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ABSTRACT

Network neuroscience employs graph theory to investigate the human brain as a complex
network, and derive generalizable insights about the brain’s network properties. However,
graph-theoretical results obtained from network construction pipelines that produce
idiosyncratic networks may not generalize when alternative pipelines are employed. This
issue is especially pressing because a wide variety of network construction pipelines have
been employed in the human network neuroscience literature, making comparisons between
studies problematic. Here, we investigate how to produce networks that are maximally
representative of the broader set of brain networks obtained from the same neuroimaging
data. We do so by minimizing an information-theoretic measure of divergence between
network topologies, known as the portrait divergence. Based on functional and diffusion
MRI data from the Human Connectome Project, we consider anatomical, functional, and
multimodal parcellations at three different scales, and 48 distinct ways of defining network
edges. We show that the highest representativeness can be obtained by using parcellations in
the order of 200 regions and filtering functional networks based on efficiency-cost
optimization—though suitable alternatives are also highlighted. Overall, we identify specific
node definition and thresholding procedures that neuroscientists can follow in order to
derive representative networks from their human neuroimaging data.

INTRODUCTION

Network neuroscience has provided compelling evidence that viewing the human brain as a
network can provide powerful insights into both healthy and pathological cognition (Bullmore
& Sporns, 2009; Sporns, 2013; Sporns, Tononi, & Kötter, 2005). Mathematically, a network
consists of elements (nodes) connected by edges. To turn their human neuroimaging data into
networks, researchers therefore need to define the networks’ nodes and edges (Craddock et al.,
2013).

Node definition is the problem of identifying meaningful units in the network: Multiple ap-
proaches have been proposed to parcellate the human brain into distinct regions, with varying
levels of granularity and based on features such as anatomy, homogeneity, and structural and
functional connectivity (Arslan et al., 2018). For MRI data, a recent review identified over 50
distinct methods (Hallquist & Hillary, 2019).

A further issue arises for functional connectivity (FC), which is typically given by some
measure of statistical association between nodes’ time series (e.g., Pearson correlation, mutual
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Topological criterion to construct representative brain networks

information, phase coherence), as recorded by functional MRI or MEG/EEG (Craddock et al.,Structural connectivity:
The network of physical connections
between macroscale neuronal
ensembles (brain regions),
alternatively referred to as
anatomical connectivity or the
connectome.

Functional connectivity:
The network of interactions between
brain regions, in terms of statistical
association between their activity
over time.

2013). Each node will have some degree of mathematical relationship with every other node,
which may or may not be underpinned by a true neuronal basis: Since anatomical connectivity
in the brain is known to be sparse (Sporns, 2011), at least some functional connections are
likely to be false positives due to statistical noise (Rubinov & Sporns, 2010).

Therefore, researchers need to determine which connections to retain, and which ones
to reject, a step known as “edge filtering.” This can be based on arbitrary thresholds for edge

Edge filtering:
The procedure of choosing which
connections (edges) to retain in a
network.

strength or density, but an inappropriate choice could obscure biological differences of interest
(van den Heuvel et al., 2017), or introduce confounds in subsequent graph-theoretical analyses

Graph theory:
The mathematical study of networks.

(Garrison, Scheinost, Finn, Shen, & Todd Constable, 2015). Data-driven filtering methods
have also been proposed, whether based on statistical considerations (Smith et al., 2011), or
optimizing some objective criterion (De Vico Fallani, Latora, & Chavez, 2017; Dimitriadis,
Antonakakis, Simos, Fletcher, & Papanicolaou, 2017).

Thus, there are a vast number of possible ways to turn neuroimaging data into brain net-
works; we refer to these as “network construction pipelines.” Crucially, just like outliers can
make statistical generalizations unreliable, so brain network construction pipelines that pro-
duce idiosyncratic networks may yield graph-theoretical results that do not generalize well to
the broader set of all possible brain networks constructed from the same neuroimaging data.
This issue is especially pressing because a wide variety of network construction pipelines have
been employed in the network neuroscience literature (Craddock et al., 2013; Hallquist &
Hillary, 2019), making comparisons between studies and meta-analyses problematic.

Existing work comparing aspects of brain network construction has sought to rank pipelines
based on reproducibility or test-retest reliability (Andellini, Cannatà, Gazzellini, Bernardi, &
Napolitano, 2015; Arslan et al., 2018; Braun et al., 2012; B. Cao et al., 2019; H. Cao et al.,
2014; Du et al., 2015; Hu et al., 2019; Messaritaki, Dimitriadis, & Jones, 2019; Termenon,
Jaillard, Delon-Martin, & Achard, 2016; J.-H. Wang et al., 2011; J. Wang et al., 2017; Welton,
Kent, Auer, & Dineen, 2015), or in terms of maximizing discriminative ability or informative-
ness of the resulting networks (Arslan et al., 2018; De Vico Fallani et al., 2017; Dimitriadis,
Salis, Tarnanas, & Linden, 2017). However, to our knowledge a systematic evaluation of the
representativeness of brain networks, in terms of similarity between networks obtained from
different construction pipelines applied to the same brain data, has not been undertaken
before.

To address this question and compare networks derived from different construction pipelines,
we leverage a recently proposed measure of information-theoretic distance between the topolo-Information theory:

The formal study of storage and
transmission of information.

gies of different networks, termed portrait divergence (PD; Bagrow & Bollt, 2019). Thanks to
its information-theoretic underpinning, the portrait divergence may be interpreted as the infor-
mation loss when using one network to represent another. Thus, the network with minimum
average PD from all others will also be the one that can be used as a proxy for all others with
the lowest information loss—which we take to mean that it is the most representative of the
set of all networks under consideration (here, the networks produced by applying different
construction pipelines to the same neuroimaging data).

Focusing on MRI, here we employ the portrait divergence to compare structural and func-
tional brain networks obtained from nine different combinations of parcellation method (based

Parcellation:
Division of the brain’s gray matter
into nonoverlapping macroscopic
ensembles (called parcels or regions
of interest) based on predetermined
criteria.

on anatomical features, regional homogeneity, and multimodal) and number of nodes (ap-
proximately 100, 200, and 400). We seek to identify which combination produces the most
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Topological criterion to construct representative brain networks

representative network, defined as the network with the smallest average divergence from all
others. We also introduce a new filtering scheme based on matching the density of functional
and structural networks, termed structural density matching, and we investigate a total of 12
different filtering schemes to determine which one produces functional networks with the least
divergence across parcellations and edge definitions.

MATERIALS AND METHODS

Human Connectome Project Data

HCP: Dataset description. The dataset of functional and structural neuroimaging data used in
this work came from the Human Connectome Project (HCP, http://www.humanconnectome
.org/), Release Q3. Per HCP protocol, all subjects gave written informed consent to the HCP
Consortium. These data contained fMRI and diffusion-weighted imaging (DWI) acquisitions
from 100 unrelated subjects of the HCP 900 data release (Van Essen et al., 2013). All HCP
scanning protocols were approved by the local Institutional Review Board at Washington
University in St. Louis.

HCP: Functional data acquisition. The following sequences were used: structural MRI: 3D
MPRAGE T1-weighted, TR = 2,400 ms, TE = 2.14 ms, TI = 1,000 ms, flip angle = 8°, FOV =

224 × 224, voxel size = 0.7 mm isotropic. Two sessions of 15-min resting-state fMRI: gradient-
echo EPI, TR = 720 ms, TE = 33.1 ms, flip angle = 52°, FOV = 208 × 180, voxel size = 2 mm
isotropic. Here, we used functional data from only the first scanning session, in LR direction.
HCP-minimally preprocessed images were used for all acquisitions (Glasser et al., 2013).

HCP: Diffusion-weighted data. We used diffusion MRI (dMRI) data from the 100 unrelated sub-Diffusion MRI (dMRI):
MRI sequence estimating the
orientation of diffusion of water
molecules in tissue, producing
diffusion-weighted images (DWIs).

jects of the HCP 900-subject data release (Van Essen et al., 2013). The diffusion-weighted ac-
quisition protocol is covered in detail elsewhere (Glasser et al., 2013). The diffusion MRI scan
was conducted on a Siemens 3T Skyra scanner using a 2D spin-echo single-shot multiband EPI
sequence with a multiband factor of 3 and monopolar gradient pulse. The spatial resolution
was 1.25 mm isotropic. TR = 5,500 ms, TE = 89.50 ms. The b-values were 1,000, 2,000,
and 3,000 s/mm2. The total number of diffusion sampling directions was 90, 90, and 90 for
each of the shells in addition to six b0 images. We used the version of the data made available
in DSI Studio–compatible format at http://brain.labsolver.org/diffusion-mri-templates/hcp-842
-hcp-1021 (Yeh et al., 2018).

Functional MRI Preprocessing and Denoising

We used the minimally preprocessed fMRI data from the HCP, which includes bias field correc-
tion, functional realignment, motion correction, and spatial normalization to Montreal Neuro-
logical Institute (MNI-152) standard space with 2 mm isotropic resampling resolution (Glasser
et al., 2013). We also removed the first 10 volumes, to allow magnetization to reach steady
state. Additional denoising steps were performed using the SPM12-based (http://www.fil.ion
.ucl.ac.uk/spm) toolbox CONN (http://www.nitrc.org/projects/conn), version 17f (Whitfield-
Gabrieli & Nieto-Castanon, 2012). To reduce noise due to cardiac and motion artifacts, we
applied the anatomical CompCor method of denoising the functional data. The anatomical
CompCor method (also implemented within the CONN toolbox) involves regressing out of
the functional data the following confounding effects: the first five principal components at-
tributable to each individual’s white matter signal, and the first five components attributable
to individual cerebrospinal fluid (CSF) signal; and six subject-specific realignment parameters
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Topological criterion to construct representative brain networks

(three translations and three rotations) as well as their first-order temporal derivatives (Behzadi,
Restom, Liau, & Liu, 2007). Linear detrending was also applied, and the subject-specific de-
noised BOLD signal time series were band-pass filtered to eliminate both low-frequency drift
effects and high-frequency noise, thus retaining frequencies between 0.008 and 0.09 Hz.

The step of global signal regression (GSR) has received substantial attention in the litera-
ture, with inconclusive results about whether its effect on subsequent network construction is
beneficial (Braun et al., 2012; Welton et al., 2015), deleterious (H. Cao et al., 2014), or null
(Andellini et al., 2015; Du et al., 2015). Here, we chose to avoid GSR in favor of the aComp-
Cor denoising procedure, because GSR mathematically mandates that approximately 50% of
correlations between regions will be negative (Braun et al., 2012), but evidence indicates that
the proportion of anticorrelations contains relevant biological information (Luppi et al., 2019).

DWI Reconstruction and Fiber Tracking

The minimally preprocessed DWI HCP data (Glasser et al., 2013) were corrected for eddy
current and susceptibility artifact. DWI data were then reconstructed using q-space diffeo-
morphic reconstruction (QSDR; Yeh, Wedeen, & Tseng, 2011), as implemented in DSI Studio
(http://dsi-studio.labsolver.org). QSDR is a model-free method that calculates the orientational
distribution of the density of diffusing water in a standard space, to conserve the diffusible
spins and preserve the continuity of fiber geometry for fiber tracking. QSDR first reconstructs
diffusion-weighted images in native space and computes the quantitative anisotropy (QA) in
each voxel. These QA values are used to warp the brain to a template QA volume in MNI space
using a nonlinear registration algorithm implemented in the statistical parametric mapping
(SPM) software. A diffusion sampling length ratio of 2.5 was used, and the output resolution
was 1 mm.

A modified FACT algorithm (Yeh, Verstynen, Wang, Fernández-Miranda, & Tseng, 2013)
was then used to perform deterministic fiber tracking on the reconstructed data, with the fol-
lowing parameters (Medaglia et al., 2016). Angular cutoff of 55°, step size of 1.0 mm, minimum
length of 10 mm, maximum length of 400 mm, spin density function smoothing of 0.0, and a
QA threshold determined by DWI signal in the colony-stimulating factor. Each of the stream-
lines generated was automatically screened for its termination location. A white matter mask
was created by applying DSI Studio’s default anisotropy threshold (0.6 Otsu’s threshold) to the
spin distribution function’s anisotropy values. The mask was used to eliminate streamlines with
premature termination in the white matter region. Deterministic fiber tracking was performed
until 1,000,000 streamlines were reconstructed for each individual.

Parcellations

The most common approach for defining nodes in brain networks is to aggregate multiple
neighboring voxels into parcels, in order to obtain nodes with interpretable neurobiological
meaning while also reducing the computational burden. This can be done based on anatom-
ical boundaries and cytoarchitecture (Cammoun et al., 2012; Tzourio-Mazoyer et al., 2002),
similarity of structural (Beckmann, Johansen-Berg, & Rushworth, 2009) or functional connec-
tivity (Bellec et al., 2006; Schaefer et al., 2018), or by a variety of other means (Arslan et al.,
2018; Cohen et al., 2008; Craddock, James, Holtzheimer, Hu, & Mayberg, 2012; Eickhoff,
Yeo, & Genon, 2018; Fan et al., 2016; Glasser et al., 2016).

The parcellation size (granularity) constitutes a further consideration to the method used
to determine how voxels are grouped together into parcels/nodes. It represents a trade-off
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Topological criterion to construct representative brain networks

between spatial detail, on the one hand, and robustness and interpretability on the other.
Spatial averaging (by grouping together many neighboring voxels) can mitigate errors due to
registration and MRI artifacts, and smaller parcels may be more susceptible to noise; however,
finer-grained parcellations may detect subtle differences that would otherwise go unnoticed
because of spatial averaging (Cammoun et al., 2012).

Thus, a large number of parcellations exist, using different criteria to aggregate voxels, and
varying in size from a few tens to over 1,000 parcels (Arslan et al., 2018). To account for both
parcellation method and granularity, here the preprocessed diffusion-weighted and functional
MRI data were parcellated according to the following schemes (all in MNI volumetric standard
space).

The Lausanne atlas is a multiscale anatomical parcellation obtained from progressively finer
subdivisions of the 66 sulcus-based parcels of the Desikan-Killiany anatomical atlas (Cammoun
et al., 2012). Here we included versions with 129, 234, and 463 cortical and subcortical nodes.

We also considered the recent cortical parcellation by Schaefer and colleagues (Schaefer
et al., 2018), which integrates local gradient and global similarity approaches from task-based
and resting-state functional connectivity. This is also a multiscale parcellation, and here we
considered the scales with 100, 200, and 400 nodes, respectively. Since the Schaefer parcel-
lation does not include subcortical regions, to make it comparable with the other parcellation
schemes (and to give proper consideration to these important regions) we supplemented it with
the recently developed Melbourne subcortical atlas (Tian, Margulies, Breakspear, & Zalesky,
2020). We chose this atlas because it is also based on resting-state and task-based functional
connectivity, thus being consistent with the parcellation methodology of the Schaefer cortical
atlas; and because it is also a multiscale atlas. Specifically, the 100-node Schaefer parcellation
was supplemented with the 16-node version of the Melbourne atlas, yielding a total of 116
nodes; the 200-node Schaefer parcellation was supplemented with the 32-node version of the
Melbourne atlas, yielding a total of 232 nodes; and the 400-node Schaefer parcellation was
supplemented with the 54-node version of the Melbourne atlas, yielding a total of 454 nodes
(thus, the total number of nodes approximately doubled each time, and was consistent with
the number of nodes present in the Lausanne parcellation at corresponding scales).

Finally, we included three popular atlases based on different information, each of which
comes at a single scale of resolution. The Automated Anatomical Labelling (AAL) atlas (Tzourio-
Mazoyer et al., 2002) is one of the most widely used parcellations in network neuroscience
(Hallquist & Hillary, 2019). It comprises 90 cortical and subcortical regions (the 26 cerebellar
parcels were excluded), obtained by anatomical parcellation of the high-resolution T1 vol-
ume of the same subject scanned 27 times. The Brainnetome atlas is a set of 210 cortical and
36 subcortical regions, identified by combining multimodal anatomical and functional con-
nectivity information, further informed by BrainMap data about regional functional profiles
(Fan et al., 2016). Finally, the Glasser parcellation comprises 360 cortical regions identified
by combining multimodal information about cortical architecture, function, connectivity, and
topography, obtained from a large number of high-resolution HCP data (Glasser et al., 2016).
The Glasser parcellation was also supplemented with the 54-region version of the Melbourne
atlas, in order to include a comparable number of subcortical regions. When conflicts arose
(i.e., the same voxel being assigned to one parcel of the Melbourne atlas, and one parcel of
the Glasser atlas; primarily for hippocampal parcels), the Glasser atlas was given precedence
in the assignment. No region was entirely overlapping between these two atlases, however, so
the number of final nodes was 360 + 54 = 414.
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Table 1. Atlases adopted in the present study, by scale (rows) and method (columns)

Anatomical Functional Mixed
Scale-100 Lausanne-129 Schaefer-100 + AAL-90

Melbourne-16

Scale-200 Lausanne-234 Schaefer-200 + Brainnetome-246
Melbourne-32

Scale-400 Lausanne-463 Schaefer-400 + Glasser-360 +
Melbourne-54 Melbourne-54

Thus, the chosen atlases spanned three scales (approximately 100, 200, and 400 nodes) and
three different ways of deriving parcels: based on anatomical considerations (Lausanne and
AAL), based on functional connectivity (Schaefer), and informed by multimodal considerations
(Brainnetome, Glasser). The parcellation schemes and sizes are summarized in Table 1.

Structural Connectivity

To construct matrices of structural connectivity between brain regions, every subject’s diffu-
sion tensor imaging (DTI) data were parcellated according to each of the parcellation schemes
considered here. Then, an undirected connectivity matrix S was derived by setting entry Sij =

log10(1+ Nij), with Nij being the number of white matter streamlines between regions i and j.
The logarithm was used to reduce the skewness of the distribution of edge weights, with unity
added to ensure that zero-valued entries would remain zero after the transformation. This
resulted in one weighted matrix of structural connectivity per parcellation, per subject. Fi-
nally, the weights were normalized to lie between 0 and unity, by dividing each edge by the
maximum value of the matrix.

Human Structural Connectome Template

To obtain the most accurate estimate possible of the human structural connectome, which is
required for the structural density matching filtering procedure (described below), we relied
on the HCP group-average template constructed and made publicly available by Yeh and col-
leagues (Yeh et al., 2018). The HCP group-average template was constructed from a total of
1,021 subjects’ diffusion MRI data from the Human Connectome Project (2017 Q4, 1,200-
subject release). The DWI acquisition parameters were the same as described earlier. The
diffusion data were reconstructed in the MNI space using QSDR (Yeh et al., 2011) to obtain
the spin distribution function (Yeh, Wedeen, & Tseng, 2010). A diffusion sampling length ratio
of 2.5 was used, and the output resolution was 1 mm. The analysis was conducted using DSI
Studio (http://dsi-studio.labsolver.org).

Based on this group-average connectome, the same fiber tracking and parcellation proce-
dures were applied as for the individual DTI data. The density of the resulting connectivity
matrix, for each parcellation, was then used to determine the density threshold for the struc-
tural density matching filtering (see below).

Functional Connectivity

The subsequent steps were performed separately for each parcellation. The time courses of
denoised BOLD signals were averaged between all voxels belonging to a given region of in-
terest (ROI), and the resulting ROI-specific time courses of each subject were then extracted
for further analysis in MATLAB version 2016a.
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For each subject and parcellation, a matrix of functional connectivity F between each pair
of ROIs was then estimated as follows: For each pair of nodes i and j, Fij was given by the Pear-
son correlation coefficient between the time courses of i and j, over the full scanning length.
Since Person correlation can yield negative as well as positive values, we followed common
practice in network neuroscience and set all negative values in each FC matrix to 0. How-
ever, to ensure that our results were not biased by ignoring negative correlations, functional
connectivity between nodes was also estimated using mutual information (MI), which does not
produce negative-valued edges. Mutual information I quantifies the interdependence between
two random variables X and Y. It corresponds to the average reduction in uncertainty about
X when Y is given (or vice versa, since this quantity is symmetric):

I(X; Y) = H(X) + H(Y)− H(X, Y) = H(X)− H(X|Y), (1)

with H(X) being the Shannon entropy of a variable X. Thus, mutual information quantifies the
information that a given variable provides about another, including both linear and nonlinear
relationships. To ensure a comparable range of values between MI and (positive) Pearson
correlation, the values in each individual matrix of MI-based functional connectivity were
normalized to lie between 0 and unity, by dividing each edge by the maximum value in the
matrix.

Filtering Schemes

Functional connectivity (whether measured by Pearson correlation or mutual information) pro-
duces maximally dense matrices, in which each node has some degree of association with each
other node. Since brain networks are known to have sparse anatomical connectivity (Sporns,
2011), a maximally dense network is biologically implausible, and many functional connec-
tions are likely to be spurious. Thus, some form of filtering is typically employed to obtain a
sparse network of functional connectivity.

Here, we considered 12 different filtering approaches (Table 2). For each of the approaches
described below, and each parcellation scheme, a given subject’s functional connectivity net-
work was constructed by retaining only the edges selected by the filtering scheme, and setting
all other edges to 0, resulting in a sparse, undirected graph.

Proportional thresholding. While this is perhaps the most common approach in the network
neuroscience literature, there is no gold standard for which proportion of the strongest edges to
retain when constructing a network from functional connectivity data. We therefore employed
four different density levels as threshold values, in the range of densities commonly adopted
in the literature: fixed density (FD) of 5%, 10%, 20%, and 40% of the strongest edges.

Absolute thresholding. Rather than selecting a threshold in terms of desired network density,
an alternative approach is to only retain edges that have a minimum chosen strength, irrespec-
tive of how many such edges would survive in any given network. However, once again there
is no gold standard to determine what value of strength would represent an appropriate thresh-
old, leaving the choice largely arbitrary—even more so because different ways of estimating
functional connectivity (e.g., Pearson correlation and mutual information) may give results in
very different value ranges. Here, we considered absolute threshold values of 0.1, 0.3, or 0.5
(for Pearson correlation, only positive-value edges were considered).
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Table 2. Filtering schemes adopted in the present study

Filtering scheme Description

Fixed density 5% (FD-5%) Top 5% of strongest edges

Fixed density 10% (FD-10%) Top 10% of strongest edges

Fixed density 20% (FD-20%) Top 20% of strongest edges

Fixed density 40% (FD-40%) Top 40% of strongest edges

Absolute threshold 0.1 (Abs0.1) Edges with value > 0.1

Absolute threshold 0.3 (Abs0.3) Edges with value > 0.3

Absolute threshold 0.5 (Abs0.5) Edges with value > 0.5

Efficiency cost optimization (ECO) Average node degree = 3, to maximize trade-off between
overall efficiency and wiring cost

Minimum spanning tree-ECO (MST-ECO) Same as ECO, but including the network’s minimum
spanning tree among the selected edges

Structural density matching (SDM) Proportional thresholding, with same density as the HCP
group-average DTI data parcellated using the same atlas

Orthogonal minimum spanning trees (OMST) Optimization of global efficiency minus wiring cost, by
combining independent minimum spanning trees of the
network

Random (Random20%) 20% of edges chosen at random

Efficiency cost optimization. Efficiency cost optimization (ECO) is a filtering scheme designed
to optimize the trade-off, within a given network, between the network’s overall efficiency (sum
of global and average local efficiency) and its wiring cost (number of edges; De Vico Fallani
et al., 2017). Thus, it seeks the threshold density ρ that maximizes the function J, defined as
follows:

J =
Eg + El

ρ
, (2)

with Eg and El being the global and mean local efficiency of the network, respectively. Empiri-
cal results have demonstrated, across multiple datasets and imaging modalities (MRI, EEG), that
this filtering scheme is especially effective at discriminating between graph topologies, produc-
ing sparse graphs while still preserving their structure (De Vico Fallani et al., 2017). Analytic
and empirical results also demonstrate that the required density to optimize the trade-off can
be determined a priori once the number of nodes is known, and corresponds to enforcing an
average node degree approximately equal to 3 (De Vico Fallani et al., 2017). Here, we thus
obtained ECO-thresholded graphs by setting a proportional threshold such that the average
node degree would be 3.

Because of the very high sparseness of ECO-derived networks as network size grows, we
also wanted to ensure that any results we obtained were not merely driven by the network
being highly fragmented. To this end, we also used an alternative version of ECO, termed
MST-ECO. Like ECO, MST-ECO also imposes an average degree of 3 on the filtered graph, but
ensures that the network’s minimum spanning tree is included among the selected edges—
thereby producing a fully connected graph.

Orthogonal minimum spanning trees. Similarly to ECO, the OMST approach (Dimitriadis,
Antonakakis, et al., 2017; Dimitriadis, Salis, et al., 2017) also focuses on optimizing a function
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of the efficiency and cost of the network, with the added criterion of ensuring that the network
is fully connected. Specifically, the method involves three steps: (a) identifying the minimum
spanning tree (MST) of the network, that is, the minimum set of edges that constitute a fully
connected graph; (b) removing the corresponding edges from the network; (c) repeating steps
(a) and (b) until optimization of the following global cost efficiency function. The function is
defined as Eg – Cost, and cost corresponds to the ratio of the total weight of the selected edges,
over multiple iterations of OMST, divided by the total strength of the original fully weighted
graph.

The final filtered network is constructed by combining all the MSTs that have been removed
from the original dense network. The approach is data driven, as the trade-off is optimized for
each network individually. Previous work has shown that when applied to brain networks de-
rived from EEG and fMRI, this procedure can produce plausibly sparse graphs whose recogni-
tion accuracy and reliability outperform several alternative thresholding schemes (Dimitriadis,
Salis, et al., 2017). This approach also produces sparse networks without imposing an a priori
level across all subjects, thereby allowing for intersubject variability.

Note that although MST-ECO also incorporates one of the network’s minimum spanning
trees (namely, the first MST that would be identified in the process of constructing the OMST-
filtered network), any additional edges that MST-ECO selects to reach its target mean degree
of 3 are based on strength alone; in contrast, OMST is obtained by combining not just one,
but multiple nonoverlapping minimum spanning trees, each of which may select edges that
are not among the strongest in the network.

Structural density matching. Thresholding based on a fixed value or range of density or node
degree may be more or less biologically meaningful, depending on the parcellation scheme
used—because networks derived from more fine-grained parcellations of the same data (i.e.,
having higher numbers of nodes) may be expected to result in lower density. Two extreme cases
will illustrate this notion. At one extreme, each neuron only has synapses with up to a few
thousands of other neurons, out of approximately 86 billion—a vanishingly sparse network.
Conversely, if considering each brain hemisphere as a single node, then the resulting (minimal)
network will be fully connected. Thus, a 10% fixed density threshold (one of the most common
choices in the literature) may be well below or well above the density of the corresponding
network of white matter fibers between brain regions (estimated, for example, from diffusion
imaging), depending on the size of the parcellation used.

To address this issue, we propose a three-step filtering method, which we call structural
density matching (SDM). The idea behind SDM is simple. Since the main rationale for filtering
FC networks is that brains have anatomically sparse connectivity, then it should be possible
to threshold FC so as to match our best estimate of the density of structural connectivity (here
understood as the network of white matter fibers connecting different regions). For a given par-
cellation scheme, the first step of SDM is to obtain the corresponding structural connectome.
In humans, in vivo structural connectivity can be quantified by means of diffusion-weighted
MRI; here, we rely on the group-averaged diffusion-weighted MRI data from the Human Con-
nectome Project (Yeh et al., 2018), with two ROIs being considered as anatomically connected
if there are white matter fibers between them. Then, the second step is to determine the “struc-
tural density” s, which is the density of the structural connectome obtained in the previous
step (i.e., the proportion of existing edges, out of the total possible number of edges). Finally,
the third step is to apply proportional thresholding to the functional connectivity data de-
rived from the same parcellation scheme, with the target density (proportion of edges retained)
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Table 3. Density (percentage of total possible connections) of the human structural connectome,
for each parcellation scheme included in the present study

Parcellation Density (%)
AAL-90 19.2
Brainnetome-246 7.3
Glasser-414 2.8
Lausanne-129 10.9
Lausanne-234 5.9
Lausanne-463 2.3
Schaefer-116 14.7
Schaefer-232 7.4
Schaefer-454 3.6

being equal to s, the density of the structural connectome. That is, this procedure retains as
many functional edges as there are edges in the DTI-derived structural connectome—thereby
ensuring a biologically plausible level of sparsity, by construction. Importantly, note that this
procedure does not amount to preserving exactly the same connections that are present in the
structural connectome: only the same number of edges (as a proportion of the total). Which
specific edges are retained for a given functional network will depend solely on their individual
strength, which may or may not correspond to the presence of structural edges between the
same regions (and in turn may be modulated by aspects such as tasks; Pappas, Craig, Menon,
& Stamatakis, 2020).

SDM therefore views the number of anatomical connections as a biologically principled
lower bound for the number of functional interactions: To be neurobiologically plausible, a
functional network should not have fewer connections than the number of physical white mat-
ter connections in the brain (especially in the context of resting-state functional connectivity
over the course of several minutes). Although the true number of functional connections is
likely to be higher than the corresponding number of anatomical connections, because of the
presence of polysynaptic indirect pathways between regions, making the threshold more le-
nient will also inevitably increase the likelihood of false positives. By fixing the density of
the filtered functional network to be exactly s, SDM navigates this inevitable trade-off be-
tween false positives and false negatives by producing a network that is as sparse as possible
(to keep the number of false positives to a minimum), but not so sparse as to become biologi-
cally implausible (by not having fewer functional edges than there are anatomical connections
identifiable from DTI).

Effectively, SDM is a biologically principled way to choose which proportional threshold
to adopt, which is otherwise largely arbitrary. Note that the threshold s selected by SDM may
be higher or lower than popular alternatives such as 10% or 20% density, depending on the
parcellation used (Table 3). By enforcing the same density across subjects, SDM suffers from
the limitation of proportional thresholding mentioned above, that is, obscuring potentially
meaningful differences in FC network density in between-groups designs (van den Heuvel
et al., 2017). In the presence of DWI data for individual subjects, SDM can be easily modified
to account for this potential confound, by using each individual’s own structural connectivity
network density as the threshold s, which would preserve any density differences between
different groups—thus overcoming one major criticism of current proportional thresholding
approaches. However, DWI data are not always available, and here we therefore chose to
use for all subjects the density of the HCP-1,021 group-average connectome, which can be
used in any study since the underlying data are publicly available. This also represents a
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principled choice, in terms of being arguably the field’s current best estimate of the healthy
human macroscale connectome.

Note that SDM is effectively predicated on the binarized structural network: By relying on
only the total number of connections in the structural network (i.e., the network density), this
method effectively ignores their individual weight—and therefore also the question of how to
define it (e.g., whether normalization by distance or region area should be employed).

Random filtering. Finally, to provide a baseline against which to compare the performance
of the different filtering schemes considered up to this point, we also included an additional
filtering scheme: randomly selecting 20% of connections in the connectivity matrix. For ma-
trices obtained from Pearson correlation, if a negative connection was selected, its sign was
turned to positive: This procedure was chosen to ensure that no connections would be a priori
excluded from selection. Clearly, it is implausible that random sampling of an arbitrary propor-
tion of connections should reveal the topological organization of the human brain. Therefore,
unlike the other methods considered here—which are all intended to uncover the topological
organization of the human brain—we should expect that this method will not yield networks
with very representative topology.Network topology:

The way that elements in a network
(nodes and edges) are organized.

Binarization

We considered both weighted and unweighted networks in our analyses. Unweighted net-
works were constructed by setting all nonzero edges to unity. For functional connectivity
network, this step was performed after filtering.

Topological Distance as Portrait Divergence

The portrait divergence is based on an information-theoretic notion of distance (the Jensen-
Shannon divergence) between graph invariants, encoding the distribution of shortest paths of
the two networks, known as network portraits (Bagrow & Bollt, 2019). Specifically, the network
portrait is a matrix B whose entry Blk, l = 0, 1, …, d (with d being the graph diameter), k = 0, 1,
…, N − 1 is the number of nodes having k nodes at shortest-path distance l.

The number of nodes and edges, the degree distribution, the distribution of the next-nearest
neighbors, and the number of shortest paths of length l are all encoded in B, which is a graph
invariant; that is, it does not vary depending on how the graph is represented. Thus, comparing
networks based on graph invariants is highly desirable, since it ensures that the comparison
depends solely on the networks’ topology, without the confound of encoding format.

The portrait divergence distance between graphs G1 and G2 is then defined as follows. First,
the probability P(k, l) (and similarly Q(k, l) for the second graph) of randomly choosing two
nodes at distance l and, for one of the two nodes, to have k nodes at distance l, is computed
as follows:

P(k, l) = P(k|l)P(l) =
1
N

Blk
1

∑c n2
c

N

∑
k′=0

k′Blk′ (3)

where nc is the number of nodes in the connected component c. Then, the portrait divergence
distance D(G1, G2) is defined using the Jensen-Shannon divergence:

D(G1, G2) =
1
2

KL(P||M) +
1
2

KL(Q‖M) , (4)
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where M = (P + Q)/2 is the mixture distribution of P and Q, and KL(·‖·) is the Kullback-
Leibler divergence.

A chief advantage of this measure is that it can be applied to a wide variety of graphs: undi-
rected or directed, binary or weighted (through binning of real-valued path lengths; here using
10 bins), connected or disconnected, and (most importantly for the present study) even if the
two graphs differ in their number of nodes and edges—making it ideal for the purposes of the
present analysis. Additionally, this measure simultaneously takes into account all scales of
structure within networks, from local structure to motifs to large-scale connectivity patterns.
Thus, it incorporates all aspects of network topology. Finally, the method is also computation-
ally efficient (quadratic in the number of nodes), further widening the range of networks it can
consider (Bagrow & Bollt, 2019).

RESULTS

Maximally Representative Parcellation

We first sought to determine which of the nine parcellation schemes considered here produces
the most representative networks. We used both structural networks (Figure 1) and functional
networks (Figure 2) for this analysis, and considered both weighted and binarized networks.

We began by computing the portrait divergence between the binarized structural connectiv-
ity networks, each obtained by parcellating a given subject’s structural connectome according
to one of the nine parcellation schemes considered here. The average divergence of networks
produced using each parcellation from all others (within the same subject) was then computed.
We reasoned that the lower a parcellation’s average divergence from the others, the more this is
a representative parcellation. Thus, our measure of representativeness for a given parcellation
was defined as one minus its average divergence from all other parcellations.

A within-subjects ANOVA (analysis of variance) was conducted to compare average rep-
resentativeness of binarized structural networks across each of the nine parcellation schemes
in our 100 subjects, revealing significant differences between them: F(8, 891) = 421.08, p <

0.001 (Figure 3A).

Likewise, significant differences were also obtained for weighted structural networks
F(8, 891) = 23.13, p < 0.001 (Figure 3B). In this case, however, the differences between par-
cellations were much less pronounced, and the values of representativeness spanned a wider
range (0.10 to 0.70, vis-à-vis 0.30 to 0.50 for binarized networks).

The same procedure was then repeated for binary and weighted networks obtained from
functional connectivity (Pearson correlation). To obtain results comparable to structural net-
works, the functional networks were sparsified by retaining only the same proportion of edges
as found in the corresponding HCP group-average structural connectome (which corresponds
to applying the structural density matching procedure described in the Methods section).

These analyses again revealed significant differences in representativeness between parcel-
lations, for both binary (F(8, 891) = 418.39, p < 0.001; Figure 3C) and weighted (F(8, 891) =
107.34, p < 0.001; Figure 3D) functional networks. Results from the binarized functional
networks were remarkably similar to those from binarized structural networks, and a similar
pattern was also followed by the weighted functional networks.

Follow-up paired-samples t tests (Bonferroni-corrected for multiple comparisons) were used
to identify significant differences in representativeness between individual parcellations, for
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Figure 1. Structural connectome of the same individual according to different parcellations. Connections indicate the logarithm of the
number of white matter streamlines between the corresponding regions (see Methods section), as identified by deterministic tractography.

each of the four kinds of networks considered here: structural and functional, each binarizedDeterministic tractography:
Technique to determine the presence
or absence of white matter
streamlines between brain regions
based on diffusion-weighted images.

and weighted (Figure 4A–D). Based on these results, we could identify which parcellation
schemes were significantly more or less representative than others, reliably across all four net-
work types (Figure 4, central panel). In particular, the Schaefer-232 parcellation was at least
as representative as any other parcellation considered here, and significantly more representa-
tive than most, regardless of network type. Brainnetome-246 also performed very well, being
equally or more representative than any other parcellation except for Schaefer-232.
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Figure 2. Functional connectome of the same individual according to different parcellations. Matrix entries indicate the Pearson correlation
between the BOLD signal of the corresponding brain regions, obtained from resting-state fMRI of one representative HCP subject.

Bimodality in the distribution of representativeness was observed for weighted structural
networks (Figure 3B). This phenomenon was observed for all scales of the Lausanne anatom-
ical parcellation, and for each of the scale-400 atlases—with the two effects appearing to be
to some extent cumulative, since the Lausanne-463 was the one with the most pronounced
bimodality. This phenomenon can be attributed to some subjects having significantly denser
structural networks than other subjects, leading to corresponding bimodality in the distribu-
tion of network density (Supplementary Figure 1 in the Supporting Information; all p < 0.001).
While this difference does not seem to affect representativeness across parcellations for binary
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Figure 3. Scale-200 parcellations exhibit the highest representativeness for structural and functional networks. For each parcellation, violin
plots show the distribution of its network representativeness (1 minus average portrait divergence with every other parcellation) based on the
connectomes of 100 HCP subjects. (A) Binary networks from structural connectivity. (B) Weighted networks from structural connectivity. (C)
Binary networks from functional connectivity. (D) Weighted networks from functional connectivity. White circle, mean; center line, median;
box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.

networks, it does for weighted networks, leading to lower representativeness for weighted
structural networks obtained from anatomical or scale-400 parcellation.

Regular-Random Representativeness

To complement the previous analysis of cross-parcellation representativeness, we also sought
to determine how well each parcellation can distinguish between network topologies that
are widely considered to lie at opposite ends of a continuum: random networks, and regular
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Figure 4. Significant differences in representativeness between individual parcellations. Each cell in a matrix indicates the difference
(row > column) between the means of the corresponding distributions plotted as violins in Figure 3. Names of the parcellations are indicated in
the corresponding row and column. Nonwhite cells indicate a statistically significant difference (paired-samples t test, Bonferroni-corrected).
(A) Binary networks from structural connectivity. (B) Weighted networks from structural connectivity. (C) Binary networks from functional
connectivity. (D) Weighted networks from functional connectivity. Central panel: significant differences that are present in all comparisons
(A)–(D) in the same direction (all positive or all negative).

networks. To this end, structural and functional empirical networks obtained from each par-
cellation were turned into random or regular networks with the same weights distribution, as
described in Muldoon, Bridgeford, and Bassett (2016). The representativeness between regu-
lar and random networks obtained from the same parcellation was then computed as 1 minus
their portrait divergence, for both binary and weighted networks. We refer to this quantity
as “regular-random representativeness,” to distinguish it from cross-parcellation representa-
tiveness between empirical networks (Figures 3 and 4). For the analysis of regular-random
representativeness, low representativeness (i.e., high portrait divergence) is desirable, as it in-
dicates that a given parcellation can correctly reflect the large theoretical difference between
random and regular networks.

The different parcellations were compared in terms of regular-random representativeness by
means of one-way within-subjects ANOVAs, revealing significant differences in mean regular-
random representativeness, for binary (F(8, 891) = 650.07, p < 0.001; Figure 5A) and weighted
(F(8, 891) = 3, 552.63, p < 0.001; Figure 5B) structural networks, and also for binary
(F(8, 891) = 3, 857.59, p < 0.001; Figure 5C) and weighted (F(8, 891) = 3915.67, p < 0.001;
Figure 5D) functional networks.

Further Bonferroni-corrected, repeated-measures t tests clearly show that, across imaging
modalities and for both binary and weighted networks, regular-random representativeness ap-
pears to scale inversely with parcellation size: It is lower (i.e., random and regular networks
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Figure 5. Regular-random representativeness inversely scales with parcellation size for both structural and functional networks. For each
parcellation, violin plots show the distribution of network representativeness between regular and random networks (1 minus regular-random
portrait divergence) obtained from it, for each of the 100 HCP subjects. (A) Binary networks from structural connectivity. (B) Weighted networks
from structural connectivity. (C) Binary networks from functional connectivity. (D) Weighted networks from functional connectivity. White
circle, mean; center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile range.

have greater divergence) for parcellations with larger numbers of ROIs (Figures 5 and 6). Im-
portantly, regular-random representativeness was substantially below the range of empirical
cross-parcellation representativeness for all binary networks, as well as for weighted networks
constructed from atlases in the 200- or 400-ROI scales (Figure 3). However, weighted networks
constructed from scale-100 parcellations exhibited much higher regular-random representa-
tiveness, in the range of the empirical cross-parcellation representativeness obtained from the
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Figure 6. Significant differences in regular-random representativeness between parcellation scales. Each cell in a matrix indicates the
difference (row > column) between the means of the corresponding distributions plotted as violins in Figure 5. Names of the parcellations are
indicated in the corresponding row and column. Nonwhite cells indicate a statistically significant difference (paired-samples t test, Bonferroni-
corrected). (A) Binary networks from structural connectivity. (B) Weighted networks from structural connectivity. (C) Binary networks from
functional connectivity. (D) Weighted networks from functional connectivity. Central panel: significant differences that are present in all
comparisons (A)–(D) in the same direction (all positive or all negative).

same parcellation. This behavior was observed for both functional and structural connectivity.
In other words, regular and random weighted networks obtained from a given scale-100 par-
cellation are about as representative of each other, as real weighted networks obtained from
that same scale-100 parcellation are representative of real networks obtained with different
parcellations (whether structural or functional).

Maximally Representative Filtering Scheme

We next focused on finding the filtering scheme for functional connectivity that produces the
most representative networks. The purpose of edge filtering can be seen as highlighting the
network’s “true” topology, which may be obscured by the presence of spurious connections.
As our previous analysis demonstrates, the choice of parcellation also inevitably introduces
topological differences, even when the underlying neuroimaging data are the same.

We reasoned that edge filtering can either reduce or further amplify the topological diver-
gence introduced by the parcellation step. Thus, from the point of view of representativeness,
an appropriate filtering scheme is one that minimizes the topological differences arising from
the use of different parcellations, by converging on the same underlying network topology
across different parcellations. In contrast, a poor filtering scheme will further exacerbate the
idiosyncrasies introduced by node definition, so that the same neuroimaging data may end up
as networks with very different organization. In other words, an appropriate filtering scheme
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Figure 7. Distinct filtering schemes applied to the same functional connectome. The same functional connectome from one representative
HCP subject (Schaefer-232, shown before filtering in Figure 2) is shown after filtering of its connections based on 12 different schemes,
producing matrices of different sparsity. OMST, orthogonal minimum spanning trees. ECO, efficiency cost optimization. SDM, structural
density matching. Fixed density indicates that a fixed percentage of the strongest weights are retained. Random 20% corresponds to preserving
20% of connections, chosen at random.

should reveal the topology of the underlying brain network in a similar way, no matter how
the brain was parcellated.

Therefore, we defined representativeness of a given filtering scheme as minimizing the di-
vergence between FC networks produced from different parcellations of the same data (which
we refer to as “cross-parcellation representativeness”). In other words, we sought the filtering
scheme that minimizes the impact of one’s choice of parcellation. To ensure that our results
were not dependent on the removal of negative correlations, we also computed FC based
on mutual information, which is always nonnegative and can also account for nonlinear in-
teractions (Supporting Information, Supplementary Figure 2). Both binarized and weighted
functional networks were considered.

Thus, a total of (number of atlases) × (number of filtering schemes) × (number of functional
connectivity measures) × (binary vs. weighted) = 9 × 12 × 2 × 2 = 432 distinct filtered func-
tional connectivity matrices were obtained, from each subject’s BOLD signal data (Figures 7
and 8).
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Figure 8. Same filtering scheme applied to different parcellations. The functional connectome from one representative HCP subject (based
on Pearson correlation) is shown after filtering of its connections based on the structural density matching criterion, across the nine parcellation
schemes used.

For each filtering scheme, we computed the portrait divergence between each of the nine
functional networks derived from it (one per atlas) and every other one. As above, represen-
tativeness of a given filtering scheme was quantified as 1 minus the average divergence be-
tween that scheme’s resulting networks across parcellations, producing one value per filtering
scheme, per subject.

The cross-parcellation representativeness of different filtering schemes were compared by
means of a one-way within-subjects ANOVA, revealing significant differences in mean rep-
resentativeness across filtering schemes, for binary networks based on Pearson correlation
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Figure 9. Representativeness of filtering schemes. For each filtering scheme, violin plots show the distribution of cross-parcellation represen-
tativeness for 100 HCP subjects. Each data point corresponds to the average representativeness of a given filtering scheme across parcellations
(1 minus average portrait divergence between functional networks obtained from applying the same filtering scheme across all nine parcella-
tions). (A) Binary networks based on Pearson correlation between BOLD signal time series. (B) Weighted networks based on Pearson correlation
between BOLD signal time series. (C) Binary networks based on mutual information between BOLD signal time series. (D) Weighted networks
based on mutual information between BOLD signal time series. White circle, mean; center line, median; box limits, upper and lower quartiles;
whiskers, 1.5× interquartile range. OMST, orthogonal minimum spanning trees. ECO, efficiency cost optimization. SDM, structural density
matching. FD, fixed density. Abs, absolute thresholding. Random 20% corresponds to preserving 20% of connections, chosen at random.

(F(11, 1, 188) = 2, 070.40, p < 0.001; Figure 9A). Likewise, significant overall differences were
also observed for weighted networks based on Pearson correlation (F(11, 1, 188) = 1, 283,
p < 0.001; Figure 9B), and for binary (F(11, 1, 188) = 1, 239.84, p < 0.001; Figure 9C)
and weighted (F(11, 1, 188) = 2, 098.05, p < 0.001; Figure 9D) networks based on mutual
information.
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Figure 10. Significant differences in cross-parcellation representativeness of filtering schemes. Each cell in a matrix indicates the difference
(row > column) between the means of the corresponding distributions plotted as violins in Figure 9. (A) Binary networks based on Pearson
correlation between BOLD signal time series. (B) Weighted networks based on Pearson correlation between BOLD signal time series. (C) Binary
networks based on mutual information between BOLD signal time series. (D) Weighted networks based on mutual information between BOLD
signal time series. Central panel: significant differences that are present in all comparisons (A)–(D) in the same direction (all positive or all
negative).

Further within-sample t tests (Bonferroni-corrected for multiple comparisons) identified
ECO and especially its connected variant, MST-ECO, as being significantly more represen-
tative than all other filtering schemes, in almost all cases (Figure 10A–D and central panel).
Absolute thresholding also performs well, especially with thresholds of 0.3 and 0.5. Absolute
thresholding also results in much greater variability across subjects in terms of density of the
resulting networks (Supporting Information, Supplementary Figure 3). Additionally, for MI the
most stringent absolute threshold (edges stronger than 0.5) reliably results in some subjects hav-
ing functional networks with density one order of magnitude smaller than the group-average
structural connectome (Supporting Information, Supplementary Tables 1 and 2).

Additional insights emerge when considering binary or weighted networks. Namely, SDM
produces binary networks that are highly representative across parcellations, whereas OMST
is especially successful in weighted networks. Proportional thresholding reliably yielded net-
works with poor representativeness across parcellations, regardless of the chosen threshold.
Nevertheless, across both weighted and binary networks, and for both MI and Pearson corre-
lation, proportional thresholding still performed significantly better than filtering by randomly
selecting 20% of edges. As expected, this method invariably exhibited by far the poorest per-
formance, producing networks with significantly lower representativeness across parcellation
than any other filtering scheme. This observation validates the notion that a poor choice of
filtering scheme can exacerbate the differences introduced by the parcellation step, producing
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networks with extremely low representativeness across parcellations—as well as demonstrat-
ing the full extent of gains that can be obtained by choosing an appropriate filtering scheme.

DISCUSSION

How to Make a Representative Brain Network

Here, we reveal that significant differences arise between the representativeness of brain net-
works derived from different pipelines, in terms of both parcellation and filtering schemes
adopted. When considering the choice of parcellation, networks obtained from the Schaefer-
232 and Brainnetome-246 were the most representative, across both DTI and fMRI.

In particular, these parcellations appear to be especially appropriate for use with weighted
networks. On the one hand, parcellations in the order of 100 nodes exhibit limited ability to
discriminate between theoretically distinct weighted network topologies (random vs. regular).
On the other hand, both scale-400 and anatomical parcellations result in bimodal distributions
of representativeness for weighted networks, driven by differences in network density. As the
only two parcellations that do not suffer from either of these potential problems, Schaefer-232
and Brainnetome-246 further emerge as clear recommendations.

The scale-200 parcellations occupy the middle ground between the three scales considered
here, and so it stands to reason that their distance from the other two scales should be smaller
than the distance between scale-100 and scale-400. However, our results are in line with the
work of Arslan et al. (2018), who found lower gender classification accuracy for parcellations
with fewer than 150 nodes, and few benefits from increasing the number of nodes beyond
350. Likewise, Messé (2020) recently argued for parcellations with 200–300 ROIs as a good
compromise between the reliability of connectivity estimates, and the robustness of structural-
functional correspondence.

In terms of filtering schemes for functional connectivity, we found a clear superiority of the
efficiency cost optimization (ECO) scheme, especially in its non-disconnected variant (MST-
ECO). This is in line with the rationale behind the development of this specific filtering scheme,
which has been demonstrated to emphasize the intrinsic topology of a network (De Vico Fallani
et al., 2017). Since our analysis of representativeness is based on minimizing the divergence
between network topologies, it stands to reason that as the method most closely focusing
on highlighting network topology, ECO should produce especially consistent results across
parcellations.

Although some absolute thresholding also produced very representative networks across
parcellations, the density of networks produced with this approach was highly variable with
some subjects’ functional brain networks being an order of magnitude sparser than the average,
and an order of magnitude sparser than the corresponding group-level structural connectiv-
ity. This raises concerns for the use of absolute thresholding because such stark variation in
brain network density of healthy individuals appears implausible. Additionally, it seems hard
to claim that the brain should have fewer functional connections (i.e., interactions between
regions) than there are physical white matter connections between regions.

The number of anatomical connections may thus be seen as a biologically principled lower
bound of the number of functional interactions. By using this number to decide how many
connections to retain, structural density matching produced binary networks with significantly
lower topological divergence than almost any other filtering method, regardless of how func-
tional connectivity was quantified. Therefore, we believe that using SDM over ECO or stringent
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absolute thresholding may be warranted—in the context of binary networks, specifically—
whenever those alternative filtering schemes would lead to networks with fewer functional
connections than the corresponding number of anatomical connections.

Nevertheless, it is intriguing that SDM appeared to perform poorly in the context of weighted
networks. This behavior may be because SDM considers only the number of structural con-
nections when determining the threshold s, and disregards their individual strength. Future
extensions of SDM that also take into account the strength of structural connections may pro-
vide improved performance for SDM on weighted networks.

Conversely, the OMST approach was especially successful for weighted networks, despite
performing relatively poorly after binarization. Uniquely among the filtering schemes consid-
ered here (except for MST-ECO), OMST does not restrict itself to preserving only the strongest
edges, and OMST-derived networks are likely to contain a number of edges that all other meth-
ods would discard as too weak. The importance of weak connections acting as “shortcuts” to
improve efficiency in the brain has been increasingly recognized (Gallos, Makse, & Sigman,
2012; Gallos, Sigman, & Makse, 2012), and indeed OMST outperformed several other thresh-
olding schemes in terms of both recognition accuracy and reliability of the resulting graph
metrics (Dimitriadis, Salis, et al., 2017; Messaritaki et al., 2019).

Limitations

This study also had a number of limitations that should be borne in mind when considering our
recommendations. First, the space of all possible node definitions and filtering procedures is
extremely vast, and therefore our sampling of it is not exhaustive: A wide variety of atlases exist,
at multiple scales, and based on several different criteria—leading to combinatorial explosion
(Arslan et al., 2018; Eickhoff et al., 2018).

Some investigators even refrain from using predefined atlases altogether, generating
networks from individual voxels (Du et al., 2015), or from data-driven approaches such as
independent components analysis (Kiviniemi et al., 2009; Smith et al., 2011). Although con-
sidering all possible node definition approaches would not have been feasible, we did en-
deavor to make our sampling systematic, by varying both the size (approximately 100, 200, and
400 nodes) and the parcellation scheme (based on neurobiological considerations, structural
connectivity, and functional connectivity), thereby covering a number of the most common
approaches—though at the cost of excluding the cerebellum.

Likewise, there exist a number of filtering schemes beyond those considered here: from
thresholding based on statistical significance or regularization (Smith et al., 2011), to the soft
thresholding approach of Schwarz and McGonigle (2011), or indeed no threshold at all, by
employing algorithms that can deal with maximally dense, weighted, and even signed graphs
(Rubinov & Sporns, 2011). Further work may also explore additional ways to define network
edges, from the use of partial correlation (Smith et al., 2011) to directed connectivity methods,
such as transfer entropy, dynamic causal modeling, and Granger causality, to networks derived
from other neuroimaging modalities, such as MEG or EEG.

It also remains an open question how well our results would generalize to task-based func-
tional data, given evidence that functional parcellations themselves vary across tasks (Salehi
et al., 2020). It is also hotly debated whether preprocessing steps such as global signal re-
gression have beneficial (Braun et al., 2012; Welton et al., 2015), deleterious (H. Cao et al.,
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2014), or negligible (Andellini et al., 2015; Du et al., 2015) effects on subsequent network
construction.

Crucially, the definition of the structural connectome density on which SDM relies is it-
self subject to limitations. Diffusion MRI is only an indirect measure of in vivo structural
connectivity; although correlated with tract-tracing results (Delettre et al., 2019; Donahue
et al., 2016), dMRI tractography also suffers from false positives and difficulties resolving
crossing fibers, and not all white matter connections may be correctly identified (Yeh et al.,
2018). Tractography results may also depend on acquisition and diffusion-weighting protocols
(Messaritaki et al., 2019). Furthermore, alternative methods for structural network reconstruc-
tion such as probabilistic tractography can themselves require the choice of a filtering scheme
before binarization—highlighting the key dependence of SDM on deterministic tractography
to produce inherently sparse structural networks. Since deterministic tractography requires a
number of parameters to be selected, the associated limitations of this approach should be
considered as well as the more general limitations of dMRI.

As a final note, we acknowledge that a hypothetical, highly accurate method for deriving
networks from brain data (in the sense of being the closest to the ground truth) could theo-
retically produce networks that turn out to be topologically very different from the networks
produced by current state-of-the-art methods. Though closest to the ground truth, this hypo-
thetical best method would rank poorly on our criterion of representativeness. In other words,
we acknowledge the general point that consensus is not guaranteed to correspond to the truth;
indeed, history teaches that sometimes it is those with idiosyncratic convictions who are right,
and the majority’s consensus wrong (think of Copernicus or Galileo). Nevertheless, in the
current absence of such a ground truth for the brain’s network organization, we believe that
representativeness among state-of-the-art methods such as those considered here may consti-
tute a useful guiding principle.

We also emphasize that the representativeness of brain networks is only one of several fac-
tors that neuroscientists may wish to consider when deciding how to turn their neural data
into networks. For instance, studies seeking how to best classify patients may opt to construct
networks based on pipelines optimized for this goal—whereas longitudinal studies will likely
benefit from the adoption of methods with high test-retest reliability. More generally, it remains
a matter for future research to determine the relationship and trade-offs between representa-
tiveness, reliability, and empirical usefulness. Nevertheless, we believe that network represen-
tativeness can provide additional guidance in the choice of network construction pipelines.

Conclusion

Overall, our proposed criterion of representativeness based on network portrait divergence
identifies specific node definition and filtering procedures that neuroscientists can follow, in
order to derive maximally representative brain networks from their neuroimaging data. To
summarize, parcellations in the order of 200 brain regions—and especially the augmented
Schaefer-232 and Brainnetome-246 parcellations—yield the most topologically representative
brain networks across modalities and network types. Its consistently superior performance
across edge definitions and network types makes efficiency cost optimization the method of
choice for edge filtering, based on representativeness alone. Alternatively, for binary networks
structural density matching may represent a good compromise between representativeness and
neurobiological plausibility (i.e., producing a network that is neither exceedingly dense nor
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implausibly sparse), whereas OMST may represent a suitable, less sparse alternative to ECO
for use in weighted networks.

ACKNOWLEDGMENTS

The authors are grateful to Helena Gellersen for providing the motivation that inspired this
work, and to members of the Cognition and Consciousness Imaging Group for helpful
discussion.

DATA AND CODE AVAILABILITY

The HCP DWI data in SRC format are available online (http://brain.labsolver.org/diffusion-mri
-data/hcp-dmri-data). The HCP fMRI data are available online (https://www.humanconnectome
.org/study/hcp-young-adult/data-releases). The HCP DTI population-averaged template is freely
available online (http://brain.labsolver.org/diffusion-mri-templates/hcp-842-hcp-1021).

The CONN toolbox is freely available online (http://www.nitrc.org/projects/conn). Python
code for the portrait divergence is freely available online (https://github.com/bagrow/network
-portrait-divergence). MATLAB code for the orthogonal minimum spanning tree threshold-
ing is freely available online (https://github.com/stdimitr/topological_filtering_networks). The
Brain Connectivity Toolbox code used for graph-theoretical analyses is freely available online
(https://sites.google.com/site/bctnet/).

SUPPORTING INFORMATION

Supporting information for this article is available at https://doi.org/10.1162/netn_a_00170.

AUTHOR CONTRIBUTIONS

Andrea I. Luppi: Conceptualization; Data curation; Formal analysis; Investigation; Methodol-
ogy; Validation; Visualization; Writing - Original Draft. Emmanuel A. Stamatakis: Conceptual-
ization; Funding acquisition; Project administration; Resources; Supervision; Writing - Review
& Editing.

FUNDING INFORMATION

Andrea I. Luppi, Gates Cambridge Trust (http://dx.doi.org/10.13039/501100005370).
Emmanuel A. Stamatakis, Queens’ College Cambridge, Stephen Erskine Fellowship. Com-
puting infrastructure at the Wolfson Brain Imaging Centre (WBIC-HPHI), Medical Research
Council (http://dx.doi.org/10.13039/501100000265), Award ID: MR/M009041/1. Data were
provided by the Human Connectome Project, WU-Minn Consortium (principal investigators:
David Van Essen and Kamil Ugurbil), funded by the McDonnell Center for Systems Neu-
roscience at Washington University, and the 16 NIH Institutes and Centers that support the
NIH Blueprint for Neuroscience Research (http://dx.doi.org/10.13039/100000135), Award ID:
1U54MH091657.

REFERENCES

Andellini, M., Cannatà, V., Gazzellini, S., Bernardi, B., &
Napolitano, A. (2015). Test-retest reliability of graph metrics of
resting state MRI functional brain networks: A review. Journal of
Neuroscience Methods. DOI: https://doi.org/10.1016/j.jneumeth
.2015.05.020, PMID: 26072249

Arslan, S., Ktena, S. I., Makropoulos, A., Robinson, E. C.,
Rueckert, D., & Parisot, S. (2018). Human brain mapping: A
systematic comparison of parcellation methods for the human
cerebral cortex. NeuroImage. DOI: https://doi.org/10.1016/j
.neuroimage.2017.04.014, PMID: 28412442

Network Neuroscience 121

http://brain.labsolver.org/diffusion-mri-data/hcp-dmri-data
http://brain.labsolver.org/diffusion-mri-data/hcp-dmri-data
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
https://www.humanconnectome.org/study/hcp-young-adult/data-releases
http://brain.labsolver.org/diffusion-mri-templates/hcp-842-hcp-1021
http://www.nitrc.org/projects/conn
https://github.com/bagrow/network-portrait-divergence
https://github.com/bagrow/network-portrait-divergence
https://github.com/stdimitr/topological_filtering_networks
https://sites.google.com/site/bctnet/
https://doi.org/10.1162/netn_a_00170
http://dx.doi.org/10.13039/501100005370
http://dx.doi.org/10.13039/501100000265
http://dx.doi.org/10.13039/100000135
https://doi.org/10.1016/j.jneumeth.2015.05.020
https://doi.org/10.1016/j.jneumeth.2015.05.020
https://europepmc.org/article/MED/26072249
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://doi.org/10.1016/j.neuroimage.2017.04.014
https://europepmc.org/article/MED/28412442


Topological criterion to construct representative brain networks

Bagrow, J. P., & Bollt, E. M. (2019). An information-theoretic, all-
scales approach to comparing networks. Applied Network Sci-
ence, 4(1), 45. Retrieved from http://arxiv.org/abs/1804.03665,
DOI: https://doi.org/10.1007/s41109-019-0156-x

Beckmann, M., Johansen-Berg, H., & Rushworth, M. F. S. (2009).
Connectivity-based parcellation of human cingulate cortex and
its relation to functional specialization. Journal of Neuroscience,
29(4), 1175–1190. DOI: https://doi.org/10.1523/JNEUROSCI
.3328-08.2009, PMID: 19176826, PMCID: PMC6665147

Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component
based noise correction method (CompCor) for BOLD and perfu-
sion based fMRI. NeuroImage, 37, 90–101. DOI: https://doi.org
/10.1016/j.neuroimage.2007.04.042, PMID: 17560126, PMCID:
PMC2214855

Bellec, P., Perlbarg, V., Jbabdi, S., Pélégrini-Issac, M., Anton, J. L.,
Doyon, J., & Benali, H. (2006). Identification of large-scale net-
works in the brain using fMRI. NeuroImage, 29(4), 1231–1243.
DOI: https://doi.org/10.1016/j.neuroimage.2005.08.044, PMID:
16246590

Braun, U., Plichta, M. M., Esslinger, C., Sauer, C., Haddad,
L., Grimm, O., . . . Meyer-Lindenberg, A. (2012). Test-retest
reliability of resting-state connectivity network characteristics
using fMRI and graph theoretical measures. NeuroImage, 59(2),
1404–1412. DOI: https://doi.org/10.1016/j.neuroimage.2011.08
.044, PMID: 21888983

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph
theoretical analysis of structural and functional systems.
Nature Reviews Neuroscience, 10(4), 312. DOI: https://doi.org
/10.1038/nrn2618

Cammoun, L., Gigandet, X., Meskaldji, D., Thiran, J. P., Sporns,
O., Do, K. Q., . . . Hagmann, P. (2012). Mapping the human
connectome at multiple scales with diffusion spectrum MRI.
Journal of Neuroscience Methods, 203(2), 386–397. DOI: https://
doi.org/10.1016/j.jneumeth.2011.09.031, PMID: 22001222

Cao, B., Chen, Y., Yu, R., Chen, L., Chen, P., Weng, Y., . . .
Huang, R. (2019). Abnormal dynamic properties of functional
connectivity in disorders of consciousness. NeuroImage: Clini-
cal, 24. DOI: https://doi.org/10.1016/j.nicl.2019.102071, PMID:
31795053, PMCID: PMC6881656

Cao, H., Plichta, M. M., Schäfer, A., Haddad, L., Grimm, O.,
Schneider, M., . . . Tost, H. (2014). Test-retest reliability of fMRI-
based graph theoretical properties during working memory, emo-
tion processing, and resting state. NeuroImage, 84, 888–900.
DOI: https://doi.org/10.1016/j.neuroimage.2013.09.013, PMID:
24055506

Cohen, A. L., Fair, D. A., Dosenbach, N. U. F., Miezin, F. M.,
Dierker, D., Van Essen, D. C., . . . Petersen, S. E. (2008).
Defining functional areas in individual human brains using rest-
ing functional connectivity MRI. NeuroImage, 41(1), 45–57.
DOI: https://doi.org/10.1016/j.neuroimage.2008.01.066, PMID:
18367410, PMCID: PMC2705206

Craddock, R. C., James, G. A., Holtzheimer, P. E., Hu, X. P., &
Mayberg, H. S. (2012). A whole brain fMRI atlas generated via
spatially constrained spectral clustering. Human Brain Mapping,
33(8), 1914–1928. DOI: https://doi.org/10.1002/hbm.21333,
PMID: 21769991, PMCID: PMC3838923

Craddock, R. C., Jbabdi, S., Yan, C. G., Vogelstein, J. T., Castellanos,
F. X., Di Martino, A., . . . Milham, M. P. (2013). Imaging hu-

man connectomes at the macroscale. Nature Methods. DOI:
https://doi.org/10.1038/nmeth.2482, PMID: 23722212, PMCID:
PMC4096321

Delettre, C., Messé, A., Dell, L. A., Foubet, O., Heuer, K., Larrat,
B., . . . Hilgetag, C. C. (2019). Comparison between diffusion
MRI tractography and histological tract-tracing of cortico-cortical
structural connectivity in the ferret brain. Network Neuroscience,
3(4), 1038–1050. DOI: https://doi.org/10.1162/netn_a_00098,
PMID: 31637337, PMCID: PMC6777980

De Vico Fallani, F., Latora, V., & Chavez, M. (2017). A topological
criterion for filtering information in complex brain networks.
PLoS Computational Biology, 13(1). DOI: https://doi.org/10.1371
/journal.pcbi.1005305, PMID: 28076353, PMCID: PMC5268647

Dimitriadis, S. I., Antonakakis, M., Simos, P., Fletcher, J. M., &
Papanicolaou, A. C. (2017). Data-driven topological filtering
based on orthogonal minimal spanning trees: Application to
multigroup magnetoencephalography resting-state connectivity.
Brain Connectivity, 7(10), 661–670. DOI: https://doi.org/10.1089
/brain.2017.0512, PMID: 28891322, PMCID: PMC6435350

Dimitriadis, S. I., Salis, C., Tarnanas, I., & Linden, D. E. (2017).
Topological filtering of dynamic functional brain networks un-
folds informative chronnectomics: A novel data-driven thresh-
olding scheme based on orthogonal minimal spanning trees
(OMSTs). Frontiers in Neuroinformatics, 11, 28. DOI: https://
doi.org/10.3389/fninf.2017.00028, PMID: 28491032, PMCID:
PMC5405139

Donahue, C. J., Sotiropoulos, S. N., Jbabdi, S., Hernandez-
Fernandez, M., Behrens, T. E., Dyrby, T. B., . . . Glasser, M. F.
(2016). Using diffusion tractography to predict cortical
connection strength and distance: A quantitative comparison
with tracers in the monkey. Journal of Neuroscience, 36(25),
6758–6770. DOI: https://doi.org/10.1523/JNEUROSCI.0493-16
.2016, PMID: 27335406, PMCID: PMC4916250

Du, H. X., Liao, X. H., Lin, Q. X., Li, G. S., Chi, Y. Z., Liu, X.,
. . . Xia, M. R. (2015). Test-retest reliability of graph metrics in
high-resolution functional connectomics: A resting-state functio-
nal MRI study. CNS Neuroscience and Therapeutics, 21(10),
802–816. DOI: https://doi.org/10.1111/cns.12431, PMID:
26212146, PMCID: PMC6493187

Eickhoff, S. B., Yeo, B. T. T., & Genon, S. (2018). Imaging-
based parcellations of the human brain. Nature Reviews Neu-
roscience. DOI: https://doi.org/10.1038/s41583-018-0071-7,
PMID: 30305712

Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., . . . Jiang,
T. (2016). The human Brainnetome atlas: A new brain atlas
based on connectional architecture. Cerebral Cortex, 26(8),
3508–3526. DOI: https://doi.org/10.1093/cercor/bhw157, PMID:
27230218, PMCID: PMC4961028

Gallos, L. K., Makse, H. A., & Sigman, M. (2012). A small world
of weak ties provides optimal global integration of self-similar
modules in functional brain networks. Proceedings of the
National Academy of Sciences, 109(9), 2825–2830. DOI:
https://doi.org/10.1073/pnas.1106612109, PMID: 22308319,
PMCID: PMC3286928

Gallos, L. K., Sigman, M., & Makse, H. A. (2012). The conundrum
of functional brain networks: Small-world efficiency or fractal
modularity. Frontiers in Physiology, 3, 123. DOI: https://doi.org

Network Neuroscience 122

http://arxiv.org/abs/1804.03665
https://doi.org/10.1007/s41109-019-0156-x
https://doi.org/10.1523/JNEUROSCI.3328-08.2009
https://doi.org/10.1523/JNEUROSCI.3328-08.2009
https://europepmc.org/article/MED/19176826
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665147
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://doi.org/10.1016/j.neuroimage.2007.04.042
https://europepmc.org/article/MED/17560126
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2214855
https://doi.org/10.1016/j.neuroimage.2005.08.044
https://europepmc.org/article/MED/16246590
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://doi.org/10.1016/j.neuroimage.2011.08.044
https://europepmc.org/article/MED/21888983
https://doi.org/10.1038/nrn2618
https://doi.org/10.1038/nrn2618
https://doi.org/10.1016/j.jneumeth.2011.09.031
https://doi.org/10.1016/j.jneumeth.2011.09.031
https://europepmc.org/article/MED/22001222
https://doi.org/10.1016/j.nicl.2019.102071
https://europepmc.org/article/MED/31795053
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6881656
https://doi.org/10.1016/j.neuroimage.2013.09.013
https://europepmc.org/article/MED/24055506
https://doi.org/10.1016/j.neuroimage.2008.01.066
https://europepmc.org/article/MED/18367410
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2705206
https://doi.org/10.1002/hbm.21333
https://europepmc.org/article/MED/21769991
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3838923
https://doi.org/10.1038/nmeth.2482
https://europepmc.org/article/MED/23722212
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4096321
https://doi.org/10.1162/netn_a_00098
https://europepmc.org/article/MED/31637337
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6777980
https://doi.org/10.1371/journal.pcbi.1005305
https://doi.org/10.1371/journal.pcbi.1005305
https://europepmc.org/article/MED/28076353
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5268647
https://doi.org/10.1089/brain.2017.0512
https://doi.org/10.1089/brain.2017.0512
https://europepmc.org/article/MED/28891322
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6435350
https://doi.org/10.3389/fninf.2017.00028
https://doi.org/10.3389/fninf.2017.00028
https://europepmc.org/article/MED/28491032
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405139
https://doi.org/10.1523/JNEUROSCI.0493-16.2016
https://doi.org/10.1523/JNEUROSCI.0493-16.2016
https://europepmc.org/article/MED/27335406
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4916250
https://doi.org/10.1111/cns.12431
https://europepmc.org/article/MED/26212146
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6493187
https://doi.org/10.1038/s41583-018-0071-7
https://europepmc.org/article/MED/30305712
https://doi.org/10.1093/cercor/bhw157
https://europepmc.org/article/MED/27230218
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4961028
https://doi.org/10.1073/pnas.1106612109
https://europepmc.org/article/MED/22308319
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286928
https://doi.org/10.3389/fphys.2012.00123


Topological criterion to construct representative brain networks

/10.3389/fphys.2012.00123, PMID: 22586406, PMCID:
PMC3345943

Garrison, K. A., Scheinost, D., Finn, E. S., Shen, X., & Todd
Constable, R. (2015). The (in)stability of functional brain net-
work measures across thresholds. NeuroImage, 118, 651–661.
DOI: https://doi.org/10.1016/j.neuroimage.2015.05.046, PMID:
26021218, PMCID: PMC4554838

Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D.,
Harwell, J., Yacoub, E., . . . Van Essen, D. C. (2016). A multi-
modal parcellation of human cerebral cortex. Nature, 536(7615),
171–178. DOI: https://doi.org/10.1038/nature18933, PMID:
27437579, PMCID: PMC4990127

Glasser, M. F., Sotiropoulos, S. N., Wilson, A., Coalson, T. S.,
Fischl, B., Andersson, J. L., . . . Jenkinson, M. (2013). The minimal
preprocessing pipelines for the Human Connectome Project.
NeuroImage, 80, 105–124. DOI: https://doi.org/10.1016/j
.neuroimage.2013.04.127, PMID: 23668970, PMCID:
PMC3720813

Hallquist, M. N., & Hillary, F. G. (2019). Graph theory approaches
to functional network organization in brain disorders: A critique
for a brave new small-world. Network Neuroscience, 3(1), 1–26.
DOI: https://doi.org/10.1162/netn_a_00054, PMID: 30793071,
PMCID: PMC6326733

Hu, R., Qiu, D., Guo, Y., Zhao, Y., Leatherday, C., Wu, J., & Allen,
J. W. (2019). Variability of resting-state functional MRI graph
theory metrics across 3T platforms. Journal of Neuroimaging,
29(3), 344–347. DOI: https://doi.org/10.1111/jon.12603, PMID:
30702182, PMCID: PMC6506355

Kiviniemi, V., Starck, T., Remes, J., Long, X., Nikkinen, J.,
Haapea, M., . . . Tervonen, O. (2009). Functional segmen-
tation of the brain cortex using high model order group
PICA. Human Brain Mapping, 30(12), 3865–3886. DOI:
https://doi.org/10.1002/hbm.20813, PMID: 19507160, PMCID:
PMC6870574

Luppi, A. I., Craig, M. M., Finoia, P., Williams, G. B., Naci, L.,
Menon, D. K., & Emmanuel, A. (2019). Consciousness-specific
dynamic interactions of brain integration and functional
diversity. Nature Communications, 10, 4616. DOI: https://doi
.org/10.1038/s41467-019-12658-9, PMID: 31601811, PMCID:
PMC6787094

Medaglia, J. D., Gu, S., Pasqualetti, F., Ashare, R. L., Lerman, C.,
Kable, J., & Bassett, D. S. (2016). Cognitive control in the con-
trollable connectome. arXiv. Retrieved from https://arxiv.org/pdf
/1606.09185.pdf

Messaritaki, E., Dimitriadis, S. I., & Jones, D. K. (2019). Optimiza-
tion of graph construction can significantly increase the power
of structural brain network studies. NeuroImage, 199, 495–511.
DOI: https://doi.org/10.1016/j.neuroimage.2019.05.052, PMID:
31176831, PMCID: PMC6693529

Messé, A. (2020). Parcellation influence on the connectivity-
based structure–function relationship in the human brain. Hu-
man Brain Mapping, 41(5), 1167–1180. DOI: https://doi.org/10
.1002/hbm.24866, PMID: 31746083, PMCID: PMC7267927

Muldoon, S. F., Bridgeford, E. W., & Bassett, D. S. (2016). Small-
world propensity and weighted brain networks. Scientific
Reports, 6. DOI: https://doi.org/10.1038/srep22057, PMID:
26912196, PMCID: PMC4766852

Pappas, I., Craig, M. M., Menon, D. K., & Stamatakis, E. A. (2020).
Structural optimality and neurogenetic expression mediate func-
tional dynamics in the human brain. Human Brain Mapping,
41(8), 2229–2243. DOI: https://doi.org/10.1002/hbm.24942,
PMID: 32027077, PMCID: PMC7267953

Rubinov, M., & Sporns, O. (2010). Complex network measures
of brain connectivity: Uses and interpretations. NeuroImage,
52(3), 1059–1069. DOI: https://doi.org/10.1016/j.neuroimage
.2009.10.003, PMID: 19819337

Rubinov, M., & Sporns, O. (2011). Weight-conserving character-
ization of complex functional brain networks. NeuroImage,
56(4), 2068–2079. DOI: https://doi.org/10.1016/j.neuroimage
.2011.03.069, PMID: 21459148

Salehi, M., Greene, A. S., Karbasi, A., Shen, X., Scheinost, D.,
& Constable, R. T. (2020). There is no single functional atlas
even for a single individual: Functional parcel definitions change
with task. NeuroImage, 208, 116366. DOI: https://doi.org/10
.1016/j.neuroimage.2019.116366, PMID: 31740342

Schaefer, A., Kong, R., Gordon, E. M., Laumann, T. O., Zuo, X.-N.,
Holmes, A. J., . . . Yeo, B. T. T. (2018). Local-global par-
cellation of the human cerebral cortex from intrinsic func-
tional connectivity MRI. Cerebral Cortex, 28, 3095–3114. DOI:
https://doi.org/10.1093/cercor/bhx179, PMID: 28981612, PMCID:
PMC6095216

Schwarz, A. J., & McGonigle, J. (2011). Negative edges and soft
thresholding in complex network analysis of resting state func-
tional connectivity data. NeuroImage, 55, 1132–1146. DOI:
https://doi.org/10.1016/j.neuroimage.2010.12.047, PMID:
21194570

Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M.,
Beckmann, C. F., Nichols, T. E., . . . Woolrich, M. W. (2011).
Network modelling methods for FMRI. NeuroImage, 54(2),
875–891. DOI: https://doi.org/10.1016/j.neuroimage.2010.08.063,
PMID: 20817103

Sporns, O. (2011). Networks of the brain. MIT Press. DOI: https://
doi.org/10.7551/mitpress/8476.001.0001

Sporns, O. (2013). Making sense of brain network data. Nature
Methods, 10(6), 491–493. DOI: https://doi.org/10.1038/nmeth
.2485, PMID: 23722207

Sporns, O., Tononi, G., & Kötter, R. (2005). The human connec-
tome: A structural description of the human brain. PLoS Com-
putational Biology. DOI: https://doi.org/10.1371/journal.pcbi
.0010042, PMID: 16201007, PMCID: PMC1239902

Termenon, M., Jaillard, A., Delon-Martin, C., & Achard, S. (2016).
Reliability of graph analysis of resting state fMRI using
test-retest dataset from the Human Connectome Project. Neuro-
Image, 142, 172–187. DOI: https://doi.org/10.1016/j.neuroimage
.2016.05.062, PMID: 7282475

Tian, Y., Margulies, D. S., Breakspear, M., & Zalesky, A. (2020).
Hierarchical organization of the human subcortex unveiled
with functional connectivity gradients. biorXiv. DOI: https://
doi.org/10.1101/2020.01.13.903542

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello,
F., Etard, O., Delcroix, N., . . . Joliot, M. (2002). Automated
anatomical labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI single-subject brain.
NeuroImage, 15(1), 273–289. DOI: https://doi.org/10.1006/NIMG
.2001.0978, PMID: 11771995

Network Neuroscience 123

https://doi.org/10.3389/fphys.2012.00123
https://europepmc.org/article/MED/22586406
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3345943
https://doi.org/10.1016/j.neuroimage.2015.05.046
https://europepmc.org/article/MED/26021218
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554838
https://doi.org/10.1038/nature18933
https://europepmc.org/article/MED/27437579
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://europepmc.org/article/MED/23668970
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3720813
https://doi.org/10.1162/netn_a_00054
https://europepmc.org/article/MED/30793071
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6326733
https://doi.org/10.1111/jon.12603
https://europepmc.org/article/MED/30702182
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6506355
https://doi.org/10.1002/hbm.20813
https://europepmc.org/article/MED/19507160
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6870574
https://doi.org/10.1038/s41467-019-12658-9
https://doi.org/10.1038/s41467-019-12658-9
https://europepmc.org/article/MED/31601811
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6787094
https://arxiv.org/pdf/1606.09185.pdf
https://arxiv.org/pdf/1606.09185.pdf
https://doi.org/10.1016/j.neuroimage.2019.05.052
https://europepmc.org/article/MED/31176831
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6693529
https://doi.org/10.1002/hbm.24866
https://doi.org/10.1002/hbm.24866
https://europepmc.org/article/MED/31746083
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267927
https://doi.org/10.1038/srep22057
https://europepmc.org/article/MED/26912196
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4766852
https://doi.org/10.1002/hbm.24942
https://europepmc.org/article/MED/32027077
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267953
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://europepmc.org/article/MED/19819337
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://doi.org/10.1016/j.neuroimage.2011.03.069
https://europepmc.org/article/MED/21459148
https://doi.org/10.1016/j.neuroimage.2019.116366
https://doi.org/10.1016/j.neuroimage.2019.116366
https://europepmc.org/article/MED/31740342
https://doi.org/10.1093/cercor/bhx179
https://europepmc.org/article/MED/28981612
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6095216
https://doi.org/10.1016/j.neuroimage.2010.12.047
https://europepmc.org/article/MED/21194570
https://doi.org/10.1016/j.neuroimage.2010.08.063
https://europepmc.org/article/MED/20817103
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.7551/mitpress/8476.001.0001
https://doi.org/10.1038/nmeth.2485
https://doi.org/10.1038/nmeth.2485
https://europepmc.org/article/MED/23722207
https://doi.org/10.1371/journal.pcbi.0010042
https://doi.org/10.1371/journal.pcbi.0010042
https://europepmc.org/article/MED/16201007
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1239902
https://doi.org/10.1016/j.neuroimage.2016.05.062
https://doi.org/10.1016/j.neuroimage.2016.05.062
https://europepmc.org/article/MED/7282475
https://doi.org/10.1101/2020.01.13.903542
https://doi.org/10.1101/2020.01.13.903542
https://doi.org/10.1006/NIMG.2001.0978
https://doi.org/10.1006/nimg.2001.0978
https://europepmc.org/article/MED/11771995


Topological criterion to construct representative brain networks

van den Heuvel, M. P., De Lange, S. C., Zalesky, A., Seguin, C.,
Yeo, B. T. T., & Schmidt, R. (2017). Proportional thresholding
in resting-state fMRI functional connectivity networks and con-
sequences for patient-control connectome studies: Issues and
recommendations. NeuroImage, 152, 437–449. DOI: https://doi
.org/10.1016/j.neuroimage.2017.02.005, PMID: 28167349

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E. J.,
Yacoub, E., & Ugurbil, K. (2013). The WU-Minn Human
Connectome Project: An overview. NeuroImage, 80, 62–79.
DOI: https://doi.org/10.1016/j.neuroimage.2013.05.041, PMID:
23684880, PMCID: PMC3724347

Wang, J., Ren, Y., Hu, X., Nguyen, V. T., Guo, L., Han, J., &
Guo, C. C. (2017). Test–retest reliability of functional connectiv-
ity networks during naturalistic fMRI paradigms. Human Brain
Mapping, 38(4), 2226–2241. DOI: https://doi.org/10.1002/hbm
.23517, PMID: 28094464, PMCID: PMC6867176

Wang, J.-H., Zuo, X.-N. X., Gohel, S., Milham, M. P., Biswal,
B. B., & He, Y. (2011). Graph theoretical analysis of func-
tional brain networks: Test-retest evaluation on short- and
long-term resting-state functional MRI data. PloS ONE, 6(7),
e21976. DOI: https://doi.org/10.1371/journal.pone.0021976,
PMID: 21818285, PMCID: PMC3139595

Welton, T., Kent, D. A., Auer, D. P., & Dineen, R. A. (2015).
Reproducibility of graph-theoretic brain network metrics: A
systematic review. Brain Connectivity, 5(4), 193–202. DOI:

https://doi.org/10.1089/brain.2014.0313, PMID: 25490902,
PMCID: PMC4432917

Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: A
functional connectivity toolbox for correlated and anticorre-
lated brain networks. Brain Connectivity, 2(3), 125–141. DOI:
https://doi.org/10.1089/brain.2012.0073, PMID: 22642651

Yeh, F.-C., Panesar, S., Fernandes, D., Meola, A., Yoshino, M.,
Fernández-Miranda, J. C., . . . Verstynen, T. (2018). Population-
averaged atlas of the macroscale human structural connec-
tome and its network topology. NeuroImage, 178, 57–68.
DOI: https://doi.org/10.1016/j.neuroimage.2018.05.027, PMID:
29758339, PMCID: PMC6921501

Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C.,
& Tseng, W.-Y. (2013). Deterministic diffusion fiber track-
ing improved by quantitative anisotropy. PLoS ONE, 8(11),
80713. DOI: https://doi.org/10.1371/journal.pone.0080713,
PMID: 24348913, PMCID: PMC3858183

Yeh, F.-C., Wedeen, V. J., & Tseng, W.-Y. I. (2011). Estimation of
fiber orientation and spin density distribution by diffusion de-
convolution. NeuroImage, 55(3), 1054–1062. DOI: https://doi
.org/10.1016/j.neuroimage.2010.11.087, PMID: 21232611

Yeh, F.-C., Wedeen, V. J., & Tseng, W.-Y. I. (2010). Generalized q-
sampling imaging. IEEE Transactions on Medical Imaging, 29(9),
1626–1635. DOI: https://doi.org/10.1109/TMI.2010.2045126,
PMID: 20304721

Network Neuroscience 124

https://doi.org/10.1016/j.neuroimage.2017.02.005
https://doi.org/10.1016/j.neuroimage.2017.02.005
https://europepmc.org/article/MED/28167349
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://europepmc.org/article/MED/23684880
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3724347
https://doi.org/10.1002/hbm.23517
https://doi.org/10.1002/hbm.23517
https://europepmc.org/article/MED/28094464
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6867176
https://doi.org/10.1371/journal.pone.0021976
https://europepmc.org/article/MED/21818285
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3139595
https://doi.org/10.1089/brain.2014.0313
https://europepmc.org/article/MED/25490902
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4432917
https://doi.org/10.1089/brain.2012.0073
https://europepmc.org/article/MED/22642651
https://doi.org/10.1016/j.neuroimage.2018.05.027
https://europepmc.org/article/MED/29758339
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6921501
https://doi.org/10.1371/journal.pone.0080713
https://europepmc.org/article/MED/24348913
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3858183
https://doi.org/10.1016/j.neuroimage.2010.11.087
https://doi.org/10.1016/j.neuroimage.2010.11.087
https://europepmc.org/article/MED/21232611
https://doi.org/10.1109/TMI.2010.2045126
https://europepmc.org/article/MED/20304721

