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Abstract

Chemical genomic screens have recently emerged as a systematic approach to drug dis-

covery on a genome-wide scale. Drug target identification and elucidation of the mechanism

of action (MoA) of hits from these noisy high-throughput screens remain difficult. Here, we

present GIT (Genetic Interaction Network-Assisted Target Identification), a network analysis

method for drug target identification in haploinsufficiency profiling (HIP) and homozygous

profiling (HOP) screens. With the drug-induced phenotypic fitness defect of the deletion of a

gene, GIT also incorporates the fitness defects of the gene’s neighbors in the genetic inter-

action network. On three genome-scale yeast chemical genomic screens, GIT substantially

outperforms previous scoring methods on target identification on HIP and HOP assays,

respectively. Finally, we showed that by combining HIP and HOP assays, GIT further boosts

target identification and reveals potential drug’s mechanism of action.

Author summary

Chemical genomic screens have been developed to systematically explore compound-

gene interactions with the goal of identifying new drugs and drug targets. Haploinsuffi-

ciency profiling and homozygous profiling screens measure the drug-induced growth sen-

sitivities of deletion strains that are grown in the presence of a compound. Traditionally,

putative target genes are ranked according to their importance for growth in HIP-HOP

screens, since most sensitive strains often carry deletions of genes that are related to the

drug target(s). Here, we present GIT (Genetic Interaction Network-Assisted Target Iden-

tification), a network analysis method for drug target identification. GIT scores a gene by

combining its fitness defect with the screen outcomes of the gene’s neighbors in the

genetic interaction network. We demonstrated that GIT significantly improves target

identification and elucidates molecular and functional mechanisms of drug action.
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Introduction

Chemical genomic screens have been extensively used to discover functional interactions

between genes and small molecular compounds in vivo [1–8]. Due to its short generation time,

inexpensive cultivation, and facile genetics, the budding yeast S. cerevisiae has been widely

used as a platform for chemical genomic screens to decipher proteins and pathways targeted

by small molecular compounds [9–11]. In comparison to other approaches [12–15], yeast

chemical genomic screens provide comprehensive and systematic genome-wide measure-

ments of a complete set of deletion strains. When the target protein(s)’s functions are con-

served throughout evolution, results of chemical genomic screens in yeast can be readily

transferred to other species, including human [16–18]. There are two types of yeast chemical

genomics assays: haploinsufficiency profiling (HIP) and homozygous profiling (HOP). A HIP

assay consists of a set of heterozygous deletion diploid strains that are grown in the presence of

a compound. Decreasing gene dosage of a drug target from two copies to one copy will result

in increased drug sensitivity, or drug-induced haploinsufficiency [19]. Under normal condi-

tion, one copy of gene is adequate for the normal growth for diploid yeast. Haploinsufficiency

can happen when a drug is added into the strain. Consequently, HIP experiments are designed

to identify the relationship between gene haploinsufficiency and compounds. In contrast, a

HOP assay measures drug sensitivities of strains with complete deletion of non-essential genes

in either haploid or diploid strains. Because of the complete deletion, HOP assays identify

genes that act to buffer the drug target pathway. The fitness defect score (FD-score) is widely

used to predict drug targets by comparing the perturbed growth rates to those of a set of con-

trol strains [9, 10].

Recently, a large-scale Synthetic Genetic Analysis (SGA) study [20] showed that target’s

genetic interaction profiles are highly correlated with the outcomes of chemical genomic

screens, suggesting the possibility of combining genetic interaction profiles with chemical

genomic screens for drug target identification [21–23]. A genetic interaction is measured as

the difference between the experimentally measured double-mutant phenotype and the

expected double-mutant phenotype [24]. A negative genetic interaction occurs when two

genes have similar functions that compensate each other’s absence to support cell viability

[25–27]. In contrast, a positive genetic interaction occurs when a mutation in one gene rescues

the fitness defect associated with a mutation in another gene [28–30].

Intuitively, a gene’s genetic interaction neighbors are also modulated if the gene is targeted

and perturbed by a compound. Hence, we can use genetic interaction neighbors’ FD-scores to

assist the inference of drug targets on chemical genomic screens. To the best of our knowledge,

the only previous attempt to combine chemical genomic screens with genetic interaction pro-

files is by computing the Pearson correlation coefficient between their outcomes [23]. A higher

and positive Pearson correlation coefficient indicates a potential compound-target interaction

because genetic perturbation is inherently similar to chemical perturbation. However, this

approach often works poorly because the Pearson correlation coefficient is sensitive to the

noise in high-throughput chemical genomic screens and SGA profiles. Moreover, these exist-

ing methods ignore the inherent differences between HIP and HOP assays. Since HIP and

HOP assays are complementary, combining HIP and HOP should further improve target

identification and enhance our understanding of compounds’ mechanisms of action (MoA) in

a comprehensive way.

In this work, we introduce GIT, a novel Genetic Interaction Network-Assisted Target Iden-

tification scoring method for HIP-HOP screens. Due to the inherent similarity between

genetic perturbation and chemical perturbation, it is possible to use genetic interaction neigh-

bors’ chemical genomic profiles to assist drug target inference. Therefore, we adopt a network
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biology perspective to detect drug targets by its neighbors. We first constructed a weighted,

signed genetic interaction network from SGA profiles. For HIP assays, GIT supplements a

gene’s FD-score by the FD-scores of its neighboring genes in the genetic interaction network.

If the FD-scores of its positive genetic interaction neighbors are high while the FD-scores of its

negative genetic interaction neighbors are low, the gene is more likely to be a target. For HOP

assays, GIT incorporates the FD-scores of long-range two-hop neighbors to identify drug tar-

gets, since HOP is more likely to prioritize genes that buffer the drug target pathway rather

than the direct targets. By combining HIP and HOP assays using GIT, we observed further

improvement in target identification. Extensive experiments on three genome-wide chemical

genomic screens demonstrated that GIT substantially improves target identification in com-

parison with existing scoring methods. We also identified many novel compound-target inter-

actions that are currently not in any curated database but are supported by literature. In

addition to target identification, we further demonstrated that GIT can be used to reveal the

mechanisms of action of compounds and uncover co-functional gene complexes.

Methods

FD-score

The fitness defect score (FD-score) is the log-ratio of the growth defect of a deletion strain in

response to a compound treatment, relative to its growth under control conditions. For gene

deletion strain i and compound c, the corresponding FD-score is defined as

FDic ¼ log
ric

ri
; ð1Þ

where ric is the growth defect of deletion strain i in the presence of compound c, and ri is the

average growth defect of deletion strain i measured under multiple control conditions without

any compound treatment. FD-score reflects the sensitivity of a gene deletion strain to a com-

pound treatment. Specifically, a negative FDic score means the growth fitness of the strain i in

the presence of the chemical c should be weaker than that of the control without treatment.

Therefore, a low, negative FD-score indicates a putative interaction between the deleted gene

and the compound.

The FD-score does not consider epistasis or interactions among genes. However, recent

studies indicate that the phenotype of a particular strain can be caused by the deletion of a

genetic modifier of a neighboring gene that is responsible for the phenotype [9, 31–34]. There-

fore, it is necessary to consider a gene’s neighboring genes for target identification.

Genetic interaction network

We first obtained genetic interaction profiles of 5.4 million gene-gene pairs in yeast from a

recent genome-scale Synthetic Genetic Array (SGA) study [20]. We then constructed a signed,

weighted genetic interaction network based on these profiles. The edge weight gij between

gene i and gene j in the genetic interaction network is defined as

gij ¼ fij � fifj; ð2Þ

where fij is the double-mutant growth fitness, and fi is the single-mutant growth fitness of gene

i. A negative genetic interaction refers to a more severe growth fitness observed than expected,

with an extreme case being synthetic lethality, whereas a positive genetic interaction refers to

double mutants with a less severe growth fitness than expected [35, 36].
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Network-assisted target identification in HIP assays

To identify drug targets in HIP assays, we introduce the GITHIP-score, which combines a

gene’s FD-score and the FD-scores of its neighboring genes in the genetic interaction network.

For gene i and compound c, we define the GITHIP-score as

GITHIP
ic ¼ FDic �

X

j

FDjc � gij: ð3Þ

The GITHIP-score considers two types of information of gene i: the FD-score of gene i and the

FD-scores of gene i’s genetic interaction neighbors (Fig 1).

To account for different signs and strengths of genetic interactions, we compute a linear

combination of the FD-scores of neighboring genes according to their genetic interaction edge

weights to gene i. When gene i and gene j are a negative genetic interaction pair (gij < 0) and

gene i is the target of compound c, it is very likely that we also observe a negative FDjc value.

This is because the deletion of one copy of gene j will make gene i more essential to the cell

growth, according to the SGA assays. Likewise, if gene i and gene j are a positive genetic inter-

action pair (gij > 0) and gene i is the target of compound c, it is very likely that we observe a

positive FDjc value. This is because the deletion of one copy of gene j will make gene i less

essential to the cell growth. Therefore, we designed the GIT score to integrate the information

from the genetic interaction neighbors to increase the signal-to-noise ratio, thus improving

Fig 1. Illustration of how GIT identifies drug targets in HIP assays. Red (Blue) nodes indicate genes with

high (low) FD-scores. Red (Blue) lines indicates positive (negative) genetic interactions. Yellow node

indicates drug target. GIT supplements a gene’s FD-score by the FD-scores of its neighboring genes in the

genetic interaction network. GIT identifies a gene as the target if the gene’s positive genetic interaction

neighbors have high FD-scores and the gene’s negative genetic interaction neighbors have low FD-scores.

https://doi.org/10.1371/journal.pcbi.1005553.g001
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the sensitivity of the target identification. A low GITHIP-score indicates a potential compound-

target interaction.

For target that cannot be accurately identified by the FD-score because of the noise in

chemical genomic screens or neighboring gene effect [31], the GITHIP-score corrects the tar-

get’s FD-score according to the FD-scores of its genetic interaction neighbors. Previous study

proposed to identify essential genes in human cancer cell lines according to the expression

profile of genetic interaction neighbors [37]. Specifically, one gene becomes more essential if

its negative genetic interaction neighbors are inactive and its positive genetic interaction

neighbors are active [38]. In this paper, we studied more direct phenotypic growth fitness

from chemical genomics assays, instead of gene expression data. Accordingly, the GITHIP-

score can also be viewed as a conditional essentiality score since it captures the growth fitness

of genetic interaction neighbors.

Network-assisted target identification in HOP assays

Compared to HIP, HOP assays delete both copies of non-essential genes in either haploid or

diploid strains. Therefore, the FD-score in HOP assays prioritizes genes that buffer the drug

target pathway. In contrast to existing studies [9–11, 23], which apply the same scoring meth-

ods for HIP and HOP assays, we introduce a different network-assisted approach for HOP

assays to tackle the inherent difference between HIP and HOP assays. Since genes with low

FD-scores in the HOP assay are often close to or located in the drug target pathway, we extend

our framework to consider the FD-scores of long-range two-hop genetic interaction

neighbors.

To utilize long-range two-hop genetic interaction neighbors’ FD-scores, we first calculate

the first-order GIT-score of each gene. We define the first-order GIT-score GIT1st
ic of gene i in

the presence of compound c as

GIT1st
ic ¼ FDic �

X

j

FDjc � gij: ð4Þ

We then use the first-order GIT-score to calculate the GITHOP-score for target identifica-

tion in HOP assays.

GITHOP
ic ¼ FDic �

X

j

GIT1st
jc � gij: ð5Þ

The GITHOP-score considers two types of information for each gene: the FD-score of the gene

itself and the first-order GIT-scores of the gene’s genetic interaction neighbors (Fig 2). A low

GITHOP-score indicates a potential compound-target interaction.

While genes that act to buffer the drug target pathway may not be the one-hop neighbors

of the target, the GITHOP-score takes into account indirect neighboring genes in the genetic

interaction network. Specifically, if the FD-scores of positively (negatively) weighted two-

hop neighbors are high (low), the corresponding one-hop neighbors will have a significantly

low GIT1st-scores. On the other hand, if the FD-scores of positively (negatively) weighted

two-hop neighbors are low (high), the corresponding one-hop neighbors will have a signifi-

cantly high GIT1st-scores. By correcting a gene’s FD-score according to the GIT1st-scores of

the gene’s genetic interaction neighbors, the GITHOP-score explicitly considers the FD-

scores of two-hop neighbors, which capture the drug target pathway buffer effect in the

HOP assay.

GITHOP-scores can be viewed as the second-order GIT-score. It can be calculated by itera-

tively multiplying the FD-score vector with the genetic interaction network matrix. Although
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this scoring framework can be naturally extended to kth-order, we did not observe substantial

improvement for k> 2 in our experiments. We showed the performance of using different k
in S8 Fig.

ρ-score

In addition to the FD-score, we compared our GIT-score with the ρ-score, which combines

genetic interaction profiles with chemical genomic screens by computing the Pearson correla-

tion coefficient between their outcomes [23]. ρ-score is proposed to leverage the inherent simi-

larity between genetic perturbation and chemical perturbation. Both of them profiles the

relative growth fitness when a gene i is knockdown by mutation or chemical compound. Thus

if the genetic interaction profile of a gene i is positively correlated to the FD-score profile of a

compound c, it means that the effect of mutating this gene i is similar to adding a compound c.

For gene i and compound c, the ρ-score is defined as

ric ¼

P
k2nghðiÞðFDkc � FDcÞðgik � giÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
k2nghðiÞðFDkc � FDcÞ

2P
k2nghðiÞðgik � giÞ

2
q ; ð6Þ

where ngh(i) denotes the genetic interaction neighbors of gene i. When calculating ρic, we

Fig 2. Illustration of how GIT identifies drug targets in HOP assays. Red (Blue) nodes indicate genes

with high (low) FD-scores. Red (Blue) lines indicate positive (negative) genetic interactions. Yellow node

indicates drug target. GIT supplements a gene’s FD-score by the FD-scores of its long-range two-hop

neighbors in the genetic interaction network. These long-range two-hop neighbors capture the drug target

pathway buffer effect in HOP assays.

https://doi.org/10.1371/journal.pcbi.1005553.g002
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excluded pairs of k and c if FDkc is missing a value. A high, positive ρ-score indicates a potential

compound-target interaction.

Datasets

STITCH compound-target interactions and genetic interaction profiles. We obtained

known compound-target interactions from the STITCH 4 database [39] as a benchmark to

evaluate the performance of different target identification scoring methods. These compound-

target interactions are built from heterogeneous data sources, including experiments, expert-

curated databases, and literature mining. Each interaction has a combined score (between 0

and 1) representing the confidence. We excluded low-confidence interactions (combined

score < 0.4), as suggested by the STITCH 4 database. We further excluded interactions pre-

dicted solely from putative homologs from other species. After filtering compounds that are

not in any of the collected chemical genomics screens, we obtained 1472 compound-target

interactions. We obtained genetic interaction profiles of 5.4 million gene-gene pairs in yeast

from a recent genome-scale Synthetic Genetic Array (SGA) study [20].

Genome-wide HIP-HOP screens. We obtained three yeast HIP-HOP chemical genomic

screens from [9–11]. For evaluation purposes, we only included compounds that had at least

one STITCH compound-target interaction. The first screen from Hoepfner et al. 2014 has

4,146 and 4,921 deletion strains grown under 71 and 73 compound treatment conditions for

heterozygous and homozygous deletion collections, respectively. The second screen from Lee

et al. 2014 has 1,095 and 4,810 deletion strains grown under 382 compound treatment condi-

tions for heterozygous and homozygous deletion collections, respectively. The third screen

from Hillenmeyer et al. 2008 has 5,307 and 4,810 deletion strains grown under 333 and 162

compound treatment conditions for heterozygous and homozygous deletion collections,

respectively.

Experimental settings

We evaluated the performance of each scoring method based on two criteria: 1) the number of

compound-target interactions that can be identified in the top k genes and 2) the number of

compounds, at least one target of which can be identified in the top k genes.

For each criteria, we plotted a curve which describes the number of identified compound-

target interactions (drugs for second criteria) against the rank of gene for each scoring method.

The y-axis shows the number of compound-target interactions (drugs for second criteria)

identified in the top k genes, where k is shown on the x-axis. We first calculated the area under

the curve (AUC) of each scoring method.

Then we calculated a normalized AUC (nAUC) for scoring method X as

nAUCX ¼
AUCX

AUCFD� score ; ð7Þ

where the AUCFD−score is the AUC of the FD-score and the AUCX is the AUC of the scoring

method X. If the nAUC is larger than 1, then the corresponding scoring method is better than

the FD-score method.

We denoted the nAUC obtained from the first criteria as nAUCt and the nAUC obtained

from the second criteria as nAUCd. Since one drug may have multiple targets, nAUCt is more

suitable for evaluation. Therefore, nAUCt is the primary metric used for evaluation in this

paper.

When calculating the GITHIP-score and the GITHOP-score, we only considered the top q
positive genetic interaction neighbors with highest weights and the top q negative genetic

Network-assisted target identification
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interaction neighbors with highest absolute weights for each gene in the network. We set q to

100 in all three screens. We showed in S7 Fig that the performance of our method is not sensi-

tive to different values of q.

Results

GIT substantially improves target identification in HIP assays

To evaluate GIT in HIP assays, we performed large-scale target identification on three chemi-

cal genomic screens. The results are summarized in Fig 3 and S1 Fig. It is clear that our

GITHIP-score substantially outperforms other scoring methods on all three screens. For exam-

ple, on Hoepfner et al. 2014 screen, GIT achieves 1.270 nAUCt, which is much higher than

1.000 nAUCt of the FD-score. On Hillenmeyer et al. 2008 screen, GIT identifies 89 com-

pound-target interactions in the top 150 genes, which is again substantially higher than the 75

compound-target interactions identified by the FD-score. Similar improvement was observed

in terms of nAUCd on all three screens.

To further understand how the GITHIP-score achieves improved performance, we listed

compound-target interactions that are ranked higher by the GITHIP-score than by the FD-

score in Table 1. For instance, the FD-score failed to identify the interaction between HSP90

and geldanamycin because of the large FD-score (2.01) of HSP90 in the presence of geldana-

mycin. In contrast, our GITHIP-score successfully identified HSP90 as the target of geldanamy-

cin by considering relevant HSP90’s negative genetic interaction neighbors (e.g., SGT1 with

FD-score -8.77) and its positive genetic interaction neighbors (e.g., NSE3 with FD-score 0.68).

We further compared the GITHIP-score with the ρ-score, which combines SGA profiles

with chemical genomic screens via the Pearson correlation coefficient. We found that GIT sub-

stantially outperforms the ρ-score on all three chemical genomic screens (Fig 3 and S1 Fig).

For instance, GIT achieves 1.270 nAUCt on Hoepfner et al. 2014 screen, which is much higher

than 0.919 nAUCt of the ρ-score. Same as the observation in the previous work [23], the ρ-

score performs consistently worse than the FD-score, possibly due to the fact that the Pearson

correlation coefficient is sensitive to the noise in high-throughput chemical genomic screens

and SGA profiles.

Finally, we examined whether other molecular networks also enable good target identifica-

tion performance. Since previous work [40] has used protein-protein interaction network to

identify essential genes in CRISPR screens, we hope to test if protein interaction network can

also achieve good performance when is used to identify drug targets. Therefore, we compared

the performance between protein interaction network and genetic interaction network on

chemical genomics screens. We first obtained a physical interaction network (PI) of yeast pro-

teins from BioGRID V3.4 [41]. There are no sign but only weighted edges in the obtained

physical interaction network. We then used Eq 3 to calculate the GITHIP-score(PI) based on

this physical interaction network, where gij is the weight between gene i and gene j in the phys-

ical interaction network. We found that the GITHIP-score has better performance than the

GITHIP-score(PI) (S2 Fig). Since the physical interaction network is unsigned, the GITHIP-

score(PI) inevitably prioritizes hubs which have a large number of neighbors. In contrast, by

considering both negatively weighted edges and positively weighted edges in the genetic inter-

action network, our GITHIP-score is not biased towards hubs and thus substantially enhances

target identification performance.

GIT substantially improves target identification in HOP assays

We next performed large-scale target identification on three chemical genomic screens to eval-

uate GIT in HOP assays. The results are summarized in Fig 4 and S3 Fig. It is clear that our
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Fig 3. Comparison of GIT with other scoring methods in terms of nAUCt in HIP assays on three

chemical genomic screens. The y-axis shows the number of compound-target interactions identified in the

top k genes, where k is shown on the x-axis.

https://doi.org/10.1371/journal.pcbi.1005553.g003
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GITHOP-score achieves the best target identification performance on all three chemical geno-

mic screens. For instance, the GITHOP-score achieves 1.355 nAUCt on Lee et al. 2014 which is

substantially higher than 1.000 nAUCt of the FD-score. We listed compound-target interac-

tions that are ranked higher by the GITHOP-score than by the FD-score in Table 2. For

instance, the FD-score fails to identify YSR2 as the target of sphingosine because of the close to

zero FD-score (-0.017) of YSR2 in the presence of sphingosine. In contrast, the GITHOP-score

successfully identifies the interaction between YSR2 and sphingosine, mainly due to the high

GIT1st-scores of YSR2’s positive genetic interaction neighbors (e.g., CSF1 with the GIT1st-

score 1.60) and the low GIT1st-scores of YSR2’s negative genetic interaction neighbors (e.g.,

VBM2 with the GIT1st-score -3.00). The substantial improvement of GIT over the FD-score

demonstrates the promising of utilizing two-hop genetic interaction neighbors’ FD-scores to

identify targets in HOP assays.

It is crucial to understand whether it is necessary to apply different scoring methods to the

HIP assay and the HOP assay. To this end, we calculated the GITHIP-score in the HOP assay

based on Eq 3, where FDic (FDjc) is the FD-score of the HOP assay rather than the HIP assay.

Consequently, the GITHIP-score in the HOP assay corrects a gene’s FD-score only according

to the FD-scores of its one-hop neighbors. Although the GITHIP-score in HOP assays achieves

better performance in comparison to the FD-score and the ρ-score, we noticed that it is consis-

tently worse than the GITHOP-score on all three screens (S4 Fig), suggesting the necessity of

utilizing the FD-scores of two-hop neighbors to capture the drug target pathway buffer effect

in the HOP assay.

We further investigated whether two-hop neighbors also enable better performance in HIP

assays. We calculated the GITHOP-score in HIP assays by using the FD-score of HIP assays in

Eqs 4 and 5. Different from HOP assays, the GITHOP-score does not obtain substantial

improvement in comparison to the GITHIP-score in HIP assays, reflecting the inherent differ-

ences between the HIP assay and the HOP assay.

Table 1. Top compound-target interactions identified by GIT in HIP assays. We listed examples of com-

pound-target interactions that are ranked higher by the GITHIP-score than by the FD-score. We showed com-

pound-target interactions that are identified in the top 100 genes by the GITHIP-score.

Compound Target Rank by the GITHIP-score Rank by the FD-score

5-fluorouracil GLT1 78 140

5-fluorouracil DFR1 31 760

Curcumin STT1 20 94

Cycloheximide GSP1 64 513

Fenpropimorph ERG11 33 5,567

Fenpropimorph ERG2 26 56

Geldanamycin HSP90 69 5,731

Hydrochloric Acid END7 14 17

Hydroxyurea SGS1 13 406

Latrunculin A END7 13 56

Latrunculin A PSL7 85 125

Methotrexate DFR1 1 4

Radicicol TOP3 79 961

Rapamycin STT1 96 853

Rapamycin TOR2 2 3

Rapamycin LST8 4 30

Triclosan OAR1 62 224

https://doi.org/10.1371/journal.pcbi.1005553.t001
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Fig 4. Comparison of GIT with other scoring methods in terms of nAUCt in HOP assays on three

chemical genomic screens. The y-axis shows the number of compound-target interactions identified in the

top k genes, where k is shown on the x-axis.

https://doi.org/10.1371/journal.pcbi.1005553.g004
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Finally, we examined whether using the physical interaction network enables good target

identification performance in HOP assays. We used Eqs 4 and 5 to calculate the GITHOP-score

(PI) based on the obtained physical interaction network, where gij is the edge weight between

gene i and gene j in the physical interaction network. We compared the GITHOP-score(PI)

with the GITHOP-score in HOP assays (S4 Fig). Similar to our observation in HIP assays, we

found that using the genetic interaction network has an overall better performance than using

the physical interaction network in HOP assays.

Combining the HIP assay with the HOP assay further improves target

identification

Since the HIP assay and the HOP assay are inherently different, we then studied whether these

two assays can be combined for improving target identification. We noticed that either using

the GITHIP-score from the HIP assay or using the GITHOP-score from the HOP assay identifies

compound-target interactions that are not identified by the other (S5 Fig). For example, in the

Hoepfner et al. 2014 screen, the GITHOP-score identifies 11 compound-target interactions that

are not discovered by the GITHIP-score. Since the HIP assay and the HOP assay are comple-

mentary, we sought to combine them in order to further enhance the target identification

performance.

We proposed a combined scoring method which takes the average of the z-score by the

GITHIP-score from the HIP assay and the z-score by the GITHOP-score from the HOP assay.

Averaging these two scores can be viewed as boosting two weaker scoring methods to create a

more robust and better scoring method. We denote this score as the GIT-score. Since Lee et al.

2014 only measures the FD-scores of the heterozygous strains of essential genes and the homo-

zygous strains of nonessential genes, there is no overlapping genes between the HIP assay and

the HOP assay in this screen. Therefore, we evaluated the GIT-score on the other two chemical

genomic screens. We observed that the combined GIT-score is substantially better than both

the GITHIP-score and the GITHOP-score (Fig 5). For example, the GIT-score achieves 1.802

nAUCt, which is much higher than 1.284 nAUCt of the GITHOP-score and 1.000 nAUCt of the

GITHIP-score on the Hoepfner et al. 2014 screen.

Statistical assessment of using genetic interaction network in GIT

Since drug targets are likely to be enriched with high-degree nodes in the network [42], the

improvement of GIT may be caused by its ability to prioritize these high-degree nodes instead

Table 2. Top compound-target interactions identified by GIT in HOP assays. We listed examples of compound-target interactions that are ranked higher

by the GITHOP-score than by the FD-score. We showed compound-target interactions that are identified in the top 100 genes by the GITHOP-score.

Compound Target Rank by the GITHOP-score Rank by the FD-score

Caffeine TOR1 4 111

Camptothecin RAD51 39 349

Fenpropimorph ERG11 27 2,414

Fluconazole ERG11 85 2,412

Hydrochloric Acid GET3 79 278

Hydroxyurea RAD51 20 1,751

Hydroxyurea RAD52 82 1,396

Nocodazole YOR29-09 62 393

Nocodazole KAR9 26 256

Sphingosine YSR2 2 1,981

Staurosporin STT1 11 2,261

https://doi.org/10.1371/journal.pcbi.1005553.t002
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Fig 5. Comparison of GIT with other scoring methods in terms of nAUCt on two chemical genomic

screens. The y-axis shows the number of compound-target interactions identified in the top k genes, where k

is shown on the x-axis. The GITHIP-score is calculated by using the FD-score from the HIP assay. The

GITHOP-score is calculated by using the FD-score from the HOP assay. To calculate nAUCt, we divided the

AUC of each method by the AUC of the GITHIP-score.

https://doi.org/10.1371/journal.pcbi.1005553.g005
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of utilizing neighboring gene’s FD-scores. We then examined whether the improvement of

GIT comes from prioritizing high degree nodes. We first constructed a large set of random

networks according to the following procedure. For each node, we replaced each of its neigh-

bors to another random node in the network while keeping the same edge weight and sign.

Hence, each node in the new random networks has the same number of positive weighted

neighbors and negative weighted neighbors as in the original genetic interaction network. We

then used these networks to calculate the GIT-score, where gij is the edge weight between gene

i and gene j. We calculated an empirical p-value according to the number of random networks

that have better performance than the genetic interaction network when used to identify tar-

gets. Since each node in the new random networks have the same degree as it does in the origi-

nal genetic interaction network, this empirical p-value tests whether the improvement of GIT

is achieved by identifying high-degree nodes. We obtained significant empirical p-values on

both screens (empirical p-value< 0.009 on Hoepfner et al. 2014; empirical p-value< 0.018 on

Hillenmeyer et al. 2008). Therefore, we found that GIT on these random networks is signifi-

cantly worse compared to GIT on the original GI network. This demonstrates that the

improvement comes from correcting each gene’s FD-score with its neighbors’ FD-scores

rather than the network topology only.

GIT elucidates established mechanism of action of compound

To understand how GIT achieves the substantial improvement, we studied how GIT-score

elucidates the compound’s MoA. We examined caffeine, which is a distinct, small molecular

inhibitor of TOR complex [43, 44]. We analyzed GIT’s performance based on the Hoepfner

et al. 2014 chemical genomic screen, which is the most recent screen among all three screens.

We first noticed that the FD-scores of TOR1 in the HIP assay and the HOP assay are 0.079

and -1.827 in the presence of caffeine, respectively. Consequently, the FD-score fails to iden-

tify TOR1 as the very top target candidate. In contrast, our GIT-score successfully identifies

TOR1 as the target of caffeine, mainly due to the high FD-scores of its positive genetic inter-

action neighbors SAC7 and UGP. The high FD-scores of SAC7 (1.75) and UGP (2.38) indi-

cate that their positive genetic interaction neighbor TOR1 is inhibited by caffeine. Moreover,

most of TOR1’s negative genetic interaction neighbors have substantially low FD-scores (e.g.,

GTR1 has -4.52 FD-score). We show the genetic interaction neighbors of TOR1 in Fig 6. We

can see that TOR1’s negative genetic interaction neighbors have low FD-scores, whereas its

positive genetic interaction neighbors have high FD-scores. Even though TOR1 does not

have a substantially low FD-score, GIT still accurately identifies TOR1 as the target of caf-

feine by correcting TOR1’s FD-score according to its genetic interaction neighbors’ FD-

scores.

Notably, the GIT-score also identifies TOR2 as a target of caffeine. Although the GIT-score

ranks TOR2 lower than TOR1, it ranks TOR2 higher than the FD-score does. We noticed that

it is difficult to identify TOR2 only according to one-hop genetic interaction neighbors’ FD-

scores. Both TOR1 and AVO1 have close to zero FD-scores. GTR1 has a substantially low FD-

score, but the genetic interaction edge weight between GTR1 and TOR2 is much lower than

the one between GTR1 and TOR1. Nevertheless, the GIT-score still identifies TOR2 as a target

of caffeine through the GIT1st-scores of TOR2’s genetic interaction neighbors (e.g, GTR1,

TOR1 and AVO1).

Fig 6 not only elucidates how the GIT-score identifies the targets of caffeine, but also reveals

the underlying MoA of caffeine. We can see that there are three major functional complexes

that interact with caffeine. Both the TOR1 complex and the TOR2 complex are established cel-

lular components that are affected by caffeine [43, 44]. GSE complex, along with PIB2 and
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YCL062W, are all associated with vacuolar membranes which play important roles in the

TOR2 complex [45].

GIT discovers novel compound-target interactions

We then investigated whether those novel compound-target interactions that are discovered

by the GIT-score can be supported by existing literature. The output of GIT is a score for each

compound-gene pairs. The top ranking genes are the potential targets of each drug. According

to the average number of targets of each compound, we proposed to use an empirical p-value

0.001 as the cut-off values of significant compound-target interactions. Here, for each com-

pound, we examined the top five genes that were predicted to be potential targets by the GIT-

score. We listed the novel compound-target interactions that are supported by literature in

Table 3. To show the advantage of using the genetic interaction network, we only listed targets

that cannot be identified by the FD-score. For example, the GIT-score successfully identifies

the interaction between 5-fluorouracil and SSF1. This interaction is verified by a haploid yeast

knockout strains screen [46]. In contrast to the FD-score which fails to identify SSF1, the GIT-

Table 3. Novel compound-target interactions identified by GIT. We listed compound-target interactions that are identified by the GIT-score but are cur-

rently not in any curated database. All these interactions are supported by literature. For each identified targets, we also listed its positive genetic interaction

neighbors that have high FD-scores and its negative genetic interaction neighbors that have low FD-scores.

Compound Target PMID Positive neighbors Negative neighbors

5-fluorouracil SSF1 18314501 YLR407W, TSL26 RRP6, YMR268W-A

Bafilomycin A1 DOR1 22470510 RPP1A, RTT103 SYS1, DLP2

Caffeine SLT26 16729036, 16738548 HUR1, MRM2 SWM2, SFB2

Camptothecin POL32 21179023 VPS39, BTS1, RPL13A YCL060C, XRS1, RTT110

Curcumin SEC37 21908599 SPB8, SCS1 DLP2, GET3

https://doi.org/10.1371/journal.pcbi.1005553.t003

Fig 6. GIT elucidates MoA of caffeine. Green lines indicate positive genetic interactions. Red lines indicate

negative genetic interactions. Red nodes (e.g., GTR1) are genes with low FD-scores in the HIP assay and the

HOP assay. Green nodes (e.g., SAC7) are genes with high FD-scores in the HIP assay and the HOP assay.

TOR1 and TOR2 are established targets of caffeine. The GIT-score successfully identifies their interactions

with caffeine by using neighboring genes’ FD-scores. TOR1 complex, TOR2 complex, and GSE complex are

identified as crucial cellular components that interact with caffeine.

https://doi.org/10.1371/journal.pcbi.1005553.g006
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score identifies this interaction according to the high FD-scores of SSF1’s positive genetic

interaction neighbors (YLR407W, TSL26) and the low FD-scores of SSF1’s negative genetic

interaction neighbors (RRP6, YMR268W-A). The GIT-score also identifies POL32 as the tar-

get of camptothecin, which is verified by a recent cross-species chemical genomics profiling

[47]. Again, the FD-score of POL32 in the presence of camptothecin is not significantly low

(-0.38 in the HIP assay and -1.38 in the HOP assay). The GIT-score identifies POL32’s interac-

tion with camptothecin through the high FD-scores of its positive genetic interaction neigh-

bors (VPS39, BTS1 and RPL13A) and the low FD-scores of its negative genetic interaction

neighbors (YCL060C, XRS1 and RTT110).

GIT groups genes into co-functional gene complexes

In addition to understanding of compound’s MoA, we studied whether the GIT-score can be

used to identify co-functional gene complexes. We used k-means to cluster yeast genes into

100 different clusters based on their GIT-scores in the presence of different compounds. For

each cluster, we used Fisher’s exact test to test whether it was enriched with the annotated

genes of at least one Gene Ontology term. We obtained Gene Ontology annotations from Bio-

GRID V3.4 [41]. We compared the clustering performance of using the GIT-score with using

the FD-score from the HIP assay and using the FD-score from the HOP assay on three Gene

Ontology categories in Fig 7 and S6 Fig. We can see that the GIT-score discovers more estab-

lished complexes than the FD-score. For example, 93 of the 100 clusters identified by the GIT-

score are significantly enriched with at least one cellular component function by using a false

discovery rate of 0.005. In contrast, the FD-score from the HOP(HIP) assay only identifies 75

(65) clusters that are significantly enriched with at least one cellular component function. In

Fig 7. GIT identifies co-functional gene complexes. The y-axis shows the number of co-functional gene complexes that can be identified by the

GIT-score, the FD-score from the HIP assay, and the FD-score from the HOP assay by using false discovery rate r, where r is shown in the x-axis. (A)

shows the biological process category. (B) shows the cellular component category.

https://doi.org/10.1371/journal.pcbi.1005553.g007
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addition, the GIT-score also exclusively identifies many important cellular component com-

plexes such as pore complex, chromosome, centromeric region, and microtubule.

Discussion

Here we have reported the discovery that, through the use of prior knowledge captured in the

genetic interaction network, compound-target interactions can be identified more accurately

on chemical genomic screens. Our method identifies many compound-target interactions that

comprise existing curated database as well as novel compound-target interactions that are sup-

ported by literature evidence. Due to its ability in modeling the genetic interaction among

genes, we can better understand the mechanism of action of compounds, which may provide

new insight into drug discovery and drug repositioning. Historically, genetic interaction pro-

files have been integrated with chemical genomic screens to identify compound-target interac-

tions via the Pearson correlation coefficient [23] due to the inherent similarity between genetic

perturbation and chemical perturbation. Our study is different from these previous works in

that different local network topology features are taken into consideration in HIP and HOP

assays. To the best of our knowledge, this is the first time that HIP and HOP assays are used

differently to decipher compound-target interactions.

One might consider at least three potential reasons for the good performance of GIT. First,

existing high-throughput chemical genomic screens might be noisy. GIT is more robust to the

noise by using genetic interaction neighbors’ FD-scores to assist the inference of drug targets.

Second, HOP assay and HIP assay are fundamentally different biological assays, thus prioritiz-

ing different sets of genes. We use direct neighbors’ FD-scores to identify compound-target

interactions in the HIP assay, whereas we consider two-hop neighbors’ FD-scores to capture

the drug target pathway buffer effect in the HOP assay. Moreover, combining predictions

from the HIP assay and the HOP assay further makes GIT more robust. Finally, the genetic

interaction network reflects the consequence of perturbing gene function and uncovers

broader relationships between diverse functional modules, thus provides functional informa-

tion that is largely invisible to physical interactions.

One interesting observation is that GIT achieves a substantial improvement in comparison

to the ρ-score. Both the ρ-score and the GIT-score use genetic interactions to assist target

identification. However, the ρ-score prioritizes genes according to the Pearson correlation

between one gene’s chemical genomic profile and its genetic interaction profile. Consequently,

it is sensitive to the noise in SGA and chemical genomic screens. In contrast, GIT scores a

gene according to the dot product between its neighbors’ FD scores and their genetic interac-

tion edge weights, making it more robust to the noise. More importantly, in HOP assays,

unlike the ρ-score which only considers one gene’s one-hop genetic interaction neighbors, we

also consider its two-hop genetic interaction neighbors. Our observation that the GITHOP-

score (two-hop) has much better performance than the GITHIP-score (one-hop) and the ρ-

score (one-hop) in HOP assays demonstrates the promising of considering two-hop genetic

interaction neighbors in the HOP assay.

Finally, we see many opportunities to improve upon the basic concept of GIT in future

work. First, although the current GIT framework is developed in an unsupervised fashion,

the GIT-score can be used as the feature and plugged into off-the-shelf machine learning

classifier for compound target identification on chemical genomic screens. Second,

although this study focused on yeast chemical genomic assays, the GIT method is broadly

applicable to any drug perturbation screens on other species [48]. Finally, current genetic

interaction network is still noisy, whereas GIT can be potentially used to predict the genetic

interaction given the compound-target interaction. For example, one gene with a low FD-

Network-assisted target identification

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005553 June 2, 2017 17 / 21

https://doi.org/10.1371/journal.pcbi.1005553


score might have a negative genetic interaction with the drug target. In comparison to

model organisms such as yeast and worm, high-throughput measuring genetic interactions

in human is inherently difficult due to the lower efficiency of genetic engineering and the

absence of resources like the yeast knockout collection. With available large-scale drug per-

turbation screens [48] in human, GIT offers the intriguing opportunity to explore genetic

interactions in human.

Supporting information

S1 Fig. Comparison of GIT with other scoring methods in terms of nAUCd in HIP assays

on three chemical genomic screens. The y-axis shows the number of compounds, at least one

target of which can be identified in the top k genes, where k is shown on the x-axis.

(EPS)

S2 Fig. A,C,E are the comparison of GIT with other scoring methods in terms of nAUCt in

HIP assays on three chemical genomic screens. B,D,F are the comparison of GIT with other

scoring methods in terms of nAUCd in HIP assays on three chemical genomic screens. The

GITHOP-score is calculated by applying Eq 5 to HIP assay. The GITHIP-score(PI) is calculated

based on the physical interaction network instead of the genetic interaction network.

(EPS)

S3 Fig. Comparison of GIT with other scoring methods in terms of nAUCd in HOP assays

on three chemical genomic screens. The y-axis shows the number of compounds, at least one

target of which can be identified in the top k genes, where k is shown on the x-axis.

(EPS)

S4 Fig. A,C,E are the comparison of GIT with other scoring methods in terms of nAUCt in

HOP assays on three chemical genomic screens. B,D,F are the comparison of GIT with other

scoring methods in terms of nAUCd in HOP assays on three chemical genomic screens. The

GITHIP-score is calculated by applying Eq 3 to HOP assay. The GITHOP-score(PI) is calculated

based on the physical interaction network instead of the genetic interaction network.

(EPS)

S5 Fig. Venn diagrams show the overlap between the identified interactions by using the

GITHIP-score in the HIP assay and the identified interactions by using the GITHOP-score

in the HOP assay on (A) Hoepfner et al. 2014 and (B) Hillenmeyer et al. 2008, respectively.

(EPS)

S6 Fig. GIT identifies co-functional gene complexes in molecular function category. The y-

axis shows the number of co-functional gene complexes that can be identified by the GIT-

score, the FD-score from the HIP assay, and the FD-score from the HOP assay by using false

discovery rate r, where r is shown in the x-axis.

(EPS)

S7 Fig. The robustness of the result on different q values on three chemical genomics

screens. The y-axis is the nAUCt. The x-axis is different q values. We show the nAUCt of

GITHIP-score by using different q values.

(EPS)

S8 Fig. The results of using k-hop neighbors where k is ranged from 1 to 10. The y-axis is

the nAUCt. The x-axis is different k values. We show the nAUCt of GITHOP-score by using dif-

ferent k values. We found that k = 2 has the best overall performance on HOP assays. When
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k is larger, the performance becomes worse due to the increasing noise from long distance

neighbors in the genetic interaction network.

(EPS)
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