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Abstract
Uncovering the general principles that govern the structure of metabolic networks is key to understanding the emergence and 
evolution of living systems. Artificial chemistries can help illuminate this problem by enabling the exploration of chemical 
reaction universes that are constrained by general mathematical rules. Here, we focus on artificial chemistries in which strings 
of characters represent simplified molecules, and string concatenation and splitting represent possible chemical reactions. We 
developed a novel Python package, ARtificial CHemistry NEtwork Toolbox (ARCHNET), to study string chemistries using 
tools from the field of stoichiometric constraint-based modeling. In addition to exploring the topological characteristics of 
different string chemistry networks, we developed a network-pruning algorithm that can generate minimal metabolic networks 
capable of producing a specified set of biomass precursors from a given assortment of environmental nutrients. We found 
that the composition of these minimal metabolic networks was influenced more strongly by the metabolites in the biomass 
reaction than the identities of the environmental nutrients. This finding has important implications for the reconstruction 
of organismal metabolic networks and could help us better understand the rise and evolution of biochemical organization. 
More generally, our work provides a bridge between artificial chemistries and stoichiometric modeling, which can help 
address a broad range of open questions, from the spontaneous emergence of an organized metabolism to the structure of 
microbial communities.
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Introduction

Metabolism occupies a central role in the functioning of bio-
logical systems, yet much remains unclear about the degree 
to which basic features of metabolic networks reflect either 

evolutionary accidents or optimal network structures (Pál 
et al. 2006; Barve and Wagner 2013; Noor et al. 2010; Eben-
höh and Heinrich 2001). In parallel to analyses focused on 
metabolism as we know it in individual organisms (Machado 
et al. 2018; Henry et al. 2010; Borenstein et al. 2008) or in 
the whole biosphere (Barve and Wagner 2013; Raymond 
and Segrè 2006; Handorf et al. 2005), multiple studies have 
explored the utility of abstract models of chemistry to inves-
tigate particular features of chemical networks. These mod-
els, also known as artificial chemistries, have the benefit of 
being unconstrained by the limits of what is known about 
extant metabolism and about its possible intermediate states 
lost through evolutionary history (Banzhaf and Yamamoto 
2015; Benkö et al. 2003; Kauffman 1993).

Artificial chemistry has been used to study various 
aspects of the origin of life from abiotic chemistry (Guseva 
et al. 2017; Kauffman 1993; Banzhaf and Yamamoto 2015), 
common structural features of metabolic networks (e.g., 
hub metabolites) (Friedlander et  al. 2015; Fontana and 
Buss 1994a, b; Pfeiffer et al. 2005), the general behavior of 
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chemical (not necessarily biochemical) reaction networks 
(Benkö et al. 2003; Walter Fontana and Buss 1994a, b), the 
optimality (or lack thereof) of metabolic networks (Riehl 
et al. 2010; Soyer and Pfeiffer 2010), among other ques-
tions (Banzhaf and Yamamoto 2015). The artificial chem-
istry models used in these studies typically employ highly 
abstracted representations of chemistry (Riehl et al. 2010; 
Kauffman 1993; Banzhaf and Yamamoto 2015). However, 
more precise and realistic models involving either string 
rules based on formalization of real chemistry (like SMILES 
(Weininger 1988) and variants thereof (Arús-Pous et al. 
2019; Lin et al. 2019)), or de novo approximate quantum 
mechanics computations (Benkö et al. 2003), have been 
used to explore the full space of possible real-life chemis-
try up to a certain degree of complexity (Lee et al. 2019). 
Artificial chemistry approaches have yielded many insights 
into general features of metabolism, but these findings have 
remained largely disconnected from the large body of metab-
olism research focused on characterizing real metabolic net-
works. We believe that many novel insights into metabolism 
will be enabled by combining artificial chemistry with tech-
niques commonly used to study real metabolic networks.

The field of stoichiometric constraint-based modeling has 
provided many approaches that can be particularly useful 
for quantitatively understanding the structure and function 
of metabolic networks (Heirendt et al. 2019; Ebrahim et al. 
2013; Gottstein et al. 2016; O’Brien et al. 2015). In particu-
lar, Flux Balance Analysis (FBA) is a common technique for 
studying metabolic networks at the level of a whole organ-
ism. FBA estimates the space of possible fluxes through a 
metabolic network at steady state, and is generally employed 
to identify metabolic states satisfying some biologically 
meaningful criterion of optimality (Orth et al. 2010). FBA 
has been used to simulate multiple types of experiments and 
phenotypes, such as growth rates and metabolic phenotypes 
of gene knockouts, growth efficiency on different media, 
and identification of potential drug targets (Orth et al. 2010; 
Gu et al. 2019; Kauffman et al. 2003; Yizhak et al. 2015). 
While FBA and stoichiometric constraint-based modeling 
have been widely used on the metabolic networks of real 
organisms, these techniques have only rarely been applied 
to artificial chemistry networks.

In the present work, we use a specific type of artificial 
chemistry known as a string chemistry, where each molecule 
is represented by a string of characters (Fig. 1) (Banzhaf 
and Yamamoto 2015; Kauffman 1993; Riehl et al. 2010). 
Our string chemistry model is relatively simple: all strings 
(i.e., metabolites) are linear sequences of characters (i.e., 
monomers, atoms, or functional groups) that may react by 
either concatenating end to end or splitting into two smaller 
strings (see “Methods” section). A particular string chemis-
try network is defined by the set of different characters each 
metabolite can be composed of and the maximum length a 

metabolite can reach. While these rules are much simpler 
than those governing real chemical reactions, Riehl et al. 
found structural similarities between real metabolic net-
works and string chemistry networks with only one type of 
character (i.e., the only difference between any two metabo-
lites is their length) (Riehl et al. 2010), so we expect that 
string chemistries with more than one type of character may 
yield further insights into the general properties of meta-
bolic networks. In string chemistry networks such as the one 
we use for this work, individual monomers (the letters in 
strings) could be thought of as elementary moieties (either 
atoms, or functional groups). While individual monomers 
cannot turn into each other (e.g., a letter “a” cannot trans-
form into a letter “b”), one can think of strings such as “ab” 
and “ba” as more complex functional units that can trans-
form into each other through a series of reactions.

In this manuscript, we describe the ARtificial CHemis-
try NEtwork Toolbox (ARCHNET), a Python package for 
generating string chemistry networks of arbitrary size and 
implementing stoichiometric modeling algorithms (includ-
ing FBA) on those networks. Using this string chemistry 
framework, we created an algorithm for determining the 
minimal metabolic network capable of producing a given 
set of metabolites (“biomass precursors”) from another set 
of metabolites (“environmental nutrients”). Our analysis of 
random choices of nutrients and biomass precursors in dif-
ferent string chemistry networks provides new insight into 
the rules governing which reactions are left in these minimal 
metabolic networks and suggests possible implications for 
the study of real metabolic networks.

Methods

Artificial Chemistry Model

The artificial chemistry model used here is an extension 
of the one used in Riehl et al. (2010) and is similar to 
several other previously used artificial chemistries (Ban-
zhaf and Yamamoto 2015; Kauffman 1993; Fontana and 
Buss 1994a, b): each “chemical” is a string of characters 
of some arbitrary length, where each character represents 
an individual atom (or functional group, or monomer). 
A chemical may condense with one other chemical to 
produce a longer chemical; the two strings are simply 
concatenated (e.g., ab + aa → abaa). A chemical may also 
split into two smaller chemicals at any point along its 
length (e.g., ababb → ab + abb). Only pairwise conden-
sation/dissociation reactions were considered due to the 
rarity of termolecular and higher reactions in real chem-
istry (Chang 2005; Laidler and Glasstone 1948; Comp-
ton et al. 2012). For simplicity, all reactions are modeled 
as being completely reversible, even though in principle 
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further constraints on reversibility could easily be added. 
The numbers of chemicals and allowed reactions in the 
model are functions of the number of unique characters 
(“monomers”) and the maximum chemical length. These 
functions, plotted in Fig. 2, can be obtained analytically 
by enumerating the sizes of various string chemistry net-
works and examining the resulting series:

where A is the number of unique characters (monomers) and 
L is the maximum chemical length. We will refer below to a 
specific complete set of metabolites and reactions generated 
for a given choice of A and L as a “chemical universe”. This 
will allow us to clearly distinguish such complete sets from 
subsets generated by pruning algorithms (see below).
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L
∑

i=1

A
i =

{

A(AL−1)

(A−1)
A ≠ 1

L A = 1
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Flux Balance Analysis

Flux Balance Analysis (FBA) is a mathematical framework 
for computing steady-state fluxes through chemical reactions 
in a given network of reactions subject to linear constraints 
(Orth et al. 2010). The network of reactions is represented 
as a stoichiometric matrix S, where each column represents 
an individual reaction and each row represents an individual 
metabolite. Each element in this matrix is the stoichiometric 
coefficient for the given metabolite in the given reaction: posi-
tive if the metabolite is a product of that reaction, negative if it 
is a substrate, and zero if it does not participate (see Fig. 3 for 
an example of a string chemistry network and its associated 
stoichiometric matrix). The reaction fluxes to be computed 
are represented by a vector v. In order for the network to be at 
steady state, v must be in the null space of S 

 

Sv = 0

Fig. 1   Three simple string chemistry networks. Square nodes rep-
resent chemicals and oval nodes represent reactions. Edges connect 
chemicals to the reactions they participate in, either as reactants or 
products. a A network with only one type of monomer and a maxi-

mum string length of 2. b A network with two types of monomers 
and a maximum string length of 2. c A network with two types of 
monomers and a maximum string length of 3
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The resulting system of equations is underdetermined 
for nearly all nontrivial networks. Additional constraints 
may be specified that limit the values of fluxes through 
specific reactions, typically reflecting nutrient limitations 

or known thermodynamic constraints on certain reactions. 
These constraints generally reduce the space of feasible 
solutions, but still leave the problem underdetermined. 
Thus, a linear combination of reactions Z (the objective 

Fig. 2   Comparison of size, degree distributions, and flux distributions 
of string chemistry networks to the same properties of real metabolic 
networks. a Network sizes of universal string chemistry networks 
(colored lines) and real metabolic networks (blue lines) measured by 
metabolite counts. b Network sizes measured by reaction counts. c 
Degree distributions of 100 string chemistry networks pruned from 
the universal network with A = 3 and L = 7 compared to degree distri-
butions of real metabolic networks (see “Methods” section for more 
details). String chemistry degree distributions are shown as mean 

and standard deviations of frequencies of each degree across the 100 
pruned networks. d Flux distributions of 100 string chemistry net-
works (same as in c) compared to flux distributions of real metabolic 
networks when optimized with the default biomass objective func-
tions (see “Methods” section for more details). Fluxes were normal-
ized to the maximum flux within each network and binned into 10 
equally sized bins before plotting. Flux distributions of string chem-
istry networks are shown as mean and standard deviations of frequen-
cies across the 100 pruned networks
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function) through which flux should be maximized (or 
minimized) is also specified:

where c is a vector indicating which reactions are to be 
included in the objective function Z. As FBA is usually 
applied to biochemical reaction networks, the objective 
function is frequently set to correspond to a single reaction 
that produces the right proportion of all precursors neces-
sary for the generation of cellular macromolecules and key 
metabolites, representing growth of cellular biomass. While 
FBA was originally developed for studying and engineering 
microbial metabolic networks, its formalism is easily adapt-
able to any chemistry, provided that its chemical reactions 

Z = c
T
v

can be represented as columns of a stoichiometric matrix 
(Fig. 3).

The ARtificial CHemistry NEtwork Toolbox 
(ARCHNET) Package

We created the ARCHNET Python package to facilitate 
the creation and handling of string chemistry networks (as 
defined above) of arbitrary size, as well as the application 
of FBA to such networks. All FBA computations were per-
formed using the COBRApy Python package (Ebrahim et al. 
2013). The ARCHNET package, along with all scripts used 
to generate data and create figures, is available in a GitHub 
repository: https://​github.​com/​segre​lab/​string-​chemi​stry. 
The package contains tools for generating and analyzing 

Fig. 3   Flux Balance Analysis on string chemistry networks. a String 
chemistry network with A = 2 and L = 3. Metabolites are represented 
by blue rectangles and reactions are represented by red ovals. Edge 
colors represent reaction fluxes after maximizing flux through the 
biomass reaction: green edges are exchange fluxes (import/export/
biomass production), black edges represent nonzero fluxes, and gray 
edges represent fluxes of zero. The direction of non-gray edges corre-

sponds to the direction of flux; directions on gray edges are arbitrary. 
b Stoichiometric matrix of network in (a). Each entry in the matrix 
represents the stoichiometric coefficient of a particular metabolite 
(row) in a particular reaction (column), and the coefficient is positive 
if the metabolite is produced by the reaction or negative if the metab-
olite is consumed by the reaction

https://github.com/segrelab/string-chemistry
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string chemistry networks of arbitrary size, given the set 
of characters to use as monomers and the maximum string 
length. A network can be returned as a stoichiometric matrix 
and/or a COBRApy model (to facilitate applying FBA or any 
other stoichiometric modeling technique).

Network Pruning Algorithm

We implemented an algorithm that takes a complete string 
chemistry network as an input (e.g., the network of all pos-
sible reactions and metabolites when A = 2 and L = 5) and 
outputs a subnetwork that has been pruned to satisfy specific 
criteria. Specifically, the algorithm takes as input (i) a string 
chemistry network, (ii) a set of available environmental 
nutrients, and (iii) a biomass composition, i.e., a set of mol-
ecules that have to be produced at stoichiometrically fixed 
proportions; in all examples shown here, we use coefficients 
of 1 each for molecular components of biomass, except in 
Fig. S6. In principle, however, biomass coefficients could 
have any empirically assigned value, as done in the stoichio-
metric models of real organisms, where these numbers rep-
resent the amount in millimoles of that molecule per 1 g of 
biomass. The algorithm iteratively removes reactions from 
the network until there is no flux through the output reac-
tion (Fig. S1). In particular, it repeatedly runs FBA to assign 
fluxes to all reactions and removes reactions with no flux 
and the reaction with the smallest nonzero flux. Once there 
is no flux through the output reaction, the last reaction that 
was removed is added back to the network and the network 
is “pruned”. The pruning algorithms are part of the Python 
package described above. Several other assorted scripts pro-
vide examples of applications of this pruning algorithm to 
string chemistry networks.

Comparing Degree and Flux Distributions 
of Metabolic Networks

In order to compare the degree distributions of string chem-
istry networks and real metabolic networks, COBRApy 
models of string chemistry networks, iJO1366 (Escherichia 
coli, Orth et al. 2010), and Yeast8 (Saccharomyces cerevi-
siae Lu et al. 2019) were used to create graph representations 
of those metabolic networks using the networkx package 
(https://​github.​com/​netwo​rkx/​netwo​rkx). The networks were 
represented as bipartite graphs, where each node represents 
either a metabolite or a reaction, and two nodes are con-
nected when a metabolite participates in a reaction (either 
as a product or reactant; edges are undirected). When com-
puting degree distributions, only the degrees of metabolite 
nodes were considered.

Flux distributions were generated for all string chemistry 
networks and real metabolic networks by performing FBA 
with the default biomass objective functions. In order to 

facilitate comparison of fluxes between different networks, 
all fluxes within each network were normalized to the larg-
est flux in the network (after taking the absolute value of all 
fluxes), and fluxes were binned.

Results

A Python Package for Creating and Analyzing 
Arbitrary String Chemistries

We have created the ARtificial CHemistry NEtwork Tool-
box (ARCHNET), a Python package capable of generating 
string chemistry networks of arbitrary sizes given the num-
ber of unique characters (A) and the maximum length of a 
string (L) (Fig. 1). For simplicity, the only types of reactions 
allowed in these networks are pairwise string concatenation 
and splitting (see “Methods” section for more details). Even 
with this restriction on reaction complexity, the networks 
increase in size very rapidly as A and/or L increase (Fig. 2a, 
b and “Methods” section). For example, a basic chemistry 
with A = 3 and L = 2 would have 12 metabolites and 9 reac-
tions. If we increase A by 1, the network would involve 20 
metabolites and 16 reactions. If we instead increased L by 
one, there would be 39 metabolites and 63 reactions. The 
network sizes therefore depend very differently on these two 
parameters (see “Methods” section). One of the important 
features of the package is that it can output networks both as 
a simple text file containing the stoichiometric matrix, and 
as a COBRApy model (Ebrahim et al. 2013), which can be 
exported as an SMBL file (Hucka et al. 2003) used in most 
tools developed to study real metabolic networks, including 
standard FBA calculations (Fig. 3).

While the principles constraining the structure of real 
metabolic networks are much more complicated than those 
giving rise to our string chemistry networks, string chemistry 
networks (of equal or lower complexity) can still reproduce 
some network-level properties of real chemistry networks 
(Riehl et al. 2010). As shown in Fig. 2a, b, specific sets of 
parameters in artificial chemistries can lead to networks that 
contain numbers of reactions and metabolites that are close 
to those of real metabolic networks. These numbers can be 
determined either numerically or analytically (see “Meth-
ods” section). Interestingly, even string chemistry networks 
with few unique characters and short maximum lengths (e.g., 
A = 4, L = 5; A = 2, L = 10) reach sizes comparable to those 
of the human, yeast and E. coli metabolic networks (Fig. 2a, 
b; Orth et al. 2010; Lu et al. 2019). However, as seen in Fig. 
S2, these artificial networks have a much higher connectivity 
(ratio of reactions to metabolites) than the real organisms’ 
metabolic networks. Conversely, a simple network with 
A = 1 and L = 3 would have a connectivity comparable to 
that of real metabolic networks, but would be much smaller. 

https://github.com/networkx/networkx
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One could then ask whether it is possible to create string 
chemistry networks that are both of similar sizes and con-
nectivities to those of real metabolic networks. Indeed, one 
should view the complete string chemistries depicted here as 
analogous to “complete chemical universes”, out of which 
a single organism’s metabolic network would constitute a 
small subset. As shown below, this concept can be explored 
in artificial chemistries by devising algorithms that can 
“prune” complete chemical networks to obtain subnetworks 
that resemble individual organisms’ metabolic networks.

Pruned Networks as Proxies for Evolved Organisms

Having established a method for quantitatively comparing 
properties of string chemistry networks to real metabolic 
networks, we explored the properties of string chemistry 
subnetworks that more closely resemble those of individual 
organisms. We thus modeled organism-scale metabolic net-
works as “minimal networks,” which use the fewest reac-
tions required to produce a desired set of metabolites (i.e., 
biomass precursors, in analogy with the building blocks of 
microbial biomass used to represent self-reproduction in 
the growth flux associated with genome-scale stoichiomet-
ric models (Orth et al. 2010; Lachance et al. 2019)). This 
minimal network structure is consistent with simple parsi-
monious evolutionary assumptions used in previous studies 
(Noor et al. 2010; Riehl et al. 2010; Pál et al. 2006). To 
identify these minimal networks from our string chemical 
universes generated using ARCHNET, we implemented a 
“pruning” algorithm that iteratively applies FBA to string 
chemistry networks. Briefly, the algorithm works by (1) 
applying FBA to a string chemistry network (initially set to 
the whole chemical universe given particular values of A and 
L) with some specified nutrient uptake reactions and a “bio-
mass” reaction (representing the metabolic objective of the 
network, e.g., biomass production for many real metabolic 
networks), (2) removing all reactions that have no flux, (3) 
testing whether or not the reaction with the smallest nonzero 
flux can be removed without eliminating flux through the 
biomass reaction, and (4) repeating until no reactions can be 
removed (see “Methods” section and Fig. S1).

One may wonder whether the structures of these pruned 
networks resembles those of real organisms’ metabolic net-
works. We addressed this question by computing degree and 
flux distributions for 100 pruned networks (A = 3, L = 7) and 
comparing them to the degree and flux distributions of the 
E. coli and S. cerevisiae metabolic networks (see “Methods” 
section). As shown in Fig. 2c, the pruned string chemistry 
networks tend to have scale-free degree distributions, just 
as the real metabolic networks do (Almaas et al. 2004). As 
shown in Cohen et al. (2004), scale-free networks are also 
necessarily small-world networks, and real metabolic net-
works are well known to be small-world networks (Wagner 

and Fell 2001). The distributions of fluxes through the 
pruned string chemistry networks strongly resemble the 
distributions of fluxes through the E. coli and S. cerevisiae 
networks when optimized for biomass production (Fig. 2d).

Given these structural similarities, we asked whether 
pruned networks could also reflect some of the functional 
properties of real networks. We looked specifically at met-
abolic secretions, as the ability to excrete waste products 
is a crucial component of cellular metabolism (Ferguson 
et al. 1998; Richards et al. 2013; Hart et al. 2019). Since 
the degree to which individual bacteria secrete metabolic 
intermediates and/or waste products varies dramatically 
from organism to organism, we examined two extreme cases 
with our pruning algorithm: one in which all metabolites in 
the network are allowed to be secreted, and one in which no 
metabolites are allowed to be secreted (i.e., the only sink in 
the network is the biomass reaction). We found that pruning 
while allowing secretion of waste products generally resulted 
in slightly smaller networks than pruning without allowing 
secretion (Fig. S2). This is likely because ensuring that all 
metabolic byproducts are internally recycled into biomass 
components requires more reactions than simply secreting 
them as waste products. We also note that the notion that 
secreting waste products leads to simpler metabolic net-
works may well be relevant in real microbial communities. 
For example, many microbial communities are sustained by 
costless secretions (Pacheco et al. 2019), which could lead to 
a reduction of metabolic capabilities in specific taxa (Morris 
et al. 2012).

Biomass Precursors Shape Network Composition 
More than Environmental Nutrient Composition

Using our pruning algorithm, we investigated the rela-
tive importance of the choice of nutrients and the choice 
of biomass precursors on the composition (i.e., identities 
of remaining reactions) of pruned networks. We generated 
a string chemistry universe with A = 2 and L = 5, then cre-
ated different biomass compositions (100 different sets of 5 
randomly chosen biomass precursors) and different sets of 
nutrients (100 random pairs of nutrients) using the metabo-
lites contained within this chemical universe. We note that 
upon choosing the biomass composition, a biomass reac-
tion was added to produce all chosen biomass precursors 
in equal proportions (see “Methods” section). We then ran 
the pruning algorithm on all possible combinations of these 
nutrients and biomass precursors (Fig. 4a). In order to com-
pare the compositions of the pruned networks, each network 
was represented as a binary vector with as many elements as 
there were reactions in the chemical universe. In this binary 
vector, a 1 represents a reaction that was kept in the pruned 
network and a 0 represents a reaction that was removed 
during pruning. These binary vectors were visualized on 
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UMAP plots (McInnes et al. 2018) (Fig. 4b–g). The main 
outcome of this analysis is that, regardless of whether or 
not export reactions are allowed, networks with the same 
biomass typically cluster together (Fig. 4b), while networks 
with the same nutrients frequently have very different com-
positions (Fig. 4c). The clustering is generally weaker in 
the networks pruned without export reactions—there are 
more isolated networks and distinct small clusters—but the 
pruned networks still noticeably cluster by biomass reaction 
(Fig. 4e, f). We also note that the clustering of networks does 
not seem to display any clear pattern in terms of achiev-
able growth rates (Fig. 4d, g), which are highly variable 
and roughly distributed around an intermediate value. In 
other words, networks with similar composition, as dictated 
by the biomass composition, may achieve substantially 

different growth rates, suggesting that while biomass com-
position dictates network composition, growth rates are not 
as straightforwardly determined by either biomass composi-
tion or environmental composition.

To assess the possibility that these results were an artifact 
of the arbitrarily chosen number of nutrients and biomass 
precursors, we investigated how the proportion of pruned 
reactions and connectivity of pruned networks change as 
the numbers of nutrients and biomass precursors vary (Figs. 
S4 and S5, respectively). While the proportion of pruned 
reactions clearly decreases as the number of biomass precur-
sors increases, as one might expect, it does not appear to be 
affected by the number of available nutrients. Figure S5 indi-
cates that the metabolite-to-reaction ratio is always around 1 
in pruned networks. These values are all slightly lower than 

Fig. 4   Choice of biomass precursors impacts structure of pruned net-
works more than choice of available nutrients. a Cartoon represen-
tation of how data shown in panels (b–g) was generated. b UMAP 
scatterplot of pruned networks with export reactions (see main text) 
generated as described in (a). Each point represents a different pruned 
network and the color of each point indicates the biomass reaction 

of that network. c Same as (b) but colors indicate which set of nutri-
ents the network was pruned with. d Same as (b) but colors indicate 
optimal biomass flux. e–g Same as (b–d) but networks were pruned 
without export reactions (see main text). All pruned networks were 
derived from the universal string chemistry network with A = 2 and 
L = 5
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those observed in real metabolic networks (Fig. S2), which 
likely reflects the fact that real metabolic networks must be 
capable of sustaining growth in multiple different environ-
ments, while the pruned string chemistry networks are only 
required to sustain growth in one particular environment. 
While we expect that the number of biomass precursors and 
nutrients may affect the composition of pruned networks in 
other more subtle ways, these findings support the idea that 
the results shown in Fig. 4 do not depend on the number 
of biomass precursors or nutrients used during the pruning 
process.

Discussion

We have created ARCHNET, a Python package capable 
of performing stoichiometric modeling on string chemis-
try networks of arbitrary size and monomer diversity. We 
have also devised a pruning algorithm for these networks, 
which identifies minimal metabolic networks necessary for 
converting a given set of environmental nutrients into a spe-
cific combination of biomass precursors. By applying this 
pruning algorithm to many thousands of string chemistry 
networks, we found that the choice of the biomass metabo-
lites wields much more influence over the composition of the 
minimal network than the choice of environmental nutrients. 
Beyond this finding, our package could be used to further 
quantitatively explore any aspect of the complex relation-
ship between metabolic network structure, environmental 
diversity, and biomass composition.

It is important to keep in mind that while in the current 
work we verified the robustness of some of our results rela-
tive to a number of free parameters, there are additional 
choices of the underlying string chemistry and pruning 
algorithm that could influence the results. In particular, as 
described above, and shown in Figs. S4 and S5, we verified 
that pruned network properties depend only mildly on the 
choice of the number of biomass components and nutrients, 
suggesting that downstream analyses would similarly be 
robust relative to these two parameters. When generating 
the pruned networks shown in Fig. 4, all stoichiometric coef-
ficients used in all involved biomass reactions were 1, so in 
Fig. S6 we verified that varying the values of these stoichio-
metric coefficients does not significantly alter the main con-
clusions drawn from Fig. 4. To generate the pruned networks 
in Fig. S6, the ensembles of networks with identical biomass 
reactions and varied nutrients (see Fig. 4a for a schematic) 
underwent one additional modification before pruning: each 
stoichiometric coefficient in each network’s biomass reac-
tion was changed from 1 to a random integer between 1 
and 10 (inclusive). As shown in Figure S6a, pruned net-
works with the same biomass precursors (but not necessarily 
the same stoichiometric coefficients) cluster together to a 

comparable extent as the pruned networks in Fig. 4b. The 
pruned networks do not seem to cluster by nutrient sources 
in either Figs 4c, f or S6b. No particular sets of biomass 
precursors seem to result in consistently higher or lower 
maximum growth fluxes than any other sets (Figs. 4d, g and 
S6c). Further analyses may uncover more subtle ways in 
which the particular values used in the stoichiometric coeffi-
cients of biomass reactions relate to the structures of pruned 
networks.

There are also a number of ways in which the string 
chemistry model presented here could be made more com-
plex and/or realistic. One could try to explicitly model more 
features of real chemical reactions (e.g., thermodynamics, 
kinetics), along the lines of the methods mentioned in the 
introduction. The role of reaction irreversibility represents 
a key area of future exploration: while all internal reactions 
are currently assumed to be perfectly reversible, variable 
degrees of reaction reversibility (e.g., induced by free energy 
assignments) could be added to string chemistries to reca-
pitulate features observed in real metabolism. One could 
also introduce regulatory interactions between metabolites 
and reactions by connecting the fluxes through particular 
metabolites to the constraints on fluxes through other reac-
tions. Notably, while each of these possible modifications 
would not necessarily dramatically change the string chem-
istry framework, the combinatorial interactions of all the 
various new parameters would dramatically increase the 
space of possible networks to explore and characterize, pro-
viding ample opportunities for future work with artificial 
chemistries.

We believe that our finding about the relative importance 
of biomass composition and environmental metabolites has 
important consequences for the process of reconstructing 
real metabolic networks. A key step in the process of creat-
ing Genome-Scale Metabolic Models (GEMs) is the process 
of gap filling, where missing reactions (“gaps”, usually due 
to incomplete experimental data) in draft GEMs are imputed 
using a variety of methods (Thiele et al. 2014; Satish Kumar 
et al. 2007; Prigent et al. 2017; Christian et al. 2009; Vitkin 
and Shlomi 2012). Gap-filling algorithms generally function 
by identifying a minimal set of reactions to add to the draft 
GEM in order for it to be capable of producing biomass, so 
they require users to specify a particular biomass reaction. 
Frequently, the so-called “template” biomass reactions are 
used for all bacteria in a particular taxa (e.g., many GEMs 
of Gram-negative bacteria are created using the E. coli bio-
mass reaction) due to the significant difficulty of obtain-
ing the extensive experimental data required to determine 
a particular organism’s biomass composition (Henry et al. 
2010; Xavier et al. 2017). Our finding about the role bio-
mass composition plays in determining the composition of 
pruned networks, along with a previous study that found that 
bacterial GEMs clustered more strongly by which biomass 
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reaction was used as a template than by taxonomy (Xavier 
et al. 2017) both suggest that careful consideration should 
be put into the choice of a biomass reaction when using gap-
filling algorithms.

The pruning algorithms presented in this work bear some 
resemblance to certain gap-filling algorithms, algorithms 
for identifying Elementary Flux Modes (EFMs) (Schuster 
et al. 2000), and algorithms for identifying Minimal Bal-
ance Pathways (MBPs) (Riehl et al. 2010). Some gap-filling 
algorithms iteratively add and remove reactions from a large 
pool of possible reactions, eventually converging to an opti-
mally gap-filled network (Vitkin and Shlomi 2012; Reed 
et al. 2006; Pharkya et al. 2004). Some algorithms for deriv-
ing tissue-specific metabolic networks from generic human 
metabolic networks also function similarly (Machado et al. 
2018; Jerby et al. 2010). EFMs represent every independ-
ent route from a source to a sink through a metabolic net-
work and are often considered a basis set for the space of 
possible fluxes through a network; the pruned networks we 
present here may converge to EFMs of string chemistry net-
works for certain input/output metabolite cases, but further 
research may identify additional connections between the 
two concepts. Since MBPs represent the optimal set of reac-
tions for converting a single input metabolite into a single 
output metabolite, our pruned networks could be viewed as 
an extension of MBPs with multiple inputs and multiple 
outputs. All of these algorithms, including our pruning algo-
rithms, aim to identify “optimal” networks under certain 
criteria of optimality; further exploration of the similarities 
and differences between these approaches may lead to a bet-
ter understanding of what one should consider an optimal 
metabolic network to be like.

The pruning algorithm presented in this paper is far from 
the only algorithm that accomplishes the goal of narrow-
ing down a metabolic network to its essential components, 
given an environment and a biomass composition. In an 
attempt to verify that the precise details of how our pruning 
algorithm was formulated do not substantially impact the 
main results of this work, we created an alternate pruning 
algorithm: instead of removing the reaction with the small-
est flux, the new pruning algorithm computes the change in 
biomass flux that would result from every possible single 
reaction deletion and removes the reaction with the small-
est impact on biomass flux at each pruning step. The two 
pruning algorithms generally remove the same reactions at 
each step of the algorithm (Fig. S7) and usually wind up 
producing very similar output networks when given the same 
input (Fig. S8). Furthermore, when reproducing the analysis 
shown in Fig. 4a with the biomass-focused pruning algo-
rithm, the results are entirely comparable to those obtained 
using the original pruning algorithm (Fig. S9). Based on 
these analyses, we believe that the specific criterion used to 

decide which reactions should be pruned do not meaning-
fully change the main conclusions of this paper.

One can view both of these pruning algorithms as analogs 
of reductive evolutionary processes: the flux-based prun-
ing algorithm selects against reactions that carry little flux, 
while the biomass-based pruning algorithm selects against 
reactions that contribute little to biomass production. One 
could imagine that a microbe growing in a nutrient-poor 
environment might stop devoting resources to expressing 
metabolic enzymes that catalyze reactions that carry little 
flux and are not essential for biomass production. Similarly, 
one could imagine a competitive environment in which an 
organism capable of achieving similar growth rates to its 
neighbors while devoting fewer resources to producing meta-
bolic enzymes that do not substantially contribute to biomass 
production would outcompete its neighbors. The pruned 
networks are also reminiscent of the metabolic networks of 
certain marine plankton species that only express half of 
the enzymes in the citric acid cycle, since other microbes 
in their environment secrete the appropriate intermediates 
and there is strong selective pressure to reduce genome size 
due to low availability of nitrogen (Braakman et al. 2017). 
While the outputs of both pruning algorithms are generally 
similar, there is a small subset of initial networks that are 
pruned rather differently by the two algorithms (Fig. S8); 
studying these cases in more detail may yield new insights 
into general features of these different types of evolutionary 
processes.

Several previous studies used artificial chemistry as an 
avenue for addressing questions related to the origin of 
life or to general mathematical properties of biochemical 
networks (Banzhaf and Yamamoto 2015; Kauffman 1993; 
Benkö et al. 2003; Walter Fontana and Buss 1994a, b; Peng 
et al. 2020). Conversely, FBA has been applied mostly to 
the study of metabolic networks of real organisms (Gu et al. 
2019; Kauffman et al. 2003; Orth et al. 2010). There is likely 
great untapped potential available from combining the two 
approaches. In particular, the recent application of stoichio-
metric approaches to the study of early metabolism (Gold-
ford and Segrè 2018) and of ecosystem-level biochemical 
networks (Carlson et al. 2018; Klitgord and Segrè 2010; 
Harcombe et al. 2014) could greatly benefit from additional 
creative usage of artificial chemistries. For example, the 
capacity to handle artificial string chemistries of arbitrary 
complexity using these same stoichiometric tools makes it 
possible to explore evolutionary processes and ecosystem-
level metabolism under simulated scenarios in which the 
whole chemical universe is fully known. One could create an 
assortment of string chemistry networks using ARCHNET 
and model their interactions using tools such as COMETS 
(Dukovski et al. 2020). This will make it possible to shed 
light on the role of historical contingency and optimality 
principles in shaping the structure of metabolic networks.
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