobutyrate (3-HIBA) and 3-methylcrotonyglycine had a
significant negative association with eGFR slope, while aconit-
ic and citric acid showed a positive association. 3-HIBA levels
and aconitic acid levels were each associated with higher and
lower risks of ESKD requiring kidney replacement therapy, re-
spectively [111]. Most recently, in 2,670 individuals with
T1DM from the Finnish Diabetic Nephropathy study, which
collected 24-hour urine samples and measured metabolite
concentrations by nuclear magnetic resonance, seven urinary
metabolites that included leucine, valine, isoleucine, pseu-
douridine, threonine, and citrate were associated with DKD
progression after adjustment for baseline albuminuria and
CKD stage. Moreover, 2-hydroxyisobutyrate was associated
with progression of DKD in individuals with normoalbumin-
uria, and six amino acids and pyroglutamate were associated
with progression of DKD in those with macroalbuminuria
[112].

Although there have been significant advances in the field of
metabolomics for patients with DKD, replication of current
findings in other cohorts are needed in order to inform thera-
peutic targets for DKD and improve clinical management of
DKD.

Transcriptomics

Transcriptomic studies of DKD utilize micro RNAs (miRNAs),
which are small non-coding RNAs that regulate gene expres-
sion via suppression of target mRNAs. Profiling of miRNAs
can be performed by either traditional microarray/reverse
transcription-polymerase chain reaction platforms or by RNA
sequencing. In a study of T1DM patients with albuminuria
and normal kidney function, baseline levels of circulating
TGEF-B1-regulated miRNAs were associated with progression
to ESKD requiring chronic dialysis. Baseline miRNA levels of
let-7c-5p and miR-29a-3p were independently associated with
more than a 50% reduction in the risk of rapid progression to
ESKD, while miRNA levels of let-7b-5p and miR-21-5p were
independently associated with a more than 2.5-fold increase in
the risk of ESKD [113]. Another small prospective study of pa-
tients with T1DM without albuminuria revealed that 18 miR-
NAs were associated with the development of albuminuria and
nine of them were used to define a gene signature for microal-
buminuria [114]. Another study assessed the urinary extracel-
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lular vesicles (EV)-miRNA profiles of patients with T1DM,
where 22 of 377 urinary EV-miRNAs were differentially ex-
pressed in patients with normoalbuminuria compared to albu-
minuric patients. Results showed that miR-130a and miR-145
were enriched, while miR-155 and miR-424 were reduced in
urinary exosomes for patients with albuminuria [115]. Al-
though several other studies have investigated transcriptomics
in patients with diabetes and kidney diseases, there is no over-
lap in the specific miRNAs being reported as being relevant to
DKD, and rather than a single miRNA, a combination of miR-
NAs may be needed for early detection of DKD [116]. Thus,
the evidence to support a clinically useful role of miRNAs in
the prediction of DKD prognosis remains uncertain.

CURRENT PRACTICE AND FUTURE
PERSPECTIVES

Despite the large number of studies reporting on potential
novel biomarkers to predict DKD prognosis, they only mod-
estly improve the performance of current available biomarkers.
Therefore, assessment of eGFR and albuminuria still remain
the cornerstone of diagnosis and risk stratification of DKD in
daily clinical practice. However, both eGFR and albuminuria
have its limitations as prognostic biomarkers. Considering that
DKD is a complex disease involving several pathophysiologic
mechanisms, biomarkers for the risk stratification of patients
with DKD should consist of factors that are derived from mul-
tiple pathophysiological mechanisms of the DKD disease pro-
cess. Although large discovery panels through novel omic ap-
proaches have enormous potential for biomarker discovery in
DKD, progress in this field has been hampered by inadequate
data analysis approaches, and lack of samples for replication.
Biomarkers measured on different platforms are not easy to
implement across various clinical settings.

While awaiting further advances in this field, considering
that general treatment measures such as strict glucose control,
anti-hypertensive and anti-dyslipidemic therapies all contrib-
ute to slowing down the rate of disease progression, physicians
should pay attention to these aspects of treatment as they may
enhance predictive accuracy for detecting those at the highest
risk for development and progression of DKD. Moreover, in
order to obtain comparable and reproducible data, future stud-
ies that utilize novel omic approaches will likely require con-
sensus protocols for sample collection, processing, and analy-
sis. Analysis and interpretation of findings from these studies
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will require specialized bioinformatics tools to turn big data
into biomarker discovery.
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