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Abstract

A mathematical model of interstitial fluid flow is developed, based on the application of the governing equations for fluid
flow, i.e., the conservation laws for mass and momentum, to physiological systems containing solid tumors. The discretized
form of the governing equations, with appropriate boundary conditions, is developed for a predefined tumor geometry.
The interstitial fluid pressure and velocity are calculated using a numerical method, element based finite volume.
Simulations of interstitial fluid transport in a homogeneous solid tumor demonstrate that, in a uniformly perfused tumor,
i.e., one with no necrotic region, because of the interstitial pressure distribution, the distribution of drug particles is non-
uniform. Pressure distribution for different values of necrotic radii is examined and two new parameters, the critical tumor
radius and critical necrotic radius, are defined. Simulation results show that: 1) tumor radii have a critical size. Below this size,
the maximum interstitial fluid pressure is less than what is generally considered to be effective pressure (a parameter
determined by vascular pressure, plasma osmotic pressure, and interstitial osmotic pressure). Above this size, the maximum
interstitial fluid pressure is equal to effective pressure. As a consequence, drugs transport to the center of smaller tumors is
much easier than transport to the center of a tumor whose radius is greater than the critical tumor radius; 2) there is a
critical necrotic radius, below which the interstitial fluid pressure at the tumor center is at its maximum value. If the tumor
radius is greater than the critical tumor radius, this maximum pressure is equal to effective pressure. Above this critical
necrotic radius, the interstitial fluid pressure at the tumor center is below effective pressure. In specific ranges of these
critical sizes, drug amount and therefore therapeutic effects are higher because the opposing force, interstitial fluid
pressure, is low in these ranges.
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Introduction

Cancer is the second leading cause of death, causing one of

every four deaths in North America [1]. Although the most

important treatment is surgical removal of the tumor, the key to a

successful cure is often an efficient delivery of anticancer drugs

after the surgery. Many new drugs have been developed to

eradicate cancer but are ineffective when used in humans for lack

of efficient delivery. Moreover, all drugs have possible side effects,

such as toxicity to normal cells and the development of drug

resistance [2]. Residual tumor cells and re-growth of tumors are

common sequels to the use of most of these drugs. The drugs’ most

noticeable limitation is their inability to reach a targeted area

without affecting healthy tissues or cells. The two considerations in

effective cancer treatment, from an engineering point of view, are

drug transport and drug conversion or reaction at the tumor site

[3,4]. Many drugs cannot be delivered to their targets because of

transport limitations. Other drugs induce biochemical reactions in

the body that produce toxicity.

It is known that more than 85% of human cancers involve solid

tumors, and current chemotherapy depends on the adequate

delivery of therapeutic agents to tumor sites [1]. It is also well

recognized that the blood supply to a solid tumor is highly

heterogeneous [5,6]. In fact, drug concentration is highest closest

to vasculature, well-perfused areas, and on the peripheral walls of

the tumor, but very little or no drug reaches 90% of the tumor

[7,8]. However, for successful cancer treatment, all areas of the

tumor must be exposed to chemotherapy agents. If just the tumor’s

outer cells are killed, the tumor will eventually regrow [9].

According to clinical research findings, even though drug

delivery through systemic administration may inhibit tumor

growth, most drug treatments fail to eliminate malignant tumors

completely [10]. Some experimental and computational investi-

gations show that systemic administration cannot distribute drugs

uniformly in tumors. Baxter et al. have shown that, in addition to

blood flow heterogeneities and impeded interstitial transport,

another mechanism effectively contributes to the non-uniform

distribution of drugs: high interstitial pressure in solid tumors [11–

13]. There are two important effects of this high interstitial

pressure, and these effects limit transport in solid tumors. These

two effects are illustrated schematically in Fig. 1. The first effect is

a decrease in driving force for transcapillary exchange of fluid and

therefore the drug. This effect is highlighted in Fig. 1. Low

filtration occurs at the center of the tumor as a result of the high

interstitial pressure and high filtration occurs at the periphery of

the tumor as a result of the low interstitial pressure. The second

effect is a radially outward convective flux in the interstitium as

fluid flows towards the outer layers of the tumor. This effect is

illustrated in Fig. 1 as an outward convection due to pressure

gradient. The value of the radially outward fluid velocity at the

tumor rim for a tumor with a 1 cm radius, 4.2 g , is 0:1*0:2mm=s

[3]. Another important process in drug delivery is indicated in this

schematic, Fig. 1, as an inward diffusion due to concentration

gradient of the drug. Effective penetration into a solid tumor
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requires that the velocity of the diffusion process be higher than

that of the convection process [14]. On the other hand, uniformly

distributed high interstitial pressure in the center of a tumor blocks

convection and, consequently, causes the heterogeneous perfusion

of blood into the center of tumors, resulting in the heterogeneous

distribution of the drug [13]. The existence of pressure gradients in

tumors discovered by Baxter et al. is confirmed by Boucher et al.

[15]. Baxter and Jain, using their theoretical framework, further

Figure 1. Cross sectional schematic of a solid tumor that shows the three different regions of a solid tumor, IFP distribution, drug
concentration and filtration distribution from blood vessels.
doi:10.1371/journal.pone.0020344.g001

Figure 2. Capillary microcirculation schematic and different types of pressure.
doi:10.1371/journal.pone.0020344.g002
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found that the drug diffusivity, pressure and velocity of interstitial

fluids, vascular permeability and lymphatic drainage are important

factors in determining the drug concentration in tumors [3,16,17].

Netti et al. showed that interstitial fluid pressure (IFP) depends on

microvascular pressure and blood flow within tumors [18].

Extending the one-dimensional models of Baxter and Jain

[3,16,17], and Saltzman and Radomsky [19], to a three-

dimensional geometry, Wang et al. [20–25] developed a

simulation framework of drug delivery to tumors. They considered

high interstitial pressure in tumors [13], the consequences of blood

and lymphatic drainage, and the chemical reaction of the drug

with the tissue. The main focus of their work was on using

diffusion-convection kinetics to improve simulation result accura-

cy. They showed that in vitro release profile of the drug from

controlled release devices can be combined with state of the art

computational fluid dynamics (CFD) simulations to predict the

drug delivery behavior, both temporally and spatially, in both

normal and cancerous tissues. The focus of their work was the

mathematical modeling of the drug release from polymer implants

that have certain characteristics of release profile. By applying

sensitivity analysis, Zhao et al. [26] determined the effect of

spatially changing tissue transport properties on interstitial fluid

(including drug particles) transport.

Knowledge of tumor modeling has recently been expanded to

include spatial and temporal changes in blood flow by considering

capillary network or single vessel approaches [27,28]. Before

Baxter et al. [3,16,17] introduced their innovative model of

interstitial pressure as a function of tumor radius, little was known

about tumor modeling, except that interstitial pressure was highest

at the center of a tumor [29] and that pressure is directly

proportional to tumor size [29,30]. The promising combined

therapies such as radiotherapy and antiangiogenic therapy in

addition to chemotherapy in tumor treatment are good examples

that can show the crucial role of the modeling. For example, the

computational fluid dynamics modeling results can be applied to

optimize the interaction effect of the irradiation to the drug

delivery efficiency. The main focus of future drug delivery

modeling would be on the transport of the drug in tissues after

drug release from either the systemic administration or implan-

tation mechanisms. Modeling in drug delivery involves different

processes such as drug diffusion, convective transport in

extracellular matrices, drug extravasation from blood vessels,

Figure 3. Two types of boundary conditions at the outer edge of the tissue.
doi:10.1371/journal.pone.0020344.g003

Table 1. Material properties used in numerical simulations, as
taken from [13].

Parameter Tissue Baseline value Reference

Lp½cm=mmHg s� Normal 0:36|10{7 Rippe et al. (1978)

Tumor 2:80|10{7 Jain (1987a)

k½cm2=mmHg s� Normal 8:53|10{9 Swabb et al. (1974)

Tumor 4:13|10{8 Jain (1987a)

S=V ½cm{1� Normal 70 Pappenheimer et al.
(1951)

Tumor 200 Hilmas and Gilette
(1974)

PB½mmHg� Both 15:6 Brace and Guyton
(1977)

pB½mmHg� Both 20 Brace and Guyton
(1977)

pi½mmHg� Normal 10 Wiederhielm (1979)

Tumor 15 Jain (1987a)

ss½mmHg� Normal 0:91 Ballard and perl (1978)

Tumor 0:82 Curry (1984)

doi:10.1371/journal.pone.0020344.t001
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tissue elimination by lymphatic system, and intracellular internal-

ization. In all of these processes, CFD can play a crucial role. To

clarify the mechanisms of drug delivery from the injection site to

absorption by a solid tumor, computational fluid dynamics has

shown promise. So far, drug delivery problems have been most

extensively studied with spherical tumors, the simplest to examine

with analytical methods. With our proposed numerical method,

however, more complex shapes of tumor can be studied.

Numerical simulations provide a detailed understanding of the

mechanisms of interstitial fluid transport and are also instructive to

show some of the major barriers to drug delivery to solid tumors.

With this knowledge, one can find, for example, an optimum

schedule of drug treatment based on the simulation results. To

design an optimum scheme for drug delivery, the transport

mechanisms and their obstacles have to be clarified, which is one

of the main objectives of this paper.

The proposed CFD model is made for a spherical tumor and its

surrounding normal tissue. However, this model can be extended

to study non-spherical tumors, especially those geometries

reconstructed from high resolution images. The grid generation

divides the whole domain or geometry to finite volumes, called

meshes. Tetrahedral elements can be used to handle non-spherical

tumors. The tumor and its surrounding tissue are assumed to be

rigid porous media. The vasculature as a source term varies

spatially. Interstitial fluid flow equations in porous media are

solved using a CFD code which employs unstructured grids. In

studying interstitial fluid pressure distribution, the numerical

method, which introduces two critical parameters (tumor radius

and necrotic radius), is more effective than the analytical method.

Methods

Drug Transport within Solid Tumor
Fluid seeps slowly but constantly from blood vessels into

surrounding tissues in most normal tissues. The lymphatic system

then reabsorbs this lost fluid and returns it to the blood stream.

However, no such lymphatic drainage system for solid tumors has

been reported in the literature [3,4]. Computer simulations show

that this lack of lymphatic system involvement may result in a

buildup of interstitial pressure, leading to cessation of the usual

blood seepage from vessels. As a consequence, large molecules

(including cancer-fighting drugs) cannot be carried out of vessels to

interact with tissue. Thus, cancer drugs cannot reach the tumor site.

Some drug particles, such as Monoclonal Antibodies (MAbs),

are relatively large and move very slowly within tissues [3]. To be

effective, these large anticancer agents have to cross the blood

vessel wall, traverse the interstitial space that contains the cancer

cells, bind to the cancer cell membranes and, if the target is

intracellular, penetrate the cancer cell membranes.

Tissue spaces are made up of three parts, all of which are

relevant to the delivery of drugs to tumors: the vascular, the

interstitial, and the cellular. The vascular space comprises the

blood vessels, arteries, arterioles, capillaries, venules, and veins

[31]. The interstitial space, a gel-like region between blood vessels

and cells, is filled with fibers such as collagen, which gives

structural stability, glycosaminoglycans (GAG), and other proteins.

The cellular space includes specific tissue cells (cancer cells in a

solid tumor), in addition to other cells, such as pericytes,

macrophages, and fibroblasts [3,16,17].

Figure 4. Interstitial velocity distribution in a 1 cm radius tumor, different values of a, Eq. (16).
doi:10.1371/journal.pone.0020344.g004
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Figure 5. Dimensionless interstitial pressure distribution in the same tumor, different values of a.
doi:10.1371/journal.pone.0020344.g005

Figure 6. Interstitial pressure distribution in the same tumor (a~36:8).
doi:10.1371/journal.pone.0020344.g006
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Mathematical Model of Interstitial Fluid Transport
The distribution of vasculature and cells in solid tumors is

spatially heterogeneous. In the center of solid tumors, there is a

necrotic core where most of the cells are dead. The outer

boundary of solid tumors contains many exchange vessels, a

large blood supply, and fast-dividing cells. Therefore, the

mathematical model should be accurate enough to include the

dependency of physiological parameters, such as the hydraulic

conductivity, on space, that is, it must be able to clearly

represent all the physical variations in a tumor. Nevertheless,

because the time scale of transport phenomena is much less than

that of tumor growth, the physiological parameters can be

considered time independent [3]. For the sake of simplicity, solid

tumors are considered here to be spherical. In a macroscopic

model, only the distribution of variables, such as interstitial

pressure and concentration, over the length scale of the tumor

radius is important, and microscopic characteristics, such as

blood vessels, cells, and the interstitial matrix, are not involved

directly in the model. Comparison of the tumor radius, on the

order of magnitude of 1cm, O(1cm), with the intercapillary

distance (the average distance between two capillaries),

O(100mm), indicates that variations over microscopic length

scales can be averaged out [32]. The screening length,
ffiffiffiffiffiffi
mk
p

(in

which m and k are the viscosity of the interstitial fluid and the

hydraulic conductivity of the interstitium, respectively), is on the

order of Å; therefore, the fluid transport in the tumor

interstitium can be described by Darcy’s law for flow through

a porous medium [4,32–36]:

v~{k+Pi in general

v~{k
LPi

Lr
for axisymmetric flow

ð1Þ

where k½cm2=mmHg s�, Pi½mmHg�, v½m=s� and r½cm� are the

hydraulic conductivity of the interstitium, the interstitial fluid

pressure, the interstitial fluid velocity and the radial position,

respectively. In the case of anisotropic and heterogeneous porous

media, k is a tensor and function of the location in the medium.

There are some limitations to the use of Darcy’s law. For instance, it is

not applicable for non-Newtonian fluids, Newtonian fluids at high

velocities, or for gases at very low or very high velocities. It is also

shown that the friction within the fluid and exchange of momentum

between the fluid and solid phases is neglected by Darcy’s law.

Fortunately, in the interstitium of biological tissues, all these

exceptional cases are rare (most of the phenomena are low velocity

for Newtonian fluids) except for the friction within the fluid; therefore,

Darcy’s law is quite applicable to the analysis of interstitial fluid flow.

The mass balance equation for a steady state incompressible

fluid is that the divergence of the fluid is zero, or mathematically,

+:v~0 ð2Þ

The same equation is also applicable in porous media if there is

no fluid source or fluid sink in the medium. However, in most

Figure 7. Three dimensional plot of Fig. 6, dimensionless interstitial pressure distribution, in the same tumor (a~36:8).
doi:10.1371/journal.pone.0020344.g007
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Figure 8. Comparison of the current paper with experimental data (mammary adenocarcinoma s.c.) by Boucher et al. [15].
doi:10.1371/journal.pone.0020344.g008

Figure 9. Interstitial velocity distribution in a 1.4 cm radius tumor and normal tissue.
doi:10.1371/journal.pone.0020344.g009
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biological tissues, sources and sinks are present. For instance,

between interstitial space and the blood or lymph vessels, fluid is

exchanged; therefore, the steady state incompressible form of the

continuity equation must be modified as

+:v~wB(r){wL(r) ð3Þ

where v is the fluid velocity in the representative elementary

volume (REV). The continuity equation can also be written as

+:(�vf )~

wB(r){wL(r) for r§Rn

0 for rvRn

8><
>: ð4Þ

where Rn½cm�, �, vf ½ms{1�, wB(r)½s{1�, and wL(r)½s{1� are the

radius of the necrotic core, the porosity or the volume fraction of

fluid, the fluid velocity averaged in the volume of fluid phase, the

fluid source term, and the lymphatic drainage term, respectively. In

biological tissues, the two last terms signify the rate of fluid flow per

unit volume from blood vessels into the interstitial space and from

the interstitial space into lymph vessels, respectively. Both rates can

be evaluated through Starling’s law. It should be noted that Eq. (4)

in this general form is applicable to any kind of biological tissue,

whether normal or cancerous. In dead tissues, with no flow in the

blood or lymph vessels, the value for both terms is zero. The fluid

source term is governed by Starling’s law as follows [37,38]:

wB(r)~
JV

V
~

LPS

V
(PB{Pi{ss(pB{pi)) ð5Þ

The parameters used in Eq. (5) are:
JV

V
½s{1�, volumetric flow rate

out of the vasculature per unit volume of tissue;
S

V
½cm{1�, surface

area per unit volume for transport in the tumor; Lp½
cm

mmHg s
�,

hydraulic conductivity of the microvascular wall; PB½mmHg�,
vascular pressure; ss, average osmotic reflection coefficient for

plasma proteins; pB½mmHg�, osmotic pressure of the plasma; and

pi½mmHg�, osmotic pressure of the interstitial fluid. Different types

of pressure used in Eq. (5) are shown in Fig. 2. It should be noted

that the lymphatic drainage term is proportional to the pressure

difference between the interstitium and the lymphatics:

wL(r)~
JL

V
~

LPLSL

V
(Pi{PL) for r§Rn

wB(r)~wL(r)~0 for rvRn

ð6Þ

The parameters used in these equations are:
JL

V
½s{1�, volumetric

flow rate into the lymphatics; LpL½
cm

mmHg s
�, hydraulic conduc-

tivity of the lymphatic wall; and PL½mmHg�, hydrostatic pressure of

the lymphatics.

Figure 10. Interstitial pressure distribution in a 1.4 cm radius tumor and normal tissue.
doi:10.1371/journal.pone.0020344.g010
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Combination of Darcy’s law and the continuity equation results in

{+:k+Pi~wB(r){wL(r) ð7Þ

For a very special case, when k is constant and there are no

sinks and sources, the interstitial pressure can be expressed by the

very well-known Laplace equation.

+2Pi~0 ð8Þ

If all parameters except Pi are assumed to be constant,

substituting Eqs. (5) and (6) in Eq. (7) results in

{k+2Pi~
LPS

V
(PB{Pi{ss(pB{pi)){

LPLSL

V
(Pi{PL) ð9Þ

Rearranging Eq. (9) for a spherical solid tumor with radius R,

+2Pi~
a2

R2
(Pi{Pss) ð10Þ

PSS is defined later by Eq. (14). Using the definition of Laplace

operator, Eq. (11), in the spherical coordinate system, Eq. (10) is

written as Eq. (12).

D~+2~
1

r2

L
Lr

r2 L
Lr

� �
z

1

r2 sinh

L
Lh

sin h
L
Lh

� �
z

1

r2 sin2 h

L2

L2w
ð11Þ

1

r2

L
Lr

r2 LPi

Lr

� �
~

a2

R2
(Pi{Pss) ð12Þ

in Eqs. (10) and (12), the ratio of interstitial resistance to vascular

resistance is introduced in terms of a, the dimensionless parameter

defined by Eq. (13).

a~R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(LPSzLPLSL)=kV

p
ð13Þ

PSS~(LPSPezLPLSLPL)=(LPSzLPLSL) ð14Þ

the steady state pressure, PSS , is the interstitial pressure at which

the efflux from the vasculature and influx into the lymphatics are

equal, and is defined by Eq. (14). Effective pressure, Pe, in Eq. (14),

is a parameter defined by vascular pressure, plasma osmotic

pressure, and interstitial osmotic pressure through Eq. (15).

Pe~PB{ss(pB{pi) ð15Þ

Figure 11. Interstitial pressure distribution in a 1 cm radius tumor, as a function of the dimensionless radius for different necrotic
radii.
doi:10.1371/journal.pone.0020344.g011
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Applying the appropriate boundary conditions and also all the

constants mentioned earlier, the governing equation, Eq. (10) or

(12), can be used to calculate the interstitial fluid velocity (IFV) and

interstitial fluid pressure (IFP) profiles in solid tumors. No lymph

vessels in a solid tumor means SL~0; thus, Eqs. (12) and (13) can

be simplified as follows:

1

r2

L
Lr

r2 LPi

Lr

� �
~

a2

R2
(Pi{Pe) ð16Þ

a~R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(LPS)=kV

p
ð17Þ

in which the interstitial pressure that yields zero net volume flux

out of the vasculature is called the effective pressure, Pe, Eq. (15).

The steady state pressure and effective pressure in solid tumors

with no lymph vessels are the same. If Pi~Pe, no exchange of

fluid occurs between the interstitial space and blood vessels.

Due to symmetry, there is a no flux boundary condition at the

center of the tumor; i.e.,

+Pi~0 or
LPi

Lr
~0 for r~0 ð18Þ

At the outer edge of the solid tumor, r~R, two types of

boundary conditions are possible. In the first type, where the

pressure in the surrounding tissue is fixed, the tumor pressure at

the outer edge is the same as the surrounding pressure, Psur.

Pi~Psur for r~R ð19Þ

This condition is applicable for an isolated tumor [39,40]. In the

second type, the solid tumor is surrounded by normal tissues.

Pressure decreases smoothly over a distance; therefore, the

continuity of pressure and velocity should be considered as an

appropriate boundary condition for this case as the following

conditions occur simultaneously:

{kt

dPi

dr

����
R{

~{kn

dPi

dr

����
Rz

ð20Þ

PijR{~PijRz ð21Þ

where R{ and Rz indicate the tumor and normal tissue radius at

the outer edge of the solid tumor; kt and kn are the hydraulic

conductivity of the interstitium in tumor and normal tissues,

respectively. It should be noted that, in the second type, all the

equations mentioned for the tumor tissue have to be solved for the

normal tissue, as well. It is clear that for the normal tissue, far

enough from the solid tumor that the pressure is constant, the first

type of boundary condition, Eq. (19), must be applied. These two

types of boundary conditions are shown in Fig. 3. The solution

now can be obtained analytically or numerically to find the IFV

and IFP profiles for each of the two boundary conditions. In this

Figure 12. Interstitial pressure distribution at the center of a 1 cm radius tumor, as a function of the dimensionless necrotic radius.
doi:10.1371/journal.pone.0020344.g012
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Figure 13. Interstitial pressure distribution at the center of different tumors, as a function of the dimensionless necrotic radius.
doi:10.1371/journal.pone.0020344.g013

Figure 14. Interstitial pressure distribution in a 0.5 cm radius tumor, as a function of the dimensionless radius for different necrotic radii.
doi:10.1371/journal.pone.0020344.g014
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work, the numerical method has been used. An element based finite

volume method (EB-FVM) is applied to discretize the equations.

The EB-FVM has the capability of the finite element method (FEM)

in handling complex geometries and also the sound physical-based

properties of the finite volume method (FVM) [41]. The discretized

form of the governing equations, in their general form, is then

linearized and solved implicitly. The SIMPLE (Semi Implicit

Method for Pressure Linked Equations) algorithm is used as the

coupling method for pressure and velocity terms. Finally, the

converged form of the solution is calculated using an iterative

method. In order to improve the convergence rate, the method of

successive over-relaxation (SOR) is applied with an under relaxation

factor equal to 0.75. The criterion for the convergence is to reduce

the residual by 6 orders of magnitudes. In order to check the grid

independency of the code, the results for three different grids are

compared, indicating the conservative property of the numerical

method. Final choice of the grid includes 11904 control volumes.

The material properties for tumor and normal tissue were taken

from the simulation studies of Jain and Baxter [13] and are shown

in Table 1. It should be noted that tissue properties vary greatly

among different organs for both normal and cancerous tissues;

therefore, parameters introduced in Table 1 should be updated for

new applications. As mentioned earlier, tissue transport properties

are often anisotropic. Geometric and physiological properties of

anisotropic and heterogeneous tissues affect drug delivery. This

issue can be solved with the help of diffusion tensor imaging (DTI).

A good application of this method in brain tumors is discussed by

Linninger et al. [42].

Results

Figure 4 shows the unidirectional interstitial fluid velocity

distribution in an isolated solid tumor as a function of the

dimensionless radius. This figure shows that the higher the value of

a is, the steeper the velocity profiles will be. Figure 5 shows the

unidirectional interstitial fluid pressure distribution in an isolated

solid tumor as a function of the dimensionless radius. Low values

of a corresponding to flat curves show less resistance to fluid

source, but high values of a corresponding to sharp curves in the

periphery of the tumor show greater resistance to fluid source,

based on the definition of dimensionless parameter a. Figure 6

shows IFP distribution based on the parameters’ values introduced

in Table 1 which results in a~36:8. Experiments done by Baxter

et al. were based on this value of a [3]. Three dimensional plot of

Fig. 6, dimensionless interstitial pressure distribution, is shown in

Fig. 7. All of these results agree well with experimental data

[3,4,11]. Figure 8 shows the comparison of the current paper with

experimental data (mammary adenocarcinoma s.c.) by Boucher et

al. [15]. In this figure there is good agreement between model and

experiment. Figures 9 and 10 show the IFV and IFP distribution

for a solid tumor embedded in normal tissue as a function of the

dimensionless radius, respectively. As mentioned earlier, boundary

conditions for this case are different from those of an isolated

tumor and are stated in equations (20) and (21).

Figure 11 shows the interstitial pressure distribution in a 1 cm

radius tumor, as a function of a dimensionless radius for different

values of necrotic radii. This figure shows that an increase in the

Figure 15. Interstitial pressure distribution in a 0.25 cm radius tumor, as a function of the dimensionless radius for different
necrotic radii.
doi:10.1371/journal.pone.0020344.g015
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necrotic radius decreases the maximum pressure inside the tumor,

and obviously, when the entire tumor is necrotic, with no

vasculature, the IFP is zero. On the other hand, for a necrotic

radius below a certain size, IFP has its maximum value, which is

the effective pressure, Pe, and this limited size, which can be

considered as a critical necrotic radius or Rnc, can be interpolated

from a graph such as Fig. 12. The same graph for all sizes of solid

tumors studied in this paper is also shown in Fig. 13. From this

figure, for instance, for tumors below a certain size (in this case

0.1 cm), reaching effective pressure, even with a zero value for

their necrotic radius, is not possible. Figures 14, 15 and 16 show

the same parameters as Fig. 11 for the other three tumor sizes,

which follow the same behavior as explained for Fig. 11.

Discussion

The calculated value of IFV for the periphery of an isolated

tumor, shown in Fig. 4, is on the order of 10{7m=s, a finding that

agrees well with experimental data in the literature [3,4,11,40].

These results predict that the fluid filtration is negligible throughout

most part of the tumor and occurs mostly from vessels in the

periphery, well vascularized region. Interstitial fluid pressure

distribution for different values of a and different boundary

conditions, Figs. 5 and 10, shows that IFP is elevated throughout

the tumor and goes down sharply in the periphery of an isolated

tumor or at the normal tissue around an embedded solid tumor.

The immediate result of this high IFP is decreasing blood flow and

therefore insufficient delivery of drug. This general trend for IFP

leads to low filtration of drug from blood vessels in the center of the

tumor and high filtration of drug in the tumor periphery, as shown

in Fig. 1. On the other hand, the large pressure gradient results in an

outward convective flow that washes out the drug extravasated from

blood vessels at the tumor periphery. All of these phenomena are

indicated in Fig. 1, schematically. In both cases, embedded and

isolated tumor, IFP approaches Pe, effective pressure, in the center

of the tumor where the fluid source is minimal, as shown in Figs. 5

and 10. On the other hand, in the periphery, the opposite scenario

occurs; there is minimum pressure and maximum fluid source.

Based on the results of this study, drug delivery can be enhanced by

decreasing IFP in the center of the tumor. This may not be easy to

do but there are some physical and enzymatic methods which can

be applied. For instance, blocking the integrin links between

interstitial matrix and cells decreases IFP and enhances tissue fluid

content. Also, irradiation by remodeling extracellular matrix

decreases IFP in solid tumors [43]. Comparing IFP distribution in

tumors with different radii shows that IFP increases with tumor size.

This study introduces two new parameters, the critical tumor radius

and critical necrotic radius. For tumors below the critical tumor

radius, the maximum interstitial fluid pressure is less than effective

pressure, no matter what the value of the necrotic radius is. In fact,

the transport of the drug to the center of smaller tumors is much

easier than transport to the center of a tumor whose radius is greater

than the critical tumor radius, as the maximum IFP is much lower

than effective pressure, Pe. This study also shows that there is a

critical necrotic radius, below which the interstitial fluid pressure at

the center of the tumor is at its maximum value. If the tumor radius

is greater than the critical tumor radius, this maximum pressure is

equal to the effective pressure.

Figure 16. Interstitial pressure distribution in a 0.1 cm radius tumor, as a function of the dimensionless radius for different necrotic
radii.
doi:10.1371/journal.pone.0020344.g016
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Conclusions
Numerical solutions for the simplest case of a homogeneous and

alymphatic tumor demonstrate that, in a uniformly perfused

tumor, high interstitial pressure is the main cause of heterogeneous

drug distribution. The main assumption used to reach this

conclusion is that drug particles flow with the interstitial fluid.

The distribution of interstitial fluid pressure and velocity have

been calculated by numerical solutions to the governing equations.

Comparison of these numerical solutions and experimental data in

the literature shows that the maximum value for the interstitial

pressure occurs at the center of the tumor and decreases towards

the periphery and that the numerical values of interstitial fluid

velocity and the experimental results reported in the literature

agree. Interstitial fluid pressure is not uniform whether the tumor

vasculature is homogeneous or heterogeneous. Thus, in addition

to the heterogeneous distribution of blood supply, high interstitial

pressure plays a significant role in drug distribution in a solid

tumor.

This study also shows that an increase in the necrotic radius

decreases the maximum pressure inside the tumor; the tumor that

is completely necrotic has no vasculature, and thus its interstitial

fluid pressure is zero. This study introduces two new parameters,

the critical tumor radius and critical necrotic radius. Simulation

results show that for tumors below the critical tumor radius, the

maximum interstitial fluid pressure is less than effective pressure (a

parameter determined by vascular pressure, plasma osmotic

pressure, and interstitial osmotic pressure); therefore, the transport

of the drug to the center of smaller tumors is much easier than

transport to the center of a tumor whose radius is greater than the

critical tumor radius, as the maximum interstitial fluid pressure is

much lower than effective pressure. This study shows that there is

a critical necrotic radius, below which the interstitial fluid pressure

at the center of the tumor is at its maximum value. If the tumor

radius is greater than the critical tumor radius, this maximum

pressure is equal to the effective pressure. At above this critical

necrotic radius, the interstitial fluid pressure at the center of the

tumor is below effective pressure.

The numerical model investigated here can be further extended

to apply to anisotropic tissues in terms of properties and geometry.

Capillary distribution in real tissues is heterogeneous and non-

uniform, this numerical model can handle this issue as well.

Microcirculation studies show that for some drugs the relative size

of nanoparticles is comparable to the capillary diameter; therefore,

flow field has to be modeled as a two phase flow. Numerical

method introduced in this paper has the capability of doing such a

two phase flow model.
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