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The nervous system is highly vulnerable to different factors which may cause injury
followed by an acute or chronic neurodegeneration. Injury involves a loss of extracellular
matrix integrity, neuronal circuitry disintegration, and impairment of synaptic activity and
plasticity. Application of pleiotropic molecules initiating extracellular matrix reorganization
and stimulating neuronal plasticity could prevent propagation of the degeneration
into the tissue surrounding the injury. To find an omnipotent therapeutic molecule,
however, seems to be a fairly ambitious task, given the complex demands of the
regenerating nervous system that need to be fulfilled. Among the vast number of
candidates examined so far, the neuropeptide and hormone ghrelin holds within a very
promising therapeutic potential with its ability to cross the blood-brain barrier, to balance
metabolic processes, and to stimulate neurorepair and neuroactivity. Compared with
its well-established systemic effects in treatment of metabolism-related disorders, the
therapeutic potential of ghrelin on neuroregeneration upon injury has received lesser
appreciation though. Here, we discuss emerging concepts of ghrelin as an omnipotent
player unleashing developmentally related molecular cues and morphogenic cascades,
which could attenuate and/or counteract acute and chronic neurodegeneration.
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INTRODUCTION

Nervous system injury is a remarkably complex process which includes blood-brain-barrier
interruption, vascular damage, severe consequences of unsustainable hemorrhage and aberrant
metabolic state. The intricacy of damage is due to activation of neuronal and glial apoptosis,
release of molecules suppressing regenerative responses and attraction of immune cells as well
as microglia activation. Therefore, it might seem peculiar to expect that a single molecule
could provide effective treatment of this complex trauma, let alone entail a complete functional
recovery. However, a growing body of evidence suggests that the complexity of injury can be
counteracted with pleiotropic molecules able to stimulate manifold regenerative events. In addition
to multifaceted functions, a good candidate for treatment of nervous system injury must give robust
and reproducible effects in different experimental models of injury (Kessler, 2010). Of note, the time
frame of therapeutic intervention after injury is critical (Lee et al., 2010; le Feber et al., 2016) and
no single intervention with a candidate of interest can be expected to easily address all demands of
the regenerating nervous system (Kessler, 2010).
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Experimental evidence collected over the past two decades
has raised the possibility that the 28 amino acid-long and
evolutionary conserved neuropeptide hormone ghrelin may have
a therapeutic potential for treatment of nervous system injury. In
this review, we have focused on different schools of thought and
heuristics related to ghrelin’s roles in nervous system repair and
discuss the emerging concepts of ghrelin-mediated regeneration.

GHRELIN EXPRESSION AND SIGNALING

Ghrelin Regulates a Multitude of
Physiological Processes in the Body
Increasing body of evidence suggests that the gastric hormone
ghrelin may have various physiological functions in addition to
its primary role to activate the hypothalamic orexigenic neurons
(Al Massadi et al., 2017). Initially, ghrelin has been found in
the enteroendocrine cells of the gastric fundus (Kojima et al.,
1999; Sakata et al., 2002), followed by reports on its expression
in other organs, such as kidney (Mori et al., 2000), placenta
(Gualillo et al., 2001; Allbrand et al., 2018), Leydig and Sertoli
cells of the testis (Barreiro et al., 2002), pancreas (Date et al.,
2002; Wierup et al., 2002), and distinct brain areas (Kojima et al.,
1999; Cowley et al., 2003; Hou et al., 2006; Cabral et al., 2013; for
further review see also Stoyanova, 2014). However, these data are
quite inconsistent, probably due to methodological differences.
As discussed in detail by a recent review, ghrelin is even not
synthesized at physiologically relevant levels in the mammalian
brain (Cabral et al., 2017).

The ghrelin gene encodes pre-proghrelin, which is cleaved to
proghrelin. Proghrelin is further cleaved to produce unacylated
ghrelin (desacylghrelin or DAG), devoid of endocrine functions
but able to suppress cell proliferation (Cassoni et al., 2001;
Broglio et al., 2003), and an acylated form referred to as ghrelin
(Hosoda et al., 2000): its highly conserved N-terminal backbone
is post-translationally acylated (Kojima et al., 1999; Ariyasu
et al., 2001) by the enzyme ghrelin-O-acyl transferase (GOAT,
Yang et al., 2008). Esterification of approximately 20% of the
circulating ghrelin in humans takes place in the ghrelin-secreting
cells, where the N-terminus of the molecule is hydrophobically
tailored (Hosoda et al., 2000). It is very likely that there is a
hydrophobic interaction between the n-octanoyl group and the
growth hormone secretagogue receptor (GHSR1a), which allows
recognition and binding of ghrelin (Bednarek et al., 2000).

Since GOAT is required for the synthesis of ghrelin it
is interesting to analyze whether the distribution of GOAT
expression may match with the potential places of ghrelin
production. In humans, GOAT mRNA transcripts are expressed
mainly in the stomach and pancreas (Gutierrez et al., 2008), and
in the vast majority of organs according to Lim and collaborators
(Lim et al., 2011). Such transcripts have been detected in the
murine intestines, testis, pituitary gland, and hypothalamus
(Sakata et al., 2009), and at very low levels in the porcine brain,
liver, lungs, ovaries, and muscles (Lin et al., 2011). Co-expression
of GOAT and ghrelin has been found in the stomach but fewer of
the duodenal ghrelin-positive cells had contained GOAT, which
could be explained with the morphological differences between
the cells: only the so-called closed-type ghrelin cells express

the enzyme (Sakata et al., 2009). Another research group has
considered that the levels of ghrelin- and GOAT-gene expression
are quite low, thus challenging the proper mapping of ghrelin’s
secretion as well as the clarification of whether hypothalamic
pre-proghrelin mRNA is translated to protein and whether both
pre-proghrelin and GOAT mRNA are present in the same cells
(Cabral et al., 2017).

There are hypotheses suggesting that ghrelin is degraded
or modified in tissues and blood by other unknown enzymes
(De Vriese et al., 2004; Satou et al., 2011) which might affect
ghrelin’s structure (post-translational modifications, truncation)
and functions (interaction with GHSR1a and other partners,
ability to cross the blood-brain barrier). It seems that variations in
the protein backbone as well as post-translational modifications
orchestrate the ability of ghrelin to cross the blood-brain barrier
and its retention within the brain tissue (Banks et al., 2002).
The brain accessibility of ghrelin has been thoroughly reviewed
by Perello and colleagues (Perello et al., 2019). Furthermore,
there is little consistency in the general view on the relationship
between structure and functions of ghrelin. Early studies have
demonstrated that the first 4–5 residues of ghrelin are sufficient
to functionally activate GHSR1a to the same extent as the full-
length peptide does (Bednarek et al., 2000; Satou et al., 2011).
Yet, according to Torsello and collaborators, the molecular
length is not crucial for ghrelin’s activity (Torsello et al., 2002).
These contradictory findings raise researchers’ awareness of
the significance of ghrelin’s truncation and demand additional
experimental evidence.

Ghrelin circulates in the blood stream (Date et al., 2000) and
in the cerebrospinal fluid (Mogi et al., 2004). Though it seems
difficult to determine the amount of circulating DAG in healthy
human plasma under optimal sample handling and assaying
conditions, the amount of the modified form has been estimated
as 10% of the total circulating peptide (Ariyasu et al., 2001).
Ghrelin’s concentration in the human plasma has been measured
to be 117± 37.2 fmol/µl, which corresponds to 0.117 µM. Given
that the molecular weight of human ghrelin is 3370.9 g/mol
(according to PubChem1, ghrelin is also known as lenomorelin,
compound CID: 91668172), the mass concentration of ghrelin
in the plasma can be calculated as 394.4 ng/l. For a sample
of 15 µl volume which shall be subjected to immunoblotting,
the concentration of ghrelin will be 0.006 ng, which appears to
be far below the detection limits of the method (approximately
0.1 ng of protein for an average standard immunoblot analysis).
Furthermore, in the presence of serine proteases and HCl no
accurate measurements are possible because they lead to de-
acylation of ghrelin (Blatnik et al., 2012). Nonetheless, there
are some other methods for quantitative assessment of ghrelin
in plasma and tissue samples such as the reverse phase high
performance liquid chromatography, radioimmunoassay (Date
et al., 2000), sensitive immunoblotting (Shanado et al., 2004),
and mass spectrometry combined with liquid chromatography
(Rauh et al., 2007).

Interestingly, ghrelin is the only known endogenous ligand
activating the GHSR1a (Kojima et al., 1999; Bednarek et al.,
2000). Of note, the receptor is highly expressed in the nervous

1https://pubchem.ncbi.nlm.nih.gov/compound/
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system (Guan et al., 1997; Muccioli et al., 1998; Mitchell et al.,
2001; Zigman et al., 2006; Andrews, 2011; Bron et al., 2013).
GHSR1a is a G protein-coupled receptor product of the Ghsr
gene, which encrypts two variants of GHSR mRNA, type 1a and
1b (Petersenn et al., 2001). GHSR1a operates in two different
activation modes: an agonist-induced, ghrelin binding and a
constitutive mode (Holst et al., 2003). Neither does GHSR1b
bind ghrelin nor has this receptor form been known to exert
a signal transduction activity (Howard et al., 1996). However,
both receptor forms can heterodimerize within the endoplasmic
reticulum and decrease the constitutive activity of GHRS1a by
attenuating its cell surface expression (Chow et al., 2012). The
agonist-induced receptor activity is involved in the control of
energy balance as well as in hedonic and addictive aspects
of eating (Perello et al., 2010; King et al., 2011; Perello and
Dickson, 2015). The constitutive functional mode of ghrelin’s
receptor is chronic and triggered by scarce specific inverse
agonists (Holst et al., 2007). It significantly reduces pre-synaptic
voltage-gated calcium (CaV) channel trafficking (López Soto
et al., 2015) by elevating the retention of CaV complex in the
endoplasmic reticulum. Because CaV2.1 and CaV2.2 channels are
involved in calcium-induced transmitter release, their inhibition
by GHSR1a’s constitutive activity could be relevant in brain areas
with high density of ghrelin receptor but with limited access for
ghrelin, such as the hippocampus (Cabral et al., 2015).

The tissue distribution of GHSR1a has been extensively
studied by means of different neuroanatomical techniques.
GHSR1a expression has been shown in distinct brain areas
with varying degrees of neuronal plasticity. For example, in situ
hybridization histochemistry has divulged particularly high levels
of GHSR1a in the arcuate (ARH) and ventromedial hypothalamic
nucleus (VMH) (Howard et al., 1996; Bennett et al., 1997), but
the method is not sensitive enough toward cell surface receptors
with relatively low mRNA levels. With novel cRNA probes
the mRNA encoding the functional GHSR1a was confirmed in
brain areas previously unknown to express GHSR1a (Zigman
et al., 2006). Moreover, these cRNA probes allow the study
of co-localization of GHSR1a with certain neurotransmitters,
i.e., dopamine and cholecystokinin. Such findings indicate that
ghrelin can selectively amplify dopamine signaling in neurons
co-expressing dopamine-1 receptor and GHSR1a. During the
last years, different mouse models have been engineered to
express reporter genes driven by transcriptional regulatory
regions of the gene-of-interest. Such targeted knock-in approach
with replacement of GHSR1a coding region with that of β-
galactosidase (Diano et al., 2006) has allowed the visualization
of cells that would express GHSR1a. However, this mouse model
is not suitable for simultaneous functional studies (Mani et al.,
2014), whereas mouse models carrying tau green fluorescent
protein (eGFP) downstream of an internal ribosome entry site
have been more appropriate for such studies (Jiang et al., 2006),
thereby revealing eGFP-immunoreactivity in brain areas lacking
or barely expressing GHSR1a (Mani et al., 2014).

Ghrelin, GOAT, and GHSR1a form a functional triad that
is evolutionally conserved (Tine et al., 2016) and triggers
downstream signaling (Hou et al., 2016; Bender et al., 2019) to the
cell nucleus, thus affecting gene expression underlying neuronal

survival and plasticity (Dolmetsch et al., 2001). Interestingly,
the majority of circulating ghrelin is DAG (Ariyasu et al.,
2001), and unable to activate GHSR1a, but DAG can act
independently as a hormone or together with ghrelin to modulate
physiological and pathological processes (Broglio et al., 2004;
Thompson et al., 2004; Pacifico et al., 2009; Delhanty et al.,
2014). Moreover, intraperitoneal administration of ghrelin or
DAG activates c-Fos in the ARH, while when simultaneously
injected, DAG abolishes the effect of ghrelin on neuronal activity
(Inhoff et al., 2008).

Since its discovery ghrelin has been speculated as an orexigenic
molecule regulating energy homeostasis and body weight as well
as an initiator of eating, because ghrelin’s levels rise before meals
and fall shortly after feeding (Cummings et al., 2001; Tschöp
et al., 2001; Cummings, 2006; Nass et al., 2008, 2011; Kojima and
Kangawa, 2010). Mouse models with overexpression or genetic
deletion of ghrelin, GHSR1a and GOAT, or deficiency of both
ghrelin and GHSR1a, have been used to study the role of each of
the ghrelin-triad components in eating behavior and metabolism
control (Sun et al., 2003, 2004; Wortley et al., 2004; Perello
et al., 2010; Zhao et al., 2010; Davis et al., 2012; McFarlane
et al., 2015). Moreover, models with site-selective expression of
GHSR1a provide evidence that ghrelin plays a role in stress-
induced eating (Chuang et al., 2011). Genetically manipulated
models have further demonstrated that ghrelin is a regulator of
blood glucose levels under conditions of famine (McFarlane et al.,
2014). A broadened view on ghrelin as a key player in seeking
and storage of energy and also in mitigation of energy shortfall
has emerged (Tschöp et al., 2000; Muller et al., 2001; Gauna
et al., 2004; Delhanty and van der Lely, 2011; Andrews, 2019); for
a more detailed review of these experimental set-ups and their
outcome see also Uchida et al. (2013).

The pleiotropic image of ghrelin is created by the complexity
of signaling pathways modulated by the peptide. On the
one hand, ghrelin is a unique substrate for GOAT (Darling
et al., 2015), but when circulating in the blood stream,
the peptide is prone to the activity of several esterases
reversing the process of acylation (De Vriese et al., 2004).
When reaching a target cell with a surface-exposed GOAT,
DAG can be re-acylated to activate local GHSR1a-dependent
downstream signaling (De Vriese et al., 2004; Gahete et al.,
2010; Hopkins et al., 2017; Murtuza and Isokawa, 2018; for a
review also see Abizaid and Hougland, 2020), which induces
phosphorylation of extracellular regulated protein kinases
ERK1/2, phosphatidylinositol 3 kinase (PI3K), and protein kinase
B (Kohno et al., 2003, 2008). These findings suggest that on-
demand, a local re-acylation of DAG at the target cell surface
might be enabled by retrieval of the necessary amount of DAG
from the circulating repository; however, the hypothesis needs
further confirmation.

It should be noted that in Parkinson’s disease (PD) patients
with dementia, the ratio ghrelin/DAG is considerably lower
as well as the number of GOAT-positive cells within the
hippocampal granule cell layer. Therefore, less hippocampal cells
may acylate DAG, which would result in reduction of ghrelin-
stimulated GHSR1a signaling and cognitive deficits (Hornsby
et al., 2020). These findings shed more light into the adult brain
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plasticity and suggest new therapeutic strategies for treatment of
mnemonic dysfunction.

On the other hand, the recently discovered liver-expressed
antimicrobial peptide 2 (LEAP2) has been also recognized as
an endogenous ligand for GHSR1a acting in an antagonistic
manner to ghrelin (Ge et al., 2018). LEAP2 fully inhibits GHSR1a
activation by ghrelin and averts the major effects of ghrelin
during chronic caloric restriction. Of note, the LEAP2/ghrelin
ratio determines the GHSR1a-dependent signaling, whereby
domination of LEAP2 blocks binding of ghrelin to GHSR1a
(Mani et al., 2019). However, LEAP2 may suppress ghrelin effects
via other mechanisms, independently of GHSR1a, based on an
inverse relationship that has been found between the plasma
levels of both proteins when nutritional status changes (Ge
et al., 2018). The active part in LEAP2 inhibiting the ghrelin
receptor is the N-terminal region, as determined recently by
M’Kadmi and collaborators (M’Kadmi et al., 2019). LEAP2 and
its N-terminal act as inverse agonists of GHSR1a by stabilizing
an inactive conformation of the receptor, thus antagonizing
ghrelin at triggering inositol phosphate 1 production and
Ca2+ mobilization. Hence, the endogenous inverse agonist of
GHSR1a has drawn attention to development of anti-obesity
pharmacological agents. Systemic LEAP2 administration in mice
suppresses only ghrelin-stimulated food intake and growth
hormone release (Ge et al., 2018), while in rats intraventricularly
injected LEAP2 completely abolishes the central ghrelin effects
(activation of the hypothalamic neurons, promotion of food
intake, increase of blood glucose level, and body temperature
reduction) but does not inhibit the central effects of DAG (Islam
et al., 2020). However, it is still unclear whether LEAP2 can cross
the blood-brain-barrier similarly to ghrelin in order to affect
GHSR1a in the central nervous system (Abizaid and Hougland,
2020). Further experiments have shown that GHSR1a can form
complexes with melanocortin accessory protein 2 (MRAP-2) in
the ventral hypothalamus to benefit the orexigenic effects of
ghrelin (Srisai et al., 2017).

Ghrelin Modulates Downstream
Signaling Cascades in the Developing
and Adult Nervous System
There is no ghrelin production in the stomach of the rat fetus
until embryonic day 19 (Hayashida et al., 2002), yet the fetal
plasma levels of DAG are 5- to 10-fold higher than this in
the maternal circulation (Nakahara et al., 2006). The maternal
peptide is transferred to the fetal circulation during the second
half of the pregnancy (Nakahara et al., 2006) and DAG in
the amniotic fluid has been shown to stimulate fetal skin and
spinal cord development (Sato et al., 2006). The maternal-fetal
ghrelin traffic appears to be neuroprotective and important for
neurogenesis, as exogenous chronic treatment of the mother
with ghrelin can prevent neural tube defects in the fetus
(Yuzuriha et al., 2007).

Ghrelin and DAG have differential effects on neurogenesis
in distinct parts of the brain in a time-dependent manner.
They promote neurogenesis including proliferation of neuronal
precursor/stem cells during fetal development via GHSR1a and

another yet undefined way for DAG (Nakahara et al., 2006; Sato
et al., 2006) which seems to become unfunctional in precursor
cells after parturition. Immunohistochemistry in combination
with GHSR-eGFP reporter mice has more precisely revealed
GHSR1a in several brain regions, including the olfactory bulb
(OB) but not in the subventricular zone (SVZ) of the lateral
ventricle (Ratcliff et al., 2019). Surprisingly, ghrelin seems to
have no direct effect on the neuronal stem/precursor cells in
the SVZ and does not increase adult OB neurogenesis. In
contrast, fasting and re-feeding activate newly formed OB cells
in ghrelin-mediated manner, suggesting that these newborn
cells are uniquely sensitive to changes in ghrelin levels (Ratcliff
et al., 2019). In the hippocampal neurogenic niche, GHSR1a
is expressed in mature granule cells of the dentate gyrus and
elevated ghrelin levels inflicted by fasting seem to enhance adult
neurogenesis and memory (Kent et al., 2015; Hornsby et al.,
2016).

The hypothalamic arcuate nucleus (ARH) is a key point
of the neuronal network regulating body weight and energy
homeostasis. The ARH neurons are directly regulated by
leptin and ghrelin (Dickson, 2002; Elmquist et al., 2005).
These neurons project to the paraventricular nucleus (PVN)
and are considered as a major regulator of food intake
(Williams and Elmquist, 2012). The ARH neurons can undergo
GHSR1a-mediated morphological and functional remodeling
under energy deprivation (Cabral et al., 2020). This makes the
ARH nucleus very useful for studying the effects of ghrelin
on neuroplasticity under such conditions. Ghrelin’s activity
during the perinatal period is important not only for proper
maturation of axonal projections of the ARH neurons but
also affects the adult metabolic regulation. Thereby, correct
timing and magnitude of ghrelin’s action are crucial, because
both excess as well as shortage of ghrelin at that period
cause alterations in hypothalamic development and long-term
metabolic perturbations (Steculorum et al., 2015). These findings
bear a clinically relevant content, whose potential might be
therapeutically translated into strategies for prevention or/and
amelioration of metabolic malprogramming, e.g., in the case
of Prader-Willi syndrome (Feigerlová et al., 2008) or in the
case of intrauterine and/or neonatal malnutrition (Desai et al.,
2005) associated with higher risks of developing hyperphagia and
obesity in later life.

In some areas of the nervous system, such as the spinal
cord and hypothalamus, ghrelin rather than DAG plays the
leading role in adult neurogenesis (Moon et al., 2009b; Inoue
et al., 2010). Important to mention here is that in the adult
brain fasting increases the density of ARH projections to
the PVN, the number of dendritic spines and the density of
excitatory synapses (Liu et al., 2012; Cabral et al., 2020). As
established by Cabral et al. (2020), this neuronal remodeling is
GHSR1a-mediated and depends on the energy balance. Ghrelin’s
binding to GHSR1a acutely modulates calcium currents and
neurotransmitter release. However, the constitutive activity of the
receptor can also impair signaling in chronic, Gi/o- and CaVb-
subunit-dependent and voltage-independent manner (López
Soto et al., 2015). In vitro studies on hippocampal neurons
revealed in-depth the role of GHSR1a’s constitutive activity in
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inhibitory neurotransmission: it leads to a decrease of CaV
channel density at the plasmalemma and a simultaneous increase
of their expression at the endoplasmic reticulum and Golgi
apparatus (Martínez Damonte et al., 2018). This chronic effect
depends on the sustained receptor signaling and not on its
subcellular location; it would be more relevant during periods
of development, synaptogenesis and adult neurogenesis, when
the calcium trafficking is more intensive (Bergami et al., 2015;
Nakamura et al., 2015).

Interestingly, ghrelin receptor knock-out fetuses do not
display any body weight or food intake abnormalities, possibly
owing to a neonatal compensatory mechanism by other
developmentally related molecules such as growth factors
(Luquet et al., 2005; Sato et al., 2006). Several neurotrophic
factors are able to promote neurogenesis in the hippocampus.
The stimulatory effect of ghrelin in adult neurogenesis seems to
be interceded by the brain derived neurotrophic factor (BDNF)
(Bekinschtein et al., 2013). Of note, hippocampal neuronal
stem/progenitor cells (NSPCs) do not express GHSR1a (Hornsby
et al., 2016) and in vitro supplementation of ghrelin to these
cells does not lead to proliferation. However, ghrelin increases
BDNF mRNA expression in the hippocampus, which explains
the stimulatory effect of ghrelin on division and survival of
newborn neurons in primary hippocampal cultures, containing
both neurons and NSPCs (Hornsby et al., 2020).

The role of ghrelin in adult neurogenesis was also confirmed
in ghrelin knock-out mice (Li et al., 2013), GOAT knock-out
mice and patients suffering from chronic neurodegenerative
disorders (Hornsby et al., 2020). The neurogenic effect of
ghrelin is due to activation of multiple signaling pathways,
such as extracellular signal-regulated protein kinase 1 and
2 (ERK1/2), phosphoinositide 3-kinase (PI3K), Akt/glycogen
synthase kinase (GSK)-3 β, PI3K/Akt/mammalian target of
rapamycin (mTOR)/p70S6K, and Janus kinase (JAK) 2/signal
transducer, and activator of transcription (STAT) 3 signaling
pathway (Chung et al., 2013; Figure 1). As a result, ghrelin
increases nuclear expression of the transcription factor E2F1
(triggers progression from G1 to S phase of cell cycle) and
protein levels of positive regulators of the cell cycle cyclin A
and cyclin-dependent kinase 2 (CDK2), and at the same time
ghrelin downregulates the inhibitors of CDK2, protein p27KIP1

and p57KIP2 (Chung and Park, 2016). Thus, ghrelin controls
the cell cycle of hippocampal neural stem cells bi-directionally:
the peptide stimulates the positive and inhibits the negative
regulators (see also Figure 1).

The ability of ghrelin to regulate the cell cycle is also relevant
for tumor progression (Zhu et al., 2018), especially for hormone-
dependent tumor cells (Holly et al., 1999; Jeffery et al., 2003).
Many studies report co-localization of ghrelin and GHSR1a
and/or GHSR1b in specimens from malignant entities [for a
review see Nikolopoulos et al. (2010), Kraus et al. (2016)],
thus implicating an autocrine/paracrine role of ghrelin in cell
proliferation (Jeffery et al., 2002). However, the functional roles
of ghrelin in the modulation of cancer cell fate are controversially
debated. A study has reported that ghrelin stimulates oral tumor
proliferation through phosphorylation of GSK-3β and nuclear
translocation of β-catenin, and up-regulation of the target genes

cyclin D1 and c-myc (Kraus et al., 2016). Ghrelin may also
contribute to cancer metastasis, since it increases expression,
nuclear translocation and promoter-binding activity of Snail, a
transcriptional repressor of E-cadherin (Lin et al., 2015). The
effect is dose-dependent: low doses promote tumor proliferation,
whereas high doses suppress cell growth (Nikolopoulos et al.,
2010). It is very unlikely that ghrelin has cancerogenic effects,
because the protein acts rather cell protectively by suppressing
inflammation, apoptosis, and oxidative stress. But for all that,
there is still no clear answer to whether ghrelin may attenuate
malignancy and this matter requires further investigation.

The experimental evidence that ghrelin affects neurotrophic
factors has led to the question of whether ghrelin gives similar
effects as the neurotrophic factors do when being therapeutically
applied to injured tissue. In experimental injury models, the
protective effects of exogenously administered growth factors
depends on the way and time of their administration. For
example, intravenous infusion of basic fibroblast growth factor
(βFGF) for three consecutive days prior to permanent middle
cerebral artery infarction and temporary bilateral carotid artery
occlusion reduces the infarct size by 25% in rats (Koketsu et al.,
1994; Sugimori et al., 2001). No such morphological effect has
been observed when βFGF was injected intracisternally 24 h after
stroke, in spite of the achieved functional recovery (Kawamata
et al., 1997). Similarly, when ghrelin was used as a protective agent
postoperatively (Bianchi et al., 2016b) or in an animal model of
liver injury (Mao et al., 2015b), it triggers different molecular
mechanisms of repair. For instance, time course analysis of
ghrelin-induced anti-fibrotic effect on gene expression showed
that ghrelin does not activate fibrinolytic pathway but rather
suppresses the initiators of inflammation except for the matrix
metalloproteinases: at day 1 post-surgery, ghrelin significantly
downregulates transforming growth factor beta 3 (TGFβ3),
TGFβ-receptor 2, Interleukin 4 (IL4), IL13 receptor α2 (IL13rα);
at day 4 it activates TGFβ3, tumor necrosis factor, IL4, IL13rα2,
Smad7; at day 20 – TGFβ2, IL4 (Bianchi et al., 2016b). Ghrelin
up-regulates Smad7 at day 4, prevents Smad3 and/or Smad2
phosphorylation and recruitment of Smad2/Smad3 complex
which blocks βTGFb activity, as shown in some organs (Nakao
et al., 1999; Fukasawa et al., 2004; Dooley et al., 2008)8), and thus,
prevents fibrosis (see also Figure 1). Clear conditioning- and
time-related patterns of ghrelin’s expression have been detected
in neonatal dissociated cultured cortical neurons of rats with
high expression levels very early, which decrease as neurons
maturate during the next 2 weeks (Stoyanova et al., 2009a,b).
This matches the in vivo time course of network formation,
the survival of which depends on synaptic consolidation and
activation (Romijn et al., 1981; Voigt et al., 2005). Such findings
suggest that ghrelin influences early synapse formation and
neuronal communication, both of which are crucial for brain
development and functioning.

The morphological substrate of learning and memory
consolidation is the neuronal networks. The main phases of
their development and activation have been extensively studied
in dissociated stimuli-deprived neurons (Kamioka et al., 1996;
Chiappalone et al., 2006). The natural evolvement of these
circuits includes three stages. Initially, early activity-independent
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FIGURE 1 | Ghrelin-induced effector pathways and unavowed signaling hotspots. Ghrelin activates the cascade via GHSR1a/CaMKKβ/AMPK to suppress
endoplasmic reticulum stress. LEAP2 has been suggested to inhibit GHSR1a. Ghrelin-activated AMPK inhibits mTOR via activation of TSC and inactivation of
Raptor, leading to reduced phosphorylation of ULK1 and therefore enhanced ULK1 kinase activity which triggers autophagy (Kim et al., 2011). Ghrelin’s
pro-autophagic effect has been shown to improve hepatosteatosis by increasing abundance of mtDNA and inducing mitochondrial free fatty acid β-oxidation. Not
only CaMKKβ but also SIRT1-p53 modulates AMPK in the setting of autophagy (e.g., in hypothalamic ghrelin signaling). Ghrelin can act pro-autophagically via the
growth hormone (GH) under fat-depleted famine conditions by activating GH receptor-mediated JKA2-pStat cascades. Furthermore, ghrelin has been shown to
upregulate antifibrotic (miR-30a) microRNA and downregulate profibrotic (miR-21) microRNA, thus affecting the TGF-β1-Smad pathway and ameliorating skeletal
muscle fibrosis upon injury. Plasma membrane-associated GOAT has been proposed to locally convert desacylghrelin to ghrelin. Also desacylghrelin can stimulate
the AMPK activity in order to induce autophagy by decreasing reactive oxygen species accumulation and apoptosis, thereby protecting e.g., cardiomyocytes from
ischemic injury. Furthermore, desacylghrelin has been shown to stimulate SOD-2 which leads to increased expression of miR-221 and miR-222. In turn, these miRs
suppress p57kip2 expression in satellite cells of skeletal muscle, thereby accelerating cell cycle re-entry and proliferation. These events facilitate muscle regeneration.
Desacylghrelin-mediated SOD-2 upregulation also increases myogenesis and decreases reactive oxygen species generation, thus promoting tissue regeneration
after injury (Yanagi et al., 2018). It has remained unclear whether desacylghrelin/ghrelin can be internalized by the target cells and may act in the cytoplasm, e.g., on
AKT or ERK1,2 or by far, whether ghrelin can translocate to the nucleus and affect gene expression. Does ghrelin also associate with cell adhesion molecules (CAMs)
or other binding partners at the plasma membrane and/or undergo recycling? It is possible that the desacylghrelin/ghrelin-mediated signaling cascades might be
highly intertwined with the signaling cascades mediated by the CAMs. CAMs, such as cadherins, form signaling units with TGF-β1. The interplay between CAMs
with their binding partners leads to recruitment of catenins and junction plakoglobin to the nucleus and regulate transcription [e.g., α-catenin can regulate actin
bundling (AKT)]. CAMs convey also signals to kinases (for example, SRC family kinases and the Tyr-protein kinase) and phosphatases (PLCγ). Given that the
CAM-mediated cascades govern morphogenic events such as cytoskeletal reorganization, process formation, neurite outgrowth and dynamic events like
proliferation and migration (Cavallaro and Dejana, 2011), it is conceivable that one possible action of ghrelin to stimulate regeneration could be via affecting these
CAM-cascades. AKT (actin); AMPK (5’ adenosine monophosphate-activated protein kinase); Atg13 (autophagy-related); CaMKIIα (Ca2+-calmodulin-dependent
kinase); CAMKKβ (Calcium/calmodulin-dependent protein kinase kinase 2); CREB (cAMP response element-binding protein); ECM (extracellular matrix); ERK1,2
(extracellular regulated kinase); Frs2α (substrate of fibroblast growth factor receptor); GHSR1a (growth hormone secretagogue receptor 1a); Gα,β,γ (G protein alpha,
beta and gamma subunits); IP3 (inositol triphosphate); JAK2 (Janus kinase 2); LEAP (Liver-expressed antimicrobial peptide 2); mTOR (mechanistic target of
rapamycin); P38 MAPK (p38 mitogen-activated protein kinases); P53 (protein p53); P57kip2 (Cyclin-dependent kinase inhibitor 1C); PLCβ (phospholipase C); PLCγ

(phospholipase); Raptor (Regulatory-associated protein of mTOR); RheB (Ras homolog enriched in brain); SIRT1 (NAD-dependent deacetylase sirtuin-1); Smad2/3,
Smad4, Smad7 (Mothers against decapentaplegic homolog 2/3/4/7); SOD-2 (Superoxide dismutase 2); SRC (Src kinase); Stat5 (Signal transducer and activator of
transcription 5); TSC (tuberous sclerosis complex); ULK1 (Unc-51 like kinase-1).
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wiring yields an excessive number of synapses. During the
second stage, use-dependent pruning of all inappropriate
connections occurs (Tessier and Broadie, 2009). Finally, a
homeostatic balance between the development of synaptic
contacts and intrinsic bioelectrical activity is being established
(Corner et al., 2002). Experiments with “brain-on-a-chip”
models have also provided a clear electrophysiological evidence
that ghrelin has a strong stimulating effect on developing
neuronal cultures (see Figure 2): it leads to earlier network
activation by accelerating synaptogenesis – a week ahead of
the controls (Stoyanova and le Feber, 2014). Remarkably, the
cultures chronically treated with ghrelin maintain healthy firing

levels higher than those of the controls, possibly due to a
predominating formation of excitatory synapses (Stoyanova and
le Feber, 2014). The balance between excitation and inhibition
is essential for proper neuronal functioning and it is maintained
by a form of homeostatic plasticity (Nelson and Turrigiano,
1998; Turrigiano, 2008). By sustaining high activity levels, ghrelin
probably enables viability and longevity of the neuronal circuits.
This reveals an extraordinary potential of the neuropeptide to
counteract low or lacking neuronal activity under pathological
conditions such as stroke (Stoyanova and le Feber, 2014).

One could speculate that ghrelin causes neuronal hyper
activity leading to epilepsy, supposedly due to excessive network

FIGURE 2 | Effect of ghrelin on network activity. Raster plots of the neuronal activity recorded over 20 min (x-axis) in cultures incubated with ghrelin and controls at
age 6 days in vitro (DIV). The top rows of the panels depict only the electrodes in contact with active neurons (electrode numbers are on y-axis). Each tick represents
a recorded action potential. The bottom rows of the two panels represent the summed network activity. (A) Network activity in a sister culture under control
conditions, 47 spikes recorded in 1 min, immature activity pattern. (B) Network activity in a culture chronically treated with ghrelin, 3,740 spikes recorded in 1 min,
showing mature activity pattern. With permission from BMC Neuroscience (Stoyanova and le Feber, 2014).
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excitability (Chiappalone et al., 2009). However, 30–40% of
the epilepsy patients do not respond to treatment that had
been aiming at suppressing hyper activity, which suggests that
certain forms of epilepsy may have etiology other than hyper
excitability. Indeed, it has been shown that hyper excitability
could be triggered by insufficient external input, such as status
epilepticus during sleep (Patry et al., 1971) or deep anesthesia
(Gratrix and Enright, 2005). In vitro experiments have shown
that treatment with mild excitatory agents such as acetylcholine,
serotonin, orexin, and ghrelin (Corner, 2008; le Feber et al.,
2014; Stoyanova and le Feber, 2014) transforms the neuronal
firing patterns into more dispersed and asynchronous ones.
On the contrary, strong classical excitatory transmitters like
glutamate or aspartate not only do not suppress epileptiform
bursting but rather enhance it at specific concentrations
(Frega et al., 2012).

In addition to the previously mentioned mechanisms of
neuroprotection, ghrelin is able to influence the process of
autophagy as shown in various in vitro and in vivo models of
neurodegenerative disorders (Aveleira et al., 2015b; Ezquerro
et al., 2017; Akalu et al., 2020). Under normal conditions,
autophagy is responsible for removal of excessive cytoplasmic
contents and debris, whereas during stress or starvation
autophagy could be an alternative energy providing process
(Rodríguez et al., 2015). Oxygen-glucose deprivation in neurons
entails a considerable autophagy culminating in neuronal
damage and death. Ghrelin has been shown to prevent this
event chain by inhibiting reactive oxygen species production,
stabilizing mitochondrial integrity and transmembrane potential,
blocking of cytochrome c release, and inactivating caspase-
3-mediated cascades (López-Lluch et al., 2006; Chung et al.,
2007, 2018; Akalu et al., 2020). Several other mechanisms of
how ghrelin suppresses autophagy have been proposed, e.g.,
ghrelin can initiate the PI3K/Akt/Bcl-2 signaling (Mao et al.,
2015a), which inhibits the glycogen synthase kinase (GSK)-3β

and stabilizes β-catenin (Chung et al., 2008). However, aging
and variety of neuropathies appear to hinder the process of
autophagy (Sinha et al., 2017; Yuan and Wang, 2020), leading
to accumulation of damaged cellular constituents and imbalance
in cellular homeostasis. On the contrary, in corresponding
experimental models ghrelin was found to stimulate neuronal
autophagy (Aveleira et al., 2015a). A proposed mechanism
involves direct triggering of AMP-activated protein kinase to
improve glucose and lipid metabolism (Ezquerro et al., 2017)
or via interaction with neuropeptide Y-ergic neurons in the
hypothalamus (Andrews, 2011; Müller et al., 2015). Taken
together these findings clearly demonstrate two antipodal effects
of ghrelin on autophagy and suggest that depending on the
conditions, ghrelin plays a neuroprotective role as an “on-
demand” autophagy modulator.

Ghrelin-Mediated Neuroprotection and
Repair Upon Acute and Chronic
Degeneration
It has been deemed desirable by many researches to test
whether ghrelin could stimulate recovery of the brain and

spinal cord after aberrant metabolic state and hypoxic/anoxic or
mechanical injury. These pathological conditions are manifested,
in addition to other processes, by accumulation of microglial
cells, which are the first line of defense in the nervous
system. Ghrelin has been proven to act as a neuroprotective
agent in different animal models of nervous system injury
such as cerebral ischemia/reperfusion (Miao et al., 2007),
hippocampal neuronal damage (Liu et al., 2006; Xu et al.,
2009), degeneration of dopaminergic neurons (Moon et al.,
2009a), spinal cord and brain trauma (Bansal et al., 2010;
Lee et al., 2010; Besecker et al., 2018). Spinal cord injury is
followed by chronic demyelination of the nerve fibers due to
apoptotic cell death of oligodendrocytes. The process is triggered
by accumulation of microglial cells, which release pro-nerve
growth factor (proNGF) and reactive oxygen species (ROS) via
activation of p38 mitogen activated protein kinase (p38MAPK)
and c-Jun N-terminal kinase (JNK) (Yune et al., 2007; Chorny
et al., 2008). As a matter of fact, microglial cells do not
express GHSR1a (Moon et al., 2009a), but ghrelin treatment
of the injured spinal cord showed significant attenuation
of microglial activity, though the exact mechanism was not
established in that study (Lee and Yune, 2014). In Alzheimer’s
disease or its animal models, microglial cells accumulate at the
sites of insoluble fibrillary β-amyloid protein (fAβ) deposition,
which binds to their CD36 receptor and thus stimulates pro-
inflammatory cytokines secretion (El Khoury et al., 2003). The
notion that CD36 receptor also contains a binding sequence for
growth hormone secretagogues (Demers et al., 2004) prompted
studies seeking molecules able to prevent microglia activation.
Interestingly, DAG but not ghrelin counteracts fAβ stimulation
of interleukin (IL)-1β and IL-6 mRNA expression in microglial
cells (Bulgarelli et al., 2009). However, the authors do not
rule out the possibility that this effect could be observed only
in the experimental model of cells expressing high levels of
transfected receptor.

In ghrelin knock-out and GHSR1 deficient mice a greater
loss of dopaminergic neurons in substantia nigra (SN) has
been registered when compared to PD model or wild-type
animals (Andrews et al., 2009). Along with the findings that
postprandial plasma ghrelin levels are lower in PD patients
(Unger et al., 2011), the neuroprotective role of ghrelin in
PD is characterized by apoptosis suppression, reduction of
microglia activity and attenuated local inflammation in SN
(Dong et al., 2009; Moon et al., 2009a). Ghrelin targets the
AMP-activated protein kinase (AMPK) in dopamine neurons,
as recently reported in an in vitro study (Bayliss et al., 2016) as
well as in different animal models of PD (Horvath et al., 2011;
Ng et al., 2012). In contrast, other in vitro studies have reported
that APMK overactivation leads to α-synuclein accumulation and
inhibition of neurite growth (Jiang et al., 2013). Is not yet clear
if there is a local ghrelin accumulation or elevated expression
at the site of neuronal lesions and this issue requires further
experimental evidence.

Growth factors as well as ghrelin activate different
signaling cascades under different conditions (Cairns and
Finklestein, 2003). The neuroprotective effect of βFGF, at
least in part, is probably due to the elevated expression
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of the antiapoptotic protein bcl-2 (Ay et al., 2001), a
mechanism also attributed to ghrelin (Sun et al., 2016).
Repeated ghrelin administration on chronically constricted
sciatic nerves in rats ameliorates axonal regrowth and myelin
repair, and may have antinociceptive effects (Guneli et al.,
2010). βFGF also has such a neuroprotective effect, since it
activates proliferation, migration and differentiation of neural
precursor cells (Palmer et al., 1995). However, treatment
of traumatic brain injury (TBI) with ghrelin reduces the
level of βFGF and FGF-binding protein (FGF-BP) (Shao
et al., 2018). Ghrelin inhibits βFGF-mediated angiogenesis,
which suggests that exogenous ghrelin probably competitively
inhibits βFGF/FGF-BP stimulated neurovascularisation,
and thus, ameliorates the recovery after TBI via another
molecular mechanism (Shao et al., 2018). Therefore, it remains
unclear whether the relationship between ghrelin and βFGF is
causative or competitive – an issue which might need further
scientific attention.

Ghrelin (Chung et al., 2007) and its synthetic analog, the
GH-releasing peptide-6 hexarelin (Delgado-Rubín de Célix et al.,
2006), when applied intracerebroventricularly in a neonatal rat
model of unilateral hypoxic-ischemic injury, reduces the injury
area in various parts of the brain with a dominating effect in
the hippocampus (Brywe et al., 2005). Both molecules stimulate
progenitor cell proliferation (Johansson et al., 2008). Ghrelin
has been shown to protect cultured primary hypothalamic
neurons from stress induced upon oxygen-glucose deprivation
as well as to damper neuronal stress in rats after a transient
middle cerebral artery occlusion (Chung et al., 2007). This
neuroprotective effect has been observed in vivo, in a rat
model of cerebral ischemia: ghrelin increases the tolerance
of hippocampal and cerebral cortex neurons to the ischemic
injury by inhibition of apoptosis (Liu et al., 2006; Chung
et al., 2008). Ghrelin-treated mice that had been subjected to
traumatic brain injury show significant functional recovery due
to enhanced preservation of neurons, inhibition of neuronal
apoptosis, and prevention of blood–brain barrier breakdown
(Lopez et al., 2012).

Ghrelin and GHSR1a agonists suppress the onset of chemically
induced epileptic seizures (Obay et al., 2007; Portelli et al.,
2012). Interestingly, serum levels of ghrelin decrease rapidly
after epileptic attacks and this expression level drop lasts for
24 h, thus awakening researchers’ interest as a diagnostic
marker for patients that had suffered a recent epileptic seizure
or other paroxysmal events (Aydin et al., 2011). Similar
phenomenon has been observed in individuals with chronic
neurodegenerative diseases. In patients with Huntington’s disease
postprandial ghrelin expression is suppressed and worsens as
the locomotor impairment advances, so that the dynamics of
the plasma levels of ghrelin could be used for assessment
of disease’s progression (Aziz et al., 2010; Weir et al., 2011).
In a mouse model of PD, ghrelin protects the nigrostriatal
dopamine function by activating mitochondrial uncoupling
protein 2 (UCP2)-dependent mechanisms (Andrews et al., 2009).
These three neurodegenerative diseases are often accompanied
by memory deficits. While in epilepsy memory impairment
is due to inhibition of the adult hippocampal neurogenesis

(Butler and Zeman, 2008), in ischemic injury it is caused by
neuronal loss within the hippocampus (Squire and Zola, 1996).

Memory deficits could be counteracted by ghrelin
administration, as supported by several experiments (Carlini
et al., 2002, 2008). Intra-amygdaloid injection of ghrelin affects
passive avoidance learning and memory, while the intra-
hippocampal application improves the long-term memory,
but it does not modify the short-term memory. These findings
suggest that ghrelin probably modulates specific molecular
intermediates involved in memory acquisition/consolidation
but not retrieval (Carlini et al., 2010). Moreover, the described
effects are ghrelin-specific, because they are eliminated or
reversed after treatment with an antagonist of GHSR1a (Tóth
et al., 2009, 2010). Systemic application of ghrelin to the
hippocampus of ghrelin knock-out mice leads to an increase in
spine density in CA1, and thus, improves the performance in
cognitive behavior (Diano et al., 2006). Regarding that cognitive
impairment may occur in type 2 diabetes patients and that
ghrelin also modulates insulin sensitivity (Barazzoni et al., 2008),
administration of the peptide to diabetes patients might have
a clinical relevance in cognitive behavior recovery (McNay,
2007). Taken together, all these studies provide a link between
the role of ghrelin in the metabolic control and the higher brain
functions. Moreover, the experimental data suggest that ghrelin
has a huge translational therapeutic potential for treatment of
learning and memory deficits which are associated with aging
and neurological disorders.

DISCUSSION

Ghrelin expression does not always correlate with GHSR1a
expression. It seems that their ratio varies between the different
tissues, e.g., in the spinal cord ghrelin could not be detected
(Lee et al., 2010), whereas the telencephalon and diencephalon
have been found to contain ghrelinergic neurons (Cowley et al.,
2003; Hou et al., 2006; Stoyanova, 2012; for further review see
Cabral et al., 2017). Motoneurons, oligodendroglia (Lee et al.,
2010) and autonomic preganglionic neurons (Furness et al., 2012)
are abundantly equipped with GHSR1a. Also the majority of the
cultured cortical neurons are positive for GHSR1a (Stoyanova
and le Feber, 2014). Thus, every neural cell carrying GHSR1a
could be a potential target of ghrelin. The wide distribution of the
receptor allows the neuropeptide to influence multiple regions of
the nervous system and it makes the systemic ghrelin application
convenient when neuroprotection is needed for treatment of the
diseased or injured nervous system.

One has but to consider that systemic administration of
ghrelin cannot be expected to provide the desired therapeutic
concentration at the site of injury, because the circulating
esterases might deacylate it (De Vriese et al., 2004), thus
preventing sufficient amount of ghrelin to activate GHSR1a.
Therefore, rather a local administration of ghrelin might be
far more effective than the systemic or intraventricular ones.
On the other hand, the enzymes [e.g., butyrylcholinesterases
and acetylcholinesterases in the meninges (Ummenhofer et al.,
1998)] present at the place of ghrelin application can deacylate it,
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thus urging the co-application of ghrelin together with enzyme-
inhibitors. Inhibition of proinflammatory cytokines and/or of
LEAP2 would allow ghrelin to access its receptor and unfold
its neuroprotective functions. Indeed, a ghrelin mimetic alone
fails to prevent hippocampal lesions in a mouse model of
Alzheimer’s disease pathology, although it improves neurogenesis
(Tian et al., 2019).

Dependent on the type and complexity of injury, the
local administration of ghrelin cannot be always suitable,
e.g., in the case of autoimmune encephalomyelitis. The
latter is characterized by a systemic loss of oligodendroglia,
demyelination, and inflammation, all of which could be
prevented by subcutaneous injection of ghrelin to an animal
model of the disease (Tian et al., 2019). Nevertheless, both types
of application of ghrelin (local and systemic) have yielded similar
outcome. The neuroprotective effect of ghrelin is robust and
reproducible as successfully demonstrated in a variety of animal
models of neurodegenerative diseases and other neuronal injuries
such as ischemia, traumatic brain injury, spinal cord injury, and
amyotrophic lateral sclerosis (for a review, see Fields et al., 2011;
Dos Santos et al., 2013; Stoyanova, 2014). Still, the concept of the
therapeutic ghrelin/GHRS1a ratio and the way of administration
requires further experimental attention.

Following this notion, it appears indispensable to determine
the effective dose of ghrelin facilitating neuroprotection; does
such a dose match the dose triggering eating behavior? The
plasma concentration of ghrelin after the consumption of fat-
rich meat has been found to reach ∼500 pg/ml (Erdmann
et al., 2004). This corresponds to 0.1483 µM. Compared with
the pre-prandial concentration of ghrelin (0.117 µM), the post-
prandial increase of the peptide level is 1.3-fold. Studies on
the synaptogenic and neuroprotective effects of ghrelin have
revealed that the administered doses of ghrelin may vary from
0.3- to 3.4-fold of the average physiological pre-prandial ghrelin
plasma concentration (Diano et al., 2006; Lee et al., 2010;
Stoyanova et al., 2013). The fact that Diano and colleagues have
recorded synaptogenic effects upon administration of 10 µg/kg
ghrelin, which is 0.3-fold of the pre-prandial levels, suggests that
ghrelin acts neuroprotectively at doses much lower than those
initiating feeding. This would have one benefit regarding the
neurodegenerative diseases where ghrelin levels are decreased:
even under low energy conditions ghrelin’s neuroprotective effect
can still be maintained.

It should be noted that nervous system injury does not
only include damage of neurons but also alteration of the
extracellular space. So far, the ghrelin research field has
focused on finding therapeutic approaches targeting intracellular
repair mechanisms. However, the interstitial changes at and
around the lesion site should not be neglected, as they are
related to disintegration of the extracellular matrix, damaged
vascularization, and metabolic spill-out. Extracellular proteins
and matrix proteases, cell adhesion molecules, neurotrophic
factors as well as different organic and inorganic compounds
of the nervous tissue are necessary for recovery after injury.
For example, serine proteases which deacylate ghrelin cleave
also neuronal adhesion molecules and facilitate variety of
morphogenic and dynamic events such as neurite outgrowth,
process formation, myelination, synaptogenesis, cell migration,

and extracellular matrix reorganization. It has still remained
unclear how ghrelin could harness all these molecules in the
healing process. Few studies on non-neural tissues have shown
that ghrelin inhibits the expression of transforming growth factor
β1 (TGF-β1) and phospho-Smad3 (Mao et al., 2015b; Sun et al.,
2015). Ghrelin also suppresses collagen production (Ota et al.,
2013), upregulates antifibrotic microRNA and downregulates
profibrotic microRNAs in skeletal muscle after injury, leading
to inactivation of the TGF-β1/Smad pathway and alleviation of
fibrosis (Katare et al., 2016). Studies in both humans and mouse
(Moreno et al., 2010; Bianchi et al., 2016a,b) allowed defining in
depth the activated cascades (see also Figure 1).

Since recovery recapitulates ontogenetic processes, where
ghrelin plays a significant role, one could conclude that
the neuropeptide would stimulate developmentally related
molecules, neurotrophic and transcription factors if applied
therapeutically to the injured tissue. Regarding the very low
physical concentration of DAG/ghrelin in the central nervous
system, it is not clear how endogenous DAG/ghrelin could
be provided to the lesion site or be increased locally to
stimulate regeneration. One possible way of intrinsic supply
would be by binding to bystander proteins on the surface of
blood cells or cells of the immune system, which penetrate
the injured tissue owing to ruptures in the blood-brain barrier.
Also in the process of endothelial mesenchymal transition
the newly formed blood vessels within the injured tissue as
well as the surrounding areas may supply ghrelin. Locally,
the continuously supplied DAG may then be converted to
ghrelin by the plasma membrane-associated GOAT. It can
be also hypothesized that DAG/ghrelin may interact with
CAMs/TGFβ1 to facilitate neuroprotection (Figure 1). It
is also not clear whether DAG/ghrelin is internalized by
neuronal cells. One cannot exclude that ghrelin may act
cytoplasmatically and that this 28 amino acid-long peptide
might translocate into the nucleus to modulate the expression
of genes modulating remodeling and repair (Figure 1). Such
in-depth studies on the injured nervous system still need
to be carried out.

Undisputedly, ghrelin is an omnipotent molecule, which puts
the organism in the condition of recovery. However, careful
analyses of the interspecies differences are needed in order to
evaluate to what extent we could extrapolate our results from
animal models to humans.
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