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Abstract
Diffuse intrinsic pontine glioma (DIPG) is a devastating disease with an extremely poor prognosis. Recent studies
have shown that platelet-derived growth factor receptor (PDGFR) and its downstream effector pathway, PI3K/AKT/
mTOR, are frequently amplified in DIPG, and potential therapies targeting this pathway have emerged. However,
the addition of targeted single agents has not been found to improve clinical outcomes in DIPG, and targeting this
pathway alone has produced insufficient clinical responses in multiple malignancies investigated, including lung,
endometrial, and bladder cancers. Acquired resistance also seems inevitable. Activation of the Ras/Raf/MEK/ERK
pathway, which shares many nodes of cross talk with the PI3K/AKT pathway, has been implicated in the
development of resistance. In the present study, perifosine, a PI3K/AKT pathway inhibitor, and trametinib, a MEK
inhibitor, were combined, and their therapeutic efficacy on DIPG cells was assessed. Growth delay assays were
performedwith each drug individually or in combination. Here, we show that dual inhibition of PI3K/AKT andMEK/ERK
pathways synergistically reduced cell viability. We also reveal that trametinib induced AKT phosphorylation in DIPG
cells that could not be effectively attenuated by the addition of perifosine, likely due to the activation of other
compensatory mechanisms. The synergistic reduction in cell viability was through the pronounced induction of
apoptosis, with some effect from cell cycle arrest. We conclude that the concurrent inhibition of the PI3K/AKT and
MEK/ERK pathways may be a potential therapeutic strategy for DIPG.
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Introduction
Diffuse intrinsic pontine glioma (DIPG), diagnosed in children at a
median age of 6 to 7 years, accounts for approximately 15% of all
malignant pediatric central nervous system tumors and is the most
common pediatric brainstem tumor [1,2]. Despite efforts over the
past several decades, the prognosis for children with DIPG remains
dismal, with a median survival of less than 1 year [1,2]. Due to the
diffusely infiltrative nature of DIPGs, radiation therapy remains the
standard of care, although its benefits are not durable [3]. In addition,
repeated clinical trials investigating various adjuvant chemotherapies
failed to improve patient outcomes long term when compared to
radiotherapy alone [3,4].
A key barrier to the development of effective therapies has been a

limited understanding of DIPG biology. Now, genomic and molecular
data have become increasingly available due to a rise in diagnostic biopsies
and autopsy programs. In particular, amplifications in the receptor
tyrosine kinase (RTK)/PI3K/AKT/mTOR signaling pathway have been
identified in approximately 50% of DIPGs, with platelet-derived growth
factor receptor alpha (PDGFRA) as the most commonly amplified RTK
[5]. Amplification of this pathway contributes to the aggressive
phenotypic characteristics of this tumor [6].
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Although the PDGFR/PI3K/AKT/mTOR signaling pathway
presents potential druggable targets, inhibition of this pathway
alone has thus far proven to produce insufficient clinical responses in
trials investigating multiple malignancies including lung, gynecolog-
ical, prostate, colorectal, and bladder cancers [7–11]. In DIPG,
clinical trials using molecularly targeted therapies against RTKs, such
as EGFR, or other signal transduction effectors also have not
conferred any clinical advantage over other historical trials or
radiation therapy alone [12,13]. In addition, activated PDGFR
transduces signals through many downstream pathways other than
PI3K/AKT that play important roles in tumorigenesis, including Src
kinase, PLC/PKC, and Ras/Raf/MEK/ERK pathways [14]. The
MEK/ERK pathway is concurrently activated with the PI3K/AKT
pathway in multiple human cancers [15], including gliomas [16].
Both pathways are frequently mutated or amplified, which
constitutively activates proliferation and survival signals that
ultimately lead to tumorigenesis. Although there is currently no
direct evidence that there is concurrent activation of both pathways in
the same DIPG sample, extensive nodes exist that facilitate cross-talk
between these two signaling pathways, and they act as barriers to
molecularly targeted therapy using single agents [17]. Inhibition of
one pathway induces compensatory signaling in the other, mediating
treatment resistance [18,19]. As a result, combination therapy with
PI3K/AKT and MEK/ERK pathway inhibitors may be an effective
therapeutic strategy and has been studied in many cancer types, with
particular success in BRAF-mutated melanoma and renal cell
carcinoma [15]. However, this combination has not been explored
in DIPG.

The aim of this study is to investigate the effectiveness of
combinatorial therapy targeting these two signaling pathways with
perifosine, a PI3K/AKT inhibitor, and trametinib, a MEK inhibitor,
on DIPG. Perifosine, which had been promising in phase II clinical
trials for multiple myeloma and colorectal cancer but not phase III
trials [20], is currently being tested in combination with other
chemotherapeutics in adult gliomas. Previously, perifosine was found
to induce cell death but not increase survival in a mouse model of
high-grade brainstem gliomas [21]. Trametinib, approved for
melanoma, is currently undergoing clinical trials for multiple tumor
types, including brain metastases. In this study, we show that the
combination of perifosine and trametinib at their GI50 concentrations
in patient-derived DIPG cell lines in vitro synergistically inhibits
tumor cell proliferation and induces cell death. We also show that the
inhibition of both pathways simultaneously may not be sufficient to
suppress AKT phosphorylation, suggesting the activation of other
compensatory pathways.

Materials and Methods

Cell Culture
The patient-derived DIPG cell lines, SU-DIPG-IV and

SU-DIPG-XIII, were obtained from the laboratory of Dr. Michelle
Monje (Stanford University School of Medicine, Stanford, CA).
SU-DIPG-IV cells harbored an H3.1K27M mutation, MDM4
amplification, and ACVR1 G328V mutation, while SU-DIPG-XIII
only exhibited an H3.3K27M mutation. Both cell lines were P53
wild type (Supplemental Table) [22]. All cells were cultured as
neurospheres in tumor stem media containing Neurobasal-A
(Thermo Fisher, Waltham, MA), antibiotic-antimycotic (Thermo
Fisher), B-27 supplement minus vitamin A (Thermo Fisher),
human-bFGF (20 ng/ml) (Shenandoah Biotechnologies, Warwick,
PA), human-EGF (20 ng/ml) (Shenandoah), human PDGF-AB
(20 ng/ml) (Shenandoah), and heparin (10 ng/ml). All cells were
kept in a humidified atmosphere at 37°C with 5% CO2 and were
passaged weekly.

Drugs
Perifosine was purchased from LC Laboratories (Woburn, MA),

and trametinib was provided by the Developmental Therapeutics
Program at the National Cancer Institute (Bethesda, MD). Stock
concentrations of perifosine were prepared in Dulbecco’s modified
Eagle’s medium at 10 mM and diluted to working concentrations in
tumor stem media. Stock trametinib was prepared in DMSO at 10
mM and diluted to working concentrations in tumor stem media.
Stock concentrations were stored in aliquots at −20°C.

Cell Viability Assay, GI50, and Combination Index Determination
Five thousand cells per well were seeded in 96-well plates overnight

prior to drug treatment. Cell viability was assessed 72 hours after drug
treatment in triplicates at concentrations indicated in each experi-
ment. Drugs were reconstituted in DMSO, and cell viability was
assessed through quantification of ATP levels (CellTiter-Glo
Luminescent Cell Viability Assay, Promega, Madison, WI) according
to the manufacturer's recommended protocol. Luminescence values
were normalized to vehicle control, and GI50 values were determined
as the dose at which cell viability was decreased by 50% compared to
control. Combination Index (CI) was calculated by the Chou-Talalay
method [23], and synergy assessment was performed using CalcuSyn
software (Biosoft, Cambridge, UK). CI values were interpreted as
follows: less than 1 is synergism, equal to 1 is additivity, and greater
than 1 is antagonism.

Apoptosis Assay
Cells were treated with GI50 concentrations of the drugs alone or in

combination. Caspase-3/7 activity within the cells wasmeasured 4 hours
after drug treatment using Caspase-Glo 3/7 Assay (Promega) according
to themanufacturer's protocol. Luminescence values were normalized to
untreated control and presented as fold increases of control.

Cell Cycle Analysis
Cells treated with indicated concentrations of perifosine, trame-

tinib, or their combination for 24 hours were trypsinized and fixed in
70% ethanol at −20°C overnight. After centrifugation and washing
with PBS, cells were resuspended in FxCycle PI/RNase Staining
Solution (Thermo Fisher; #F10797) containing propidium iodide
dye and ribonuclease A and incubated for 30 minutes at room
temperature, protected from light. DNA content was measured by
flow cytometry using FACSCanto (BD Biosciences, San Jose, CA),
and at least 10,000 cells per sample were analyzed. Cell cycle
population percentages were calculated using FlowJo software
(Ashland, OR; version 9).

Western Blot Analysis
Cells were grown to ~70% confluence, and drug doses were added

based on GI50 data determined from cell viability assays. Lysates from
cells cultured for 24 and 48 hours were prepared by washing with cold
PBS followed by lysis with modified RIPA buffer (150 mM NaCl,
50 mMTris-HCl [pH8], 1%NP-40, 0.5%Na deoxycholate, and 0.1%
SDS) supplemented with protease and phosphatase inhibitor cocktail
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(Cell Signaling Technology, Danvers, MA). Protein concentrations were
determined using Bradford assay (Alfa Aesar, Haverhill, MA). Lysates
were resolved by SDS-PAGE on 4% to 20% polyacrylamide gels
(Bio-Rad Laboratories, Hercules, CA), transferred on PVDFmembranes
(Thermo Fisher), and blocked for an hour with 5% blotting-grade
blocker (Bio-Rad) in TBS/0.1%Tween-20. To probe themembrane, the
following primary antibodies from Cell Signaling Technology were used:
p-AKTSer473 (1:1000; #4060), p-AKTThr308 (1:1000; #13038),
p-ERK1/2Thr202/Tyr204 (1:1000; #4370), total ERK1/2 (1:1000;
#4695), and GAPDH (1:1000; #5174). Total AKT1 (#60203-1-lg)
diluted at 1:1000 was obtained from Proteintech (Rosemont, IL).
Appropriate secondary antibodies conjugated with horseradish perox-
idase (Abcam, Cambridge, UK) were incubated in blocking buffer at
room temperature for 1 hour. Detection of protein-antibody complexes
was performed with Amersham ECL kit according to the manufac-
turer's recommended protocol (GE Healthcare, Little Chalfont, UK).
Quantification of immunoreactive signals was completed using ImageJ
software (National Institutes ofHealth, Bethesda,MD), and the relative
ratio of activated protein to loading control (GAPDH) was calculated
for each experiment.

Statistical Analysis
All data represented here are mean ± SEM of at least three

independent experiments, unless indicated otherwise. Analysis of
variance followed by Tukey's post hoc test were used to compare
effects of treatment between groups. Statistical analyses were
performed using GraphPad Prism software (La Jolla, CA; Version
7). Differences with P b .05 were considered statistically significant.
Results

Effects of Combinatorial Therapy on DIPG Cell Viability
We first evaluated the effects of perifosine and trametinib alone on

DIPG cell viability. Patient-derived SU-DIPG-IV and
SU-DIPG-XIII cells were exposed to perifosine (dose range 0.5
μM-1 mM) or trametinib (dose range 5 nM-10 μM), and cell
viability was assessed 72 hours after drug treatment. We observed a
concentration-dependent decrease in cell viability, with a GI50
concentration of perifosine determined to be 10 μM in SU-DIPG-IV
A

Figure 1. Treatment with perifosine and trametinib dose-dependentl
trametinib (B) was determined in two DIPG cell lines, SU-DIPG-IV and
DMSO-treated controls. Cells were incubated in tumor stem cell med
expressed as mean ± SEM of at least three independent experimen
and 45 μM in SU-DIPG-XIII (Figure 1A). The GI50 concentration
of trametinib was 0.25 μM in SU-DIPG-IV and 0.5 μM in
SU-DIPG-XIII (Figure 1B). Overall, SU-DIPG-IV cells were more
sensitive to both perifosine and trametinib than SU-DIPG-XIII cells,
suggesting a cell line–specific effect.

Next, the effect of perifosine and trametinib together was
investigated by combining the two drugs at their GI50 concentrations.
In SU-DIPG-IV cells (Figure 2A), combinatorial therapy with
perifosine and trametinib significantly reduced cell viability (29.36%)
compared to either perifosine (43.98%; P = .02) or trametinib alone
(50.56%; P = .003). Similarly, combinatorial therapy in
SU-DIPG-XIII cells significantly decreased cell viability (23.97%)
compared to each drug individually (46.33% with perifosine, P = .04;
46.41% with trametinib, P = .04). The Chou-Talalay median-effect
method [24] using CI was then used to define the nature of this drug
interaction. In SU-DIPG-IV cells, theCI of perifosine and trametinib at
their respective GI50 concentrations was found to be 0.85 (Figure 2A,
inset). The CI with perifosine and trametinib combined in
SU-DIPG-XIII was 0.76 (Figure 2B, inset). These results indicate
that the combination of perifosine and trametinib at GI50 concentra-
tions is synergistic in both DIPG cell lines.

Effects of Combinatorial Therapy on PI3K/AKT and MEK/
ERK Pathway Activation

One of the purposes of combinatorial therapy with perifosine
and trametinib is to inhibit two cell proliferation and survival
pathways, PI3K/AKT and MEK/ERK. To understand the molecular
effects of combinatorial therapy, we measured the levels of AKT and
ERK phosphorylation by immunoblotting to determine whether this
drug combination effectively suppressed activation of these two signal
transduction pathways. The phosphorylation status of AKT and ERK
was used to assess the targeting efficacy of perifosine and trametinib,
respectively. After 24 hours of drug treatment, perifosine alone
effectively reduced AKT phosphorylation in both SU-DIPG-IV
(Figure 3A) and SU-DIPG-XIII (Figure 3C) cells. Trametinib alone
increased AKT phosphorylation in both cell lines (Figure 3).
Interestingly, perifosine and trametinib in combination failed to
suppress AKT phosphorylation to levels seen in either the perifosine
alone or control cells at both 24-hour and 48-hour time points
(Figure 3), and no difference in phosphorylation was observed at
B

y decreases DIPG cell viability. Cell viability with perifosine (A) and
SU-DIPG-XIII, using CellTiter-Glo luminescent assay and relative to
ium for 72 hours with drugs at increasing concentrations. Data are
ts done in triplicate. Dashed line, 50% growth inhibition (GI50).
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Figure 2. Combinatorial therapy with perifosine and trametinib synergistically decreases DIPG cell viability. GI50 concentrations of
perifosine, trametinib, or both were used to treat SU-DIPG-IV (A) and SU-DIPG-XIII (B) cell lines for 72 hours. Cell viability was measured
using CellTiter-Glo luminescent assay. Data expressed are mean ± SEM of three independent experiments done in triplicate. *P b .05
compared to drugs alone and to control. Combination indices calculated for GI50 concentrations of perifosine and trametinib in
combination are shown in inset for each cell line, where CI b 1 indicates synergy.
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the Thr308 site (Supplemental Figure 1). Previous studies showed
that inhibition of AKT phosphorylation with a dual PI3K/mTOR
inhibitor (NVP-BEZ235) can be overcome by 24 hours in some
cell lines [25]. Therefore, an additional 4-hour time point was
evaluated, and a 10-fold higher concentration of perifosine in
combination with trametinib was assessed at this time point. We
noticed no substantial inhibition in AKT phosphorylation (Supple-
mental Figure 2).

Next, we evaluated MEK/ERK pathway activation using levels of
ERK phosphorylation, a downstream target of MEK that trametinib
inhibits [26]. In both SU-DIPG-IV and SU-DIPG-XIII cells,
trametinib alone effectively inhibited ERK phosphorylation (Figure 3).
Perifosine alone had no substantial effect on ERK phosphorylation in
SU-DIPG-IV cells (Figure 3, A and B) but induced ERK phosphor-
ylation in SU-DIPG-XIII cells (Figure 3, C and D), as previously
reported [19]. However, the combination of perifosine and trametinib
resulted in the suppression of ERK phosphorylation to levels seen with
trametinib alone in both cell lines (Figure 3). Results were similar
between the two time points (24 and 48 hours), and densitometric
analysis of AKT and ERK phosphorylation levels supported these
findings (Figure 3, B and D). Combinatorial therapy with perifosine
and trametinib effectively suppressed the MEK/ERK pathway but
incompletely inhibited PI3K/AKT pathway activation in these DIPG
cell lines. Thus, inhibition of components of these proliferative
pathways likely cannot fully explain the synergistic decrease in cell
viability observed.
Effects of Combinatorial Therapy on Caspase-Mediated
Apoptosis and Cell Cycle Arrest

To investigate the mechanism underlying the synergistic reduction
in cell viability with perifosine and trametinib, we examined this
combination's effect on apoptosis by measuring caspase-3/7 activity
levels, as described in Materials and Methods. SU-DIPG-IV and
SU-DIPG-XIII cells were treated with perifosine, trametinib, or both
at their respective GI50 concentrations for 4 hours. In SU-DIPG-IV
cells (Figure 4A), combinatorial therapy with perifosine and trametinib
increased caspase-dependent apoptosis from control cells 1.67-fold, which
is significantly higher than the increase in apoptosis seen with either
perifosine (1.21-fold, P b .001) or trametinib (1.34-fold, P = .002)
alone. Similarly, combinatorial therapy with perifosine and trametinib
dramatically increased caspase-mediated apoptosis 2.12-fold compared to
control in SU-DIPG-XIII cells (P b .001; Figure 4B). In addition, the
drug combination significantly increased apoptosis compared to either
perifosine (1.18-fold,P b .001) or trametinib (1.50-fold) alone (P = .01;
Figure 4B). Therefore, the induction of apoptosis is a significant
contributor to the synergistic reduction in DIPG cell viability.

Cell cycle analysis was then conducted to investigate the effects of
combinatorial therapy on cytotoxic mechanisms other than
caspase-mediated apoptosis. After 24 hours of treatment with GI50
concentrations of perifosine, trametinib, or both, cell cycle was
analyzed by propidium iodide flow cytometry. Combinatorial therapy
with perifosine and trametinib significantly induced cell cycle arrest at
G0/G1 phase (40.18%) of the cell cycle compared to control (31.0%;
P b .001) and reduced the number of cells undergoing S phase
replication (2.16% vs 8.92% in control, P = .007) in SU-DIPG-IV
cells (Figure 5A). The drug combination did not significantly change
G2/M phase arrest in these cells (Figure 5A). Similarly, in
SU-DIPG-XIII cells (Figure 5B), perifosine and trametinib
together increased G0/G1 arrest (70.80% vs 56.83% in control,
P b .001) while reducing S phase replication compared to control
(18.81% vs 28.38%, P = .04). In addition, combination therapy
in these cells also significantly increased G2/M cell cycle arrest
(23.38% vs 11.90% in control, P = .008; Figure 5B). In both cell
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Figure 3. Perifosine and trametinib in combination decrease ERK but not AKT phosphorylation. Western blots show phosphorylation
status of AKT and ERK from SU-DIPG-IV (A) and SU-DIPG-XIII (C) cells treated for 24 or 48 hours with GI50 concentrations of perifosine,
trametinib, or both. A representative blot of at least three experiments with similar results is shown. Densitometric analysis was
performed using ImageJ for each cell line (B and D), and protein expression levels of p-AKT and p-ERK were normalized to GAPDH loading
control. Values shown are means of fold change from untreated control cells.
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lines, we observed a significant increase in G0/G1 arrest and
inhibition of proliferation with trametinib alone (P b .0001). No
significant cell cycle arrest was noted with perifosine treatment
alone, with the exception of SU-DIPG-XIII cells arresting at G2/M
(Figure 5).
Discussion
DIPGs are devastating pediatric brainstem tumors with few effective
therapeutic options, but recent advances have identified amplifica-
tions in the signal transduction pathway RTK/PI3K/AKT/mTOR as
driving mutations for a large proportion of DIPGs. Furthermore, the
PI3K/AKT/mTOR and RAS/RAF/MEK/ERK pathways are often
concurrently dysregulated in human tumors, as growth factors can
initiate both signaling pathways through RTKs. These two important
pathways also converge downstream to regulate cell survival, growth,
and proliferation, among other key cellular functions [26]. The
current study investigated the effects in human DIPG cells of
perifosine, a PI3K/AKT inhibitor, and trametinib, a MEK inhibitor,
in combination to demonstrate that targeting both pathways has
greater therapeutic efficacy than each alone. Results indicate that this
drug combination synergistically reduces cell viability in two DIPG
cell lines, SU-DIPG-IV and SU-DIPG-XIII. Synergy of PI3K/AKT
and MEK/ERK pathway inhibitors is well documented both in vitro
and in vivo and in multiple cancer types [18,27–34]. In these DIPG
cells, the induction of caspase-mediated apoptosis was a significant
contributor to the synergistic inhibition of cell proliferation. Our
results are consistent with prior studies in glioblastoma, lung cancer,
thyroid cancer, colorectal cancer, and other tumors, which show that
concomitantly inhibiting the PI3K/AKT and MEK/ERK pathways
significantly induces apoptosis compared to the inhibition of either
pathway alone [27–29,32,34].
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Figure 4. Perifosine and trametinib increase apoptosis. Caspase-3/7 activity was used as a measure of apoptosis in SU-DIPG-IV (A) and
SU-DIPG-XIII (B) cells after 4 hours of treatment with GI50 concentrations of perifosine, trametinib, or both. Values are fold increases to
untreated control and are shown as mean ± SEM of three independent experiments in triplicate. *P b .05 when compared to all other
treatment groups.

226 Dual Inhibition of PI3K/AKT and MEK/ERK Pathways in DIPG Wu et al. Translational Oncology Vol. 10, No. 2, 2017
Cell cycle arrest at G0/G1 and G2/M phases was also observed in a
cell line–dependent manner, where the combination of perifosine and
trametinib induced arrest at the G0/G1 phase in SU-DIPG-IV cells
and at both the G0/G1 and G2/M phases in SU-DIPG-XIII cells. In
both these cell lines, the proportion of cells undergoing S phase
dropped significantly. Similar results, including the induction of G1

arrest and a reduction in S phase fraction, have been observed with
concurrent inhibition of the PI3K/AKT and MEK/ERK pathways in
other cancer cell lines [29]. When induction of cell cycle arrest for
each drug individually is examined, the effects of perifosine appear to
be cell line–dependent, which could at least partially explain the
variation in cell cycle populations between SU-DIPG-IV and
SU-DIPG-XIII. Studies have also reported that perifosine induces
arrest at both G1 and G2 phases of the cell cycle in different cancers,
including squamous cell carcinoma and glioma [35,36]. In
medulloblastoma cells, the effects of perifosine on cell cycle were
different for the two cell lines investigated and were attributed to
different activation pattern of various cell cycle regulatory proteins [37].
In addition, while perifosine induced G2/M arrest in hepatocellular
carcinoma [38], it induced G0/G1 arrest in T-cell acute lymphoblastic
leukemia [39]. In the present study, perifosine alone did not have a
A B
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Figure 5. Perifosine and trametinib induce cell cycle arrest. Propid
SU-DIPG-IV (A) and SU-DIPG-XIII (B) cells after 24 hours of treatmen
individually and in combination. Plotted are mean ± SEM of triplicat
significant effect on SU-DIPG-IV cells but induced G2/M arrest in
SU-DIPG-XIII cells. Trametinib alone induced G0/G1 arrest in DIPG
cells, which is consistent with results from prior studies [26].

Further, immunoblot analyses indicated that the synergistic action
of perifosine and trametinib in DIPG cells was likely not due to
molecularly targeted inhibition of their respective cell proliferation
pathways. In fact, although the drug combination successfully
inhibited MEK/ERK pathway activation, even when perifosine
alone appeared to increase ERK phosphorylation in SU-DIPG-XIII,
it failed to effectively suppress PI3K/AKT pathway activation in
either cell line. Prior studies have also reported an increase in the
activation of the PI3K/AKT signaling pathway with MEK inhibition
in many other cancer cells [25,40]. Increasing the perifosine dose
10-fold and shortening the duration of drug exposure also failed to
make a notable difference. While some studies using perifosine and a
MEK inhibitor in combination found a pronounced decrease in AKT
phosphorylation levels, such as those in multiple myeloma and lung
cancer [33,41], other studies in colorectal and thyroid cancer cell lines
did not [31,42]. These findings provide further evidence that the
effects of perifosine are cell type-dependent. A study in colorectal
cancer found that PI3K/AKT and MEK/ERK pathway inhibitors in
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ium iodide flow cytometry was used to show cell cycle arrest in
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e experiments. *P b .05 when compared to control.
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combination did not prominently suppress AKT phosphorylation,
and only the dual inhibitor NVP-BEZ235 (PI3K/mTOR inhibitor)
at 10 times its GI50 concentration effectively inhibited AKT
phosphorylation when in combination with a MEK inhibitor, but
the PI3K-specific inhibitor failed to produce this result [31]. It is thus
likely that mTOR plays an important role in modulating cellular
response to PI3K/AKT and MEK/ERK signaling. It appears that
other compensatory pathways exist that may also account for the lack
of inhibition of AKT phosphorylation in the presence of both
perifosine and trametinib. Moreover, PI3K-independent AKT
activation may be directly achieved through various other tyrosine
kinases, serine/threonine kinases, and even DNA repair machinery
that can phosphorylate AKT at its canonical Ser473 site [43].
Furthermore, activating mutations of ACVR1, a component of the
BMP signaling pathway, were found in 21% of DIPGs [44] and in
SU-DIPG-IV [22]. These mutations were recently demonstrated to
play a role in conferring resistance to RTK inhibitors in lung cancer
[45]. Future experiments to identify compensatory mechanisms by
which the PI3K/AKT pathway can continue to remain active after
treatment with perifosine and trametinib in combination may reveal
new therapeutic targets and open avenues for further investigation.
Taken together, these results suggest that perifosine and trametinib

in combination synergistically reduce cell viability in SU-DIPG-IV
and SU-DIPG-XIII cells primarily via apoptosis, with some effect
from cell cycle arrest. However, an important limitation of this study
is the use of only two heterogeneous patient-derived cell lines, which
inherently have different mutations and may not reflect all DIPGs.
Investigations using other cell lines may be necessary to increase
generalizability of the presented data. The choice of perifosine, which
was found to have heterogeneous cell line-dependent effects, was also
a limitation, and future studies investigating these pathways will be
conducted using more potent PI3K/AKT inhibitors. Because this is
an in vitro study, further investigation is required to translate these
findings to the clinical setting. For example, there is concern
that targeting these two common pathways can lead to significant
systemic toxicity, and more studies will be performed to optimize
dosing and to identify molecular markers that could predict treatment
response to these inhibitors. Importantly, one strategy to circumvent
systemic toxicity is to deliver agents locally. In the past, the
blood-brain barrier has presented a significant challenge for effective
drug delivery. Both perifosine and trametinib have been documented
to poorly penetrate the central nervous system [46,47]. A study in
rhesus monkeys found that the ratio of CSF to plasma exposure via
gavage administration of perifosine was only 0.16% [46]. In another
study, trametinib only achieved approximately 20% of plasma
concentrations after multiple doses, but it did not significantly inhibit
extracellular signal–regulated kinase phosphorylation, suggesting that
the concentration achieved may be insufficient for antitumor activity
[26,48]. However, convection-enhanced delivery has been found to
be an effective strategy in bypassing the blood-brain barrier and
delivering chemotherapeutic agents directly to the injection site,
thereby reducing systemic toxicity [49]. Finally, future studies are
required to elucidate the molecular landscape of DIPG, to investigate
the effects of PI3K/AKT and MEK/ERK pathway inhibition in vivo,
and to optimize treatment response by testing various agents that can
inhibit these pathways, with particular emphasis on more potent
inhibitors or different classes of inhibitors. Nevertheless, our data
demonstrate that the simultaneous inhibition of the PI3K/AKT and
MEK/ERK pathways is a viable approach to the treatment of DIPG.
Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.tranon.2016.12.008.
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