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Little is known about how dopamine (DA) neuron firing rates
behave in cognitively demanding decision-making tasks. Here, we
investigated midbrain DA activity in monkeys performing a discrim-
ination task in which the animal had to use working memory (WM)
to report which of two sequentially applied vibrotactile stimuli had
the higher frequency. We found that perception was altered by an
internal bias, likely generated by deterioration of the representa-
tion of the first frequency during the WM period. This bias greatly
controlled the DA phasic response during the two stimulation peri-
ods, confirming that DA reward prediction errors reflected stimulus
perception. In contrast, tonic dopamine activity during WM was
not affected by the bias and did not encode the stored frequency.
More interestingly, both delay-period activity and phasic responses
before the second stimulus negatively correlated with reaction
times of the animals after the trial start cue and thus represented
motivated behavior on a trial-by-trial basis. During WM, this moti-
vation signal underwent a ramp-like increase. At the same time,
motivation positively correlated with accuracy, especially in diffi-
cult trials, probably by decreasing the effect of the bias. Overall,
our results indicate that DA activity, in addition to encoding reward
prediction errors, could at the same time be involved in motivation
andWM. In particular, the ramping activity during the delay period
suggests a possible DA role in stabilizing sustained cortical activity,
hypothetically by increasing the gain communicated to prefrontal
neurons in a motivation-dependent way.
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Dopamine (DA) neurons in midbrain areas play a crucial role
in reward processing and learning (1). Multiple studies have

demonstrated that, in simple conditioning paradigms, phasic
bursts in the DA firing encode the discrepancy between the
expected and actual reward—the reward prediction error (RPE)
(1, 2). Recent work has shown that stimulation uncertainty affects
the phasic responses of midbrain DA neurons to relevant cues
during perceptual decision-making tasks. It was observed that
those responses were influenced by cortical information process-
ing such as stimulus detection (3) and evidence accumulation (4).
Importantly, under uncertain conditions, phasic DA responses
contain information about the animal’s understanding of the envi-
ronment [its “belief state” (5–10)] and depend on the level of
uncertainty that the animal has on its choice (3, 5, 6). While the
influence of uncertainty in DA response had been, for long, over-
looked, it was shown that the responses do not contradict the pre-
vailing model for DA response, the RPE hypothesis (5, 6), but
represent extensions of this model.

Although these studies on uncertainty represent substantial
progress toward understanding how DA neurons respond, little

is known about phasic and tonic (fast and slow fluctuations)
DA signaling in decision-making tasks more cognitively
demanding than simple stimulus detection or evidence accumu-
lation. It is known that DA plays other roles beyond represent-
ing RPE (11). For example, in tasks involving working memory
(WM), manipulations of the DA system crucially affect the
behavioral performance and alter the activity of cortical areas
implicated in WM such as the prefrontal cortex (12). Also, DA
firing rate can reflect the motivation to work for reward (13).
However, how these purported functions could affect decision-
making tasks was not investigated.

The vibrotactile frequency discrimination task (14) facilitates
deeper investigation into these issues. In this task, monkeys
have to discriminate between two randomly selected vibrotac-
tile stimulus frequencies, which are individually paired for each
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trial and separated by 3 s (the delay; Fig. 1A). Importantly, the
monkeys have to maintain a trace of the first stimulus (f1) dur-
ing the delay period for comparison against the second stimulus
(f2) to reach a decision: f1 is greater than f2 (f1 > f2), or vice
versa (f1 < f2). The presence of a delay between the two stimuli
has two important implications that make this task challenging:
First, the reliance on WM, and second, the influence of prior
knowledge that makes the representation of the first stimulus
shift toward the center of its distribution, a phenomenon called
contraction bias (15).

We focused our analysis on three main points. The first is
whether and how the contraction bias affects the DA activity.
This is a question of interest because the contraction bias influ-
ences the trial difficulty in many instances of perceptual dis-
crimination in both humans and rodents (15–17). The bias
could thus influence reward expectations and, consequently,
the phasic DA responses (given that the trial difficulty deter-
mines the reward expectation, which, in turn, shapes the DA
response). Furthermore, since the bias is likely to originate
from WM (15, 18), it is reasonable to ask whether and how it
affects the DA delay-period activity.

The second is whether and how the DA activity during the
WM period was temporally modulated and/or sensitive to the
actual remembered stimulus frequency (f1). This is a question of
interest because it is known that DA neurons may be associated
with frontal area responses during WM and, during the same
task, frontal cortex neurons were tuned to the identity of f1 dur-
ing the WM delay in a time-dependent manner (14, 19, 20).
Also, although it is believed that delay-period DA has a stabiliz-
ing role in prefrontal cortex sustained activity, there is little infor-
mation about the DA firing activity during that period and the
current view is that it remains at its baseline (21, 22).

Finally, the third is whether and how animal motivation relates
to behavioral performance and to the DA time course. This is a
question of interest because DA is believed to play a major role
in motivated behavior (23) that, in turn, is expected to affect
behavioral performance. In our task, the motivational level of the
animal can be indirectly measured at the beginning of each trial
by considering the time it takes to react to the start cue signal
(reaction time, RT; Fig. 1A). Following this logic, Satoh et al. (13)
found that the phasic DA activity, besides conveying an RPE sig-
nal, strongly correlated with motivation (see also ref. 23). On the
other hand, prior claims associated tonic DA activity with convey-
ing motivation (24, 25). Despite all these observations, the rela-
tionship between motivation, performance, and DA phasic/tonic
signals has been poorly investigated in decision-making tasks.

We found that the DA activity simultaneously coded reward
prediction and motivation. Phasic responses to the stimuli
reflected the contraction bias in a way consistent with the RPE
hypothesis. The activity during the WM period, although insensi-
tive to the actual remembered stimulus, remained constantly
above baseline and positively correlated with motivation (as mea-
sured by the RT). Similar positive correlations with motivation
were found in the phasic responses to the starting cue and the first
stimulus. At a behavioral level, higher motivation was indicative of
improved performance, an effect that in our model-based analysis
derived from a more accurate memory of the first stimulus.

Overall, our study shows that, in addition to encoding bias-
modulated RPEs, the signal carried by the firing of DA neurons
relates to motivation and might potentially play an important
role in WM.

Results
Contraction Bias and Motivation Shape Behavioral Performance.
Monkeys were trained to discriminate between two vibrotactile
stimuli with frequencies within the flutter range (Fig. 1A). Each
stimulus pair (f1, f2; class) consisted of a large, unambiguous

difference (8 Hz in most classes; Fig. 1B). In Fig. 1B, we show
that performance for each class was only partially predictable
from the absolute value Δf = j f1 � f2 j. The contraction bias
could explain this disparity, since the decision accuracy depended
on the specific stimuli that were paired. This internal process
shifts the perceived frequency of the base stimulus f1 toward the
center of the stimulus frequency range (< f1 >= 21.5 Hz; Fig.
1C). As such, if f1 has a low stimulus value (i.e., 10 Hz), it will be
perceived as larger, while a large frequency for f1 is perceived as
smaller. Therefore, correct evaluations for classes with f1 < f2 are
increasingly obfuscated by the bias’s effect as classes are visited
from right to left (upper diagonal, Fig. 1 B and C), while classes
with f1 > f2 are increasingly facilitated by the bias (lower diagonal,
Fig. 1 B and C). To preserve this bias structure, we labeled classes
with beneficial bias effects as closer to the extreme ends, and clas-
ses with hindrance from the bias as the center classes (Fig. 1C). In
this class organization, decision accuracy was highest for the clas-
ses near the two ends (bias benefit) and, when plotted as a func-
tion of class number, the resulting curve was U-shaped (Fig. 1D).

To determine whether the motivation of the animals affected
their behavioral performance, we analyzed the influence of RT
on accuracy. First, we classified trials according to RT into two
groups (short and long; SI Appendix) and observed that, in both
conditions, the distribution of trials as a function of class num-
ber was not significantly different from the uniform distribution
(Fig. 1E; chi-squared test, P = 0.46). This result confirmed that,
at the beginning of the trial, the animal had no clue about the
upcoming class and thus that the RT can be considered as a
behavioral measure of motivation independent of the difficulty.

Since motivation can affect perception (26), we next consid-
ered how the RT was related to accuracy. We observed that
accuracy for long RT was lower than for short RT (Fisher’s
exact test, P = 0.036). As a function of class number (Fig. 1 F,
Left), in both short- and long-RT trials, the accuracy decreased
for classes disfavored by the bias (classes 4 to 9; Fig. 1C, pur-
ple). Furthermore, in those same classes, the performance was
significantly better for short-RT trials (Fig. 1 F, Right; Fisher’s
exact test, P = 0.003); on the contrary, differences in accuracy
did not reach a significant level (Fisher’s exact test, P = 0.88) in
classes that were favored by the bias (classes 1 to 3 and 10 to
12; Fig. 1C, pink). Finally, we compared the RT in correct and
error trials (Fig. 1G) and observed that the RTwas significantly
shorter in correct trials (t test, P = 0.009).

All the above results indicated that the motivation had a
clear and significant effect on the performance of the animal: It
correlated with the trial outcome and significantly improved the
accuracy in difficult trials (those corresponding to classes disfa-
vored by the bias).

DA Responses Reflect the Contraction Bias. We recorded single-
unit activity from 22 putative midbrain DA neurons while
trained monkeys performed the discrimination task. They were
identified based on previous electrophysiological criteria (27):
regular and low tonic firing rates (mean ± SD: 4.7 ± 1.4 spikes
per second), a long extracellular spike potential (2.4 ± 0.4 ms),
positive activation to reward delivery in correct (rewarded) tri-
als, and with a pause in error (unrewarded) trials (28).

We found that the majority of neurons (16 out of 22, 72% of
the population) showed a significant, positive modulation to at
least one of the two stimuli (SI Appendix). We therefore ana-
lyzed how the DA neurons responded during the stimulation
period. It is known that, in frontal lobe neurons, the animal’s
decision is observable during the comparison period [i.e., dur-
ing the presentation of f2 (20)]. We hypothesized that if DA
neurons receive information from the frontal lobe, their
responses to f2 should reflect the contraction bias’s effect. As a
result, neurons showed significant dependence on stimulus clas-
ses (one-way ANOVA, P = 0.0013; Fig. 2A). The U-shaped
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modulation in the response distributions can be explained by a
pair of arguments: First, the bias induced a difficulty that
affected belief states. Second, as an RPE signal, the DA
response to f2 coded the change in reward expectation pro-
duced by the application of the comparison frequency, which is
higher for classes facilitated by the bias (Fig. 2A). A reinforce-
ment learning model based on belief states supports this inter-
pretation (SI Appendix, Fig. S1A). Similar effects of belief states
on responses to reward-predicting stimuli were observed in
other experiments (4–6). However, in those studies, the trial
difficulty was controlled by experimental design while it was
determined by a perceptual bias in our task.

Next, we wondered whether the same bias effect was observ-
able during f1. By design, each f1 value is the same for two classes
(f1 > f2 or f1 < f2), where one class is favored by the bias and the
other is disfavored (Fig. 1D). However, as the animal had no clue
about the upcoming class during the presentation of the first
stimulus, it is reasonable to study the monkeys’ performance and
DA responses based on the f1 value only. We observed that the
decision accuracy was lowest for the extremum f1 intensities (Fig.
2 B, Right). As we would expect, the phasic DA response to f1
showed a similar modulation (Fig. 2B), although this effect did

not reach statistical significance (one-way ANOVA, P = 0.279).
Nonetheless, DA responses for the middle values of our stimulus
range (18 and 24 Hz) were significantly greater than those
produced after the application of extreme values of the stimulus
range (i.e., for 10 and 34 Hz; two-sample one-tailed t test,
P = 0.039).

These results show that DA responses did not encode physi-
cal properties of the stimuli. Instead, they coded reward expect-
ations as induced by the contraction bias.

A Bayesian Model Replicates the Contraction Bias and Animal
Accuracy. We reasoned that the contraction bias could influence
the animal’s difficulty with a class, similar to how the stimulus
physical features do (see, e.g., ref. 29). To analyze this issue, we
used a Bayesian approach in which observation probabilities
were combined with prior knowledge to obtain a posterior
probability or belief about the state of the stimuli (16, 18, 30,
31) (Fig. 3A). The prior probabilities of f1 and f2 were assumed
to be discrete and uniform, and we supposed that animals only
perceived noisy representations of the two stimuli (Fig. 3A).
Observations of f1 and f2 were obtained from Gaussian distribu-
tions at the end of the delay period, with respective SDs σ1 and
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Fig. 1. Discrimination task and contraction bias. (A) Schematic of the task design. The trial begins with the lowering of the mechanical stimulation probe
(probe down). The monkey reacted by placing its free hand on an immovable key (key down). The time interval between these two events is known as
the reaction time (RT, underlined in red). After a variable period (1.5 to 3 s), the probe oscillated for 0.5 s at the base (f1) frequency. A 3-s delay after the
first stimulus constitutes the working memory (WM) period. The delay is followed by the presentation of the second stimulus (f2, also the “comparison
period”). The offset of f2 signals the monkey to report his decision by pressing one of the two push buttons (PBs) to indicate whether the comparison fre-
quency was higher or lower than the base frequency. After that, the animal was rewarded for correct discriminations, or received a few seconds of delay
for incorrect discriminations. (B) Stimulus set composed of frequency pairs (f1, f2) used in the task. Frequency values for f1 are on the x axis, while values
for f2 are on the y axis. The diagonal dashed line represents stimulus equivalence (f1 = f2). The box colors indicate the percentage of correct trials, while
the numbers above or below each box indicate the absolute magnitude difference (Δf) for each class. Red is for the highest correct percentages, and blue
is for the lowest. (C) The upper line (green) depicts the contraction bias effect, where the base stimulus is perceived as closer to the mean value of the
first frequency (<f1>). The solid, vertical black line marks this center value. Numbers label classes, with the diagonal line marking stimulus equivalence
(black, dashed). The upper diagonal (f1 < f2) has bias benefit (pink squares) above the range center, and bias obstruction (purple squares) is below the
range center. The lower diagonal (f1 > f2) has bias benefit below the range center (pink), and bias obstruction above the range center (purple). (D) The
numbered classes (x axis) from C by performance percentage (% of correct responses), representing the color values used in B. Pink and purple circles rep-
resent classes with bias benefit and bias obstruction, respectively. Error bars (in black) represent SDs and were obtained by computing the performance
1,000 times, resampling with replacement from the original data. (E) Percentage of trials belonging to each class number for short-RT trials (RT < median)
and long-RT trials (RT > median) (black and gray circles and lines, respectively). The orange line and crosses represent the percentage of trials in each class
when all trials are considered. (F, Left) Percentage of correct trials, as a function of class number, for short and long RT (dark and light blue circles and
lines, respectively). Error bars are computed as in D. (F, Right) Differences in the percentage of correct trials between long- and short-RT trials in easy and
difficult classes (respectively, pink and purple circles and bars). (G) Mean RT in correct (blue) and error (red) trials. Error bars represent the SE.
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σ2 as noise parameters. Decisions were made using the belief
about the state f1 > f2 and the maximum a posteriori (MAP)
decision rule. The noise parameters were adjusted to optimize
the similarity between the Bayesian model and the animal’s
performance (Fig. 3B; see SI Appendix for model and parame-
ter fitting). The best fit yielded σ2 = 3.2 Hz and σ1 = 5.50 Hz
(Fig. 3B), so the noise parameter for f1 was greater than that
for f2; from this, we intuited that the representation of f1 deteri-
orated over the WM period. When this happens, the Bayesian
model produces a contraction bias because the inferred value
of f1 is noisier than that of f2, and the inferred value of f1 relies
more heavily on its prior distribution (16).

We then used the fitted Bayesian behavioral model to simu-
late the discrimination task and to evaluate the difficulty for

each trial. Difficulty was defined as the decision uncertainty
(i.e., the complement of confidence, as defined statistically)
(29), given by the probability that the choice made by the
model was not correct (Fig. 3C). Also, the difficulty associated
with a class was defined as its average over many simulated tri-
als in that class. In correct trials, class difficulty versus class
number was an inverted U (Fig. 3D, blue line), increasing/
decreasing as the bias was less/more favorable to making a cor-
rect choice. Comparing the results between correct and error
trials, the model had the opposite class difficulty pattern when
it erred (Fig. 3D, red line).

To summarize: A simple encoding model replicated the con-
traction bias. According to the model the bias appears because
the memory of the first stimulus deteriorates through the delay
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period. This mechanism eventually degrades the performance
in a nontrivial way (Figs. 1D and 3B). An important conse-
quence of these results is that, in our task, class difficulty is
mainly modulated by an internally generated process, and not
by the physical properties of the stimuli.

Motivation Improved Perceptual Precision. We have previously
noticed that the performance was better in short-RT trials,
especially in classes negatively affected by the bias (Fig. 1F).
We thus explored how this performance enhancement arose in
the Bayesian framework by fitting the model parameters to
both trial groups independently (SI Appendix, Fig. S2). We
observed that the noise parameter σ1 (emulating the uncer-
tainty in the representation of the memorized frequency f1) was
smaller in the short-RT condition (t test, P < 0.001). A smaller
σ1 decreases the contribution of the prior distribution to the
posterior of f1, resulting in a weaker contraction bias.

Thus, in short-RT trials, the performance improved in classes
disfavored by the bias. Instead, in classes favored by the bias,
the reduction of the uncertainty parameter had almost no
effect, because the discrimination is already very easy.

Difficulty Shapes DA Responses during Decision Formation. To
study the influence of class difficulty on DA activity, we consid-
ered correct trials and subdivided the stimulus set (12 classes)
into two groups: a low-difficulty group (classes 1 to 3 and 10 to
12; Fig. 1C, pink) and a high-difficulty group (classes 4 to 9;
Fig. 1C, purple). During presentation of f1, the normalized
activity (z score) showed a tendency to be higher in the low-
difficulty group (Fig. 4 A, Left); however, this tendency was not
found to be significant (P = 0.17, two-tailed t test; SI Appendix).
Importantly, the difference became significant during the pre-
sentation of f2 (Fig. 4 A, Center; two-tailed t test, P < 0.001; SI
Appendix). We obtained a response latency of 245 ms for the
time it took the two difficulty groups to significantly diverge in
responses after f2 onset (area under the receiver operating
characteristic curve [AUROC], P < 0.05; sliding 250-ms win-
dow, 10-ms steps; SI Appendix). Dependence on class difficulty
during decision formation is similar to the dependence on
choice confidence as reported in previous work (5, 6). Interest-
ingly, the activity after delivery of reward was invariant to the
difficulty level, having the same peak response for both class
groups (Fig. 4 A, Right).

The Bayesian model predicted higher uncertainty for error tri-
als (Fig. 3D), so we studied the phasic activity, sorting trials by
decision outcome (correct vs. incorrect). Responses to f1 did not
vary based on outcome (Fig. 4 B, Left), but the responses did
vary during the comparison stimulus. The temporal profiles for
each outcome, analogous to the difficulty groups, separated with
an approximate latency value of 205 ms (Fig. 4 B, Center). This
time lag in DA signals is comparable to those found in the sec-
ondary somatosensory cortex (32, 33) and frontal areas during
the same task (20, 34). Similarities in latency between the frontal
lobe and DA neurons were also found during a tactile detection
task (35).

At the point of reward delivery, the phasic DA activity
increased in correct trials but decreased for error trials (Fig. 4 B,
Right). This temporal pattern is consistent with that predicted by
the RPE hypothesis. The latency of divergence of these two
response profiles (AUROC, P < 0.05; SI Appendix) was shorter
than those after f2 onset (∼130 ms). Further, we asked whether a
reinforcement learning model based on belief states could emu-
late the DA responses. The model reproduced the phasic
responses observed in Fig. 4 well (SI Appendix, Fig. S1 B and C).

These results show that DA responses are compatible with
RPEs. Furthermore, during the second stimulus, these
responses reflect difficulty, as defined by the uncertainty in our
Bayesian model (Fig. 3D).

DA Ramps Up during the Delay Period without Coding f1. Because
during the WM period, neurons in frontal areas exhibit a tem-
porally modulated sustained activity, tuned parametrically to f1
(14, 19, 20), we investigated how DA neurons behave during
the same period. Is their activity modulated and tuned to f1?
Fig. 5 A, Left shows the normalized activity (SI Appendix) of an
example neuron with significantly increased activity through the
entire WM period. When we sorted the firing rates by f1 values,
we saw a clear ramping in activity across the delay period in all
six curves (Fig. 5 A, Center). However, the temporal profiles are
not modulated by the f1 values. To further verify the absence of
tuning, we averaged the entire delay activity for each f1 value
(Fig. 5 A, Right), and found that this neuron did not exhibit
significant differences across f1 (one-way ANOVA, P = 0.76).
Fig. 5 B, Left shows another example neuron. Its activity exhib-
ited absolutely no temporal modulation during WM, remaining
closer to its baseline value (Fig. 5 B, Left). The absence of
ramping persisted when we expanded the observations to
differentiate between responses to each f1 stimulus (Fig. 5 B,
Center). Further, neither the temporal profile nor the averaged
activity during WM (Fig. 5 B, Right) was modulated based on f1
(one-way ANOVA, P = 0.64).

At the population level, we found that neurons responded to
f1 by increasing their firing rate (one-tailed Wilcoxon signed-
rank test, P < 0.001; Fig. 5C) in a way that was not tuned to the
value of the frequency. Furthermore, dividing the WM period
into three segments (Fig. 5C; black horizontal bars indicate in
the delay period), we observed positively and significantly mod-
ulated activity in all of them when compared with a segment
before the presentation of f1 (Fig. 5C, pink bar; one-tailed Wil-
coxon signed-rank test, P = 0.012, P < 0.001, and P < 0.01,
respectively). The average population activity exhibited a ramp-
ing increase during the WM period (Fig. 5D). Note, however,
that, during the last portion of the delay period, the DA signal
decreased, resembling a “bump,” possibly for the effects of
temporal uncertainty (36).

Due to the fact that frontal neurons can be monotonically
tuned to the identity of f1 during WM, we sought to confirm
that this coding did not exist within the DA population in any
time interval. A linear regression in five discrete intervals (pink
and black bars in Fig. 5 C, Top) showed no significant linear
trend (Fig. 5E). Moreover, we extended our analysis to 1 s
before f1 onset through the end of the delay period (a sliding
250-ms window with 10-ms steps). In these 4.5 s, we performed
linear and sigmoidal regressions in each window and found no
significant results for either linear or sigmoidal regression, in
any window (slope different from zero, P < 0.01, and fit with Q
> 0.05; SI Appendix). Notably, the absence of monotonic
dependence was held even during the last portion of the delay
interval. This contrasts with the f1 information recovery
observed in frontal neurons (14), a result also found in other
tactile tasks (20, 34, 37). Pure temporal ramping signals during
WM were also identified in frontal areas in this and other tac-
tile tasks (19, 38).

To exclude the existence of more general dependencies on f1
during WM (e.g., similar to those in Fig. 2), we searched for
temporal windows with significant ANOVA results (P < 0.05;
SI Appendix). We focused on the same 4.5 s and found that in
several moments during the presentation of f1 and throughout
the delay period the activity depended on f1; however, this
dependence was intermittent without exhibiting a clear or con-
sistent pattern (SI Appendix, Fig. S3 A and B). This led us to
seek temporal consistency, so we divided the entire time range
into nine discrete subintervals of 500 ms and calculated the
fraction of significant sliding windows in each (SI Appendix).
We found a consistent dependence on f1 only during the
presentation of the stimulus, where the z scores depended on
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f1 with a profile similar to the one shown in Fig. 2 B, Left (SI
Appendix, Fig. S3B).

After studying f1 in isolation, we repeated a similar analysis
to identify dependencies on the stimulus class. We imple-
mented the ANOVA test (SI Appendix, Fig. S3C) and searched
for those windows in which P < 0.05. We then calculated the
temporal consistency in discrete subintervals of 500 ms, repeat-
ing the same procedure as for f1. We found significant class-
dependent activity only during f2 stimulation, with a pattern
similar to that in Fig. 2A (SI Appendix, Fig. S3D).

Overall, despite finding some variability for single-neuron
analysis, the entire population activity showed a positive tempo-
ral modulation without carrying any information about the
remembered frequency.

Phasic DA Activity Reflected Motivation on a Trial-by-Trial Basis
Only before the Decision Formation. To understand the influence
of motivation on a trial-by-trial basis, we first classified trials
according to RT into two groups (short and long; SI Appendix)
and analyzed the time courses of DA activity using this classifi-
cation (Fig. 6A). We noticed that the phasic responses to probe
down (PD) and to f1 were higher for short-RT trials (Fig. 6 A,
Left and Middle). In contrast, both groups reached a common
peak response to the second stimulus (Fig. 6 A, Middle) and to
the reward delivery (Fig. 6 A, Right).

This analysis suggests that, prior to the presentation of f2
and to the decision formation, the phasic DA responses to the
PD and f1 coded motivation (Fig. 6A). To confirm this result,
we computed the correlation coefficient between the RTs and
the phasic DA responses. We obtained a significant negative

correlation between the DA responses to the PD and the RTs
(r = �0.07, P < 0.01 with permutation test; Fig. 6 B, Left and SI
Appendix). A similar result was found when we analyzed the
correlations between the RTs and the DA activity after the first
stimulus (r = �0.05, P = 0.021 with permutation test; Fig. 6 B,
Right). In contrast, the correlations were not significant when
we considered the responses to the second stimulus and reward
delivery. Thus, the activity of DA neurons correlated with moti-
vation at the start cue signal as well as throughout the first stim-
ulation and WM periods of the task. Instead, during and after
decision formation, the signal showed no interaction with moti-
vation and reflected only the RPE that one would expect after
each choice and decision outcome.

Tonic DA Activity Increasingly Correlated with Motivation throughout
the WM Period. We finally analyzed how the DA activity varied
with the RT during the WM period. We found that for short-
RT trials, the tonic DA signal (z score) was consistently greater
than for long-RT trials. The red bar in Fig. 6A indicates periods
of significant differences between these two signals (AUROC,
P < 0.05). When we averaged the activity for the RT groups
across the whole WM period, the activity of short-RT trials was
significantly higher ([mean ± SEM] short: 0.25 ± 0.03; [mean ±
SEM] long: 0.11 ± 0.03; two-sample one-tailed t test,
P < 0.001).

Furthermore, during WM, the trial-to-trial correlations
between the DA activity and the RT were significantly negative
(r = �0.10, P ≤ 0.001 with permutation test; Fig. 6 C, Left and
SI Appendix). More interestingly, we noticed that the DA activ-
ity in short- and long-RT trials became increasingly different as
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time elapsed during the delay period, showing a higher value in
short-RT trials (Fig. 6A). To assess the significance of this
effect, we divided the delay period into nonoverlapping bins
and computed the correlations between the DA activity and the

RT in each of them (SI Appendix). We found that the correla-
tion coefficient consistently decreased, becoming significantly
negative during the last portion of the delay (Fig. 6 C, Right
and SI Appendix). To summarize: The correlations between
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motivation and DA activity were more pronounced at the end
of the WM period, while DA firing simultaneously showed a
positive temporal modulation.

Discussion
We sought to determine the activity of DA neurons recorded
while monkeys performed a cognitively demanding discrimina-
tion task. We found that phasic DA responses before the com-
parison period coded RPE and motivation, although the DA
activity during WM only coded motivation. We also observed
that a subset of DA neurons exhibited a motivation-dependent
ramping increase during the delay.

Contraction Bias and Motivation. The contraction bias affected
the task difficulty. At the end of the delay period, observations
of the first frequency have deteriorated, increasing the rele-
vance of prior knowledge, and thus modulating performance
(Fig. 1D) and DA responses (Fig. 2A). The effect of the bias
seemed somewhat countered by motivation: For short-RT trials,
the accuracy in difficult classes was improved, an effect likely
due to a weakening of the contraction bias (Fig. 1F). Recently,
Mikhael et al. (39) proposed that tonic DA controls how worth-
while it is to pay a cognitive cost that improves Bayesian

inference by increasing perceptual precision, ultimately leading
to better performances.

Motivation and DA Activity. Motivation also influenced DA activ-
ity: The phasic responses to the start cue (the PD event) and
the first vibrotactile stimulus depended on the RT, exhibiting a
larger value for faster responses. Importantly, DA responses to
those task events and the delay-period activity were negatively
correlated with the RT, suggesting that DA drives motivated
behavior on single trials, as it has been advocated in other quite
different tasks (13, 23).

Ramping Activity. An interesting result was that DA neurons
exhibited RT-dependent ramping activity during WM. This DA
signal conveys motivational information, which could be playing
relevant roles in cortical cognitive processes. Previous recordings
in midbrain DA neurons during monkeys’ performance of WM
tasks did not observe sustained activity during the delay (21, 40,
41). This discrepancy can be attributed to differences in WM and
attention requirements, as well as to task difficulty or delay dura-
tion. In the striatum, however, a ramping increase in the release
of DA has been described (23, 24, 42, 43); this signal purportedly
reflects an approaching decision report (24, 42), reward proximity
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(43, 44), possibly aiding in action invigoration as well (45). Ramp-
ing in the spiking activity of DA neurons was observed in some
experiments (44, 46) but not in others (42). Moreover, several the-
oretical explanations have been proposed for generating ramping
signals (36, 47, 48). Ramping has been associated with the pres-
ence of external cues reducing uncertainty (36). Here we observed
a ramping of DA activity in well-trained animals and in the
absence of any external feedback able to reduce temporal or sen-
sory uncertainty. The ramping DA signal appeared when an active
maintenance of task-relevant information was required and, as
such, we attribute its existence to the usage of WM.

Suggested Role of Delay-Period DA Activity. Although in our
experiment we were not able to address the implications of the
delay-period DA signal, we propose that this activity might be
related to the cognitive effort needed to upload and maintain a
percept in WM. Recent advances in the study of motivation
and cognitive control (49) indicate possible directions to inves-
tigate this issue further in future work. Cognitive control is
effortful (50, 51), involving a cost–benefit decision-making pro-
cess. A task that involves WM requires an evaluative choice:
either engaging in the task, or choosing a less demanding
option (e.g., guessing), even if it leads to a smaller reward (45).
An intriguing hypothesis relates motivation to cognitive control
modulated by dopaminergic signals to prefrontal cortex and
striatal neurons (49, 52, 53). In this scenario, DA is proposed
as a persistent-activity stabilizer, increasing the gain in target
neurons, and in turn producing an enhanced signal-to-noise
ratio and promoting WM stability (54).

Conclusions. In summary, our results underline the essential role
of midbrain DA neurons in learning, motivation, and WM
under perceptual uncertainty. In our frequency discrimination

task, phasic DA responses were affected by the contraction bias
and motivation, while delay-period activity could instead be
compatible with motivational behavior. The dependence of DA
activity on the contraction bias suggests that internally gener-
ated biases can play a role in learning. Two-interval forced-
choice tasks, such as discriminating between two temporal
intervals, exhibit the contraction bias; however, DA was not
investigated in these cases. Future study within these task para-
digms can further our understanding of DA activity in motiva-
tion, cognitive control, and WM. Altogether, our results point
to an intricate relationship between DA, perception, and WM,
as they are all modulated by the animal’s intrinsic motivation.

Materials and Methods
Monkeys were trained to report which of two vibrotactile stimuli was greater
in frequency (SI Appendix). Neuronal recordings were obtained in cortical
areas while the monkeys performed the vibrotactile frequency discrimination
task. Animals were handled in accordance with standards of the NIH and Soci-
ety for Neuroscience. All protocols were approved by the Institutional Animal
Care and Use Committee of the Instituto de Fisiolog�ıa Celular, Universidad
Nacional Aut�onoma deM�exico.

Data Availability. Matlab codes, as well as the raw data necessary for full repli-
cation of the figures, are publicly available via the Open Science Framework
(OSF) (https://osf.io/5x8dy/) (55).
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