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Abstract
The concomitant use of various types of models (in silico, in vitro, and in vivo) has been exemplified here within the context of
biomedical researches performed in the Endocrinology and Metabolism Research Institute (EMRI) of Tehran University of
Medical Sciences. Two main research aeras have been discussed: the search for new small molecules as therapeutics for diabetes
and related metabolic conditions, and diseases related to protein aggregation. Due to their multidisciplinary nature, the majority of
these studies have needed the collaboration of different specialties. In both cases, a brief overview of the subject is provided
through literature examples, and sequential use of these methods is described.
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Introduction

“Model” is a generic word, present in the majority (if not all)
of scientific disciplines technical vocabulary, and could be
represented by a simple diagram that is easily understood by
a glance. It could also be a complex entity incorporating hun-
dreds of thousands of interacting partners, that should be an-
alyzed by an information processing system. Either simple or
complex, a model is always an approximation, contains errors,
and is usually a tool to be used alongside with others.

Even within a particular scientific branch, such as medical
sciences, a “model” takes different forms. As an example, in
the present context of COVID-19, there has been a worldwide
effort to predict the spread and dynamics of the disease [1–4],

and a similar international endeavor toward finding potential
drugs that would bind the virus proteins [5–7]. In both cases,
sophisticated “models” were used, which have fundamentally
different characteristics: one includes mathematical equations
and the other is an atomistic representation of proteins.

The first modeling works that have been performed in
EMRI had a mathematical nature and included modeling of
angiogenesis in tumors (aiming at improving diagnostic) [8],
and proposing a suitable time to test bone mass density in
post-menopausal women receiving levothyroxine [9]. In the
following years, different kinds of mathematical models have
been used in numerous studies related with public health (e.g.
[10] ) and other clinically-oriented subjects such as osteopo-
rosis (e.g. adjusting a predictive tool to assess fracture risk in
osteoporotic patients for the Iranian population) [11].

In this condensed overview, examples of specific research
subjects related to medical sciences are discussed with an
emphasis on the use of in vivo, in vitro, and in silico models.
These subjects have been investigated by students and re-
searchers over the past twelve years in the Modeling and
Simulation in Medical Sciences (MSMS) research group of
EMRI with the help and contribution of numerous collabora-
tors inside and outside EMRI. We believe that models are
important tools that upon extensive development, could

* Azadeh Ebrahim-Habibi
aehabibi@sina.tums.ac.ir; azadehabibi@yahoo.fr

1 Biosensor Research Center, Endocrinology and Metabolism
Molecular-Cellular Sciences Institute, Tehran University of Medical
Sciences, Jalal-al-Ahmad Street, Chamran Highway,
1411713137 Tehran, Iran

2 Endocrinology andMetabolismResearch Center, Endocrinology and
Metabolism Clinical Sciences Institute, Tehran University of
Medical Sciences, Tehran, Iran

Journal of Diabetes & Metabolic Disorders
https://doi.org/10.1007/s40200-020-00706-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s40200-020-00706-x&domain=pdf
http://orcid.org/0000-0002-8993-4859
mailto:aehabibi@sina.tums.ac.ir
mailto:azadehabibi@yahoo.fr


reduce the overall cost of research, and ideally replace the
need for extended testing.

Glucose homeostasis and related metabolic
conditions disorders

In a recent study concerning the global burden of diseases,
increase of the mortality rate and total years of life lost
(YLL) due to diabetes mellitus has been observed (around
31 and 25% respectively) between 2006 and 2016, while
YLL itself had decreased (around 2%) [12]. A worldwide rise
in the prevalence of diabetes is likely, estimated to reach
10.4% by 2040 [13], and justifies the search for novel thera-
pies to control the disease and prevent its complications.

Various molecular targets have been proposed and ex-
plored in this regard, with the aim of improving insulin’s
effect (e.g. by influencing beta-cells function by modulating
related receptors), as well as controlling oxidative stress and
inflammation to counteract beta-cells apoptosis [14, 15]. A
different approach consists of interfering with key carbohy-
drate digestive enzymes (glycosidases) that are responsible for
the postprandial rise of blood glucose level, especially alpha-
glucosidase [16], and alpha-amylase [17]. Inhibitors of these
enzymes could also be potentially effective in obesity. Many
studies are now reporting the glycosidase inhibitory potential
of plants and their active components [18]; earlier studies had
also demonstrated the efficacy of flavonoids in this regard [19,
20], and analyzed putative binding modes of these compounds
to the enzyme by in silico techniques [21].

During in vitro experiments, with the use of pancreatic
alpha-amylase, and based on the fact that the natural com-
pounds flavonoids were known as amylase inhibitors [22],
we found trans-chalcone (flavonoids precursor) to be an in-
hibitor of pancreatic amylase [23]. Further experiments
showed it to be also effective in vivo, on a rodent diabetic
model [24] and in a mice model of fatty-liver, where the com-
pound was able to modulate lipid profile, leptin, and glucose
levels, as well as improving liver steatosis [25]; these results
were comparable to what we had seen in a mice model of
obesity [26]. Trans-chalcone is actually considered as a potent
scaffold, whose numerous derivatives span a wide range of
therapeutic properties [27, 28].

The benzothiazole thioflavin T (ThT), with slighter inhib-
itory activity in vitro, was also found to be potentially anti-
diabetic in vivo [29], as well as effective in weight reduction
of a mice model of obesity [30]. ThT is a well-known probe
for detection of amyloid structures[31], but interestingly, had
also been found to extend the lifespan of C. elegans (as a
model for studying ageing and lifespan) [32, 33], and seems
to be an interesting therapeutic scaffold.

Synthetic aurones ((Z)-2-benzylidenebenzofuran-3-one de-
rivatives), which bear structural similarity to flavonoids were

also tested in vitro against pancreatic amylase as inhibitors,
and subsequent in silico tests (docking) suggested their puta-
tive binding modes into the enzyme [34]. Docking was done
with the use of U-Dock 1.6 program [35], with the MMFF94s
force field and on MOE (Molecular Operating Environment
2012.10) and the target was PDB entry 1OSE [36] In this
method, a series of ligands conformers were docked onto the
target and poses with best energy were retrieved. This data
could be of use for synthesizing more potent inhibitors.
Recently, many natural extracts and synthetic new molecules
have been investigated with regard to their alpha-amylase in-
hibitory properties [37–48] and this line of study seems to be
promising with regard to finding effective anti-diabetic aids.

On the other hand, activators of the enzyme may potential-
ly show an adverse effect in this regard, although hypotheti-
cally beneficial for digestive problems. Interestingly, the com-
mercially available sweetener neohesperidin dihydochalcone
(from sweet orange), which has a chalcone structural compo-
nent was found to activate alpha-amylase from different
sources [49, 50]. Xanthine derivatives, pentoxyfilline, theo-
bromine and caffeine were also found to slightly (20–30%)
increase enzyme activity[51]. To our knowledge, these should
be the only small molecules that have been reported as acti-
vator of this enzyme.

In another context, sweet taste receptor (STR), a class C G-
protein coupled receptor (C GPCR), has been suggested as a
drug target for designing either new low-calorie sweeteners or
drugs to control metabolic condition disorders such as type II
diabetes mellitus [52, 53]. In order to design appropriate li-
gands for this receptor, a three-dimensional structure is need-
ed, but since the human receptor structure is still not experi-
mentally elucidated, in silico (molecular modeling) methods
were used in this case. First, a new model of STR structure
was developed [54]. Extensive docking experiments on the
model revealed presence of carbohydrate binding modules
as structural and functional motifs [55], which is applicable
in further characterization of the binding site. Docking was
performed on an ensemble of STR structures obtained by run-
ning a molecular dynamics simulation (MDS) experiment.
MDS was run for 50 ns in YASARA program [56] using the
YASARA forcefield [57]. The initial structure atoms were
protonated at physiological pH, Particle Mesh Ewald (PME)
was used, 8.0 A˚ cutoff for non-bonded interactions and 4 fs
timestep were applied, hydrogen atoms were constrained and
the system was at constant pressure and temperature (NPT).
Based on carbon alpha RMSDs of the total MDS run, clusters
were obtained based on minimum, median and maximum
values. Docking was performed on these clusters with
AutoDock Vina [58] on the interface present in YASARA
which enabled computing H-bonds and HP-interactions, as
well as minimization of the best poses to take water molecules
into account. Finally, by studying interaction patterns of 316
sweet molecules as well as sweet proteins and antagonists of
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the receptor, a few compounds were suggested as putative
sweet molecules or agonists for the receptor [unpublished da-
ta]. Increasing our knowledge about this receptor structure/
function and its agonists/antagonists would surely be of help
in the current debate about the beneficial/detrimental effects of
sweeteners [59–62].

Proteins aggregation: formation
of pathogenic species

The integrity of proteins three-dimensional structures is a re-
quirement for their normal functioning. Over disruption of
their intramolecular interactions, “misfolded” proteins struc-
tures could be formed, which, depending on environmental
conditions, may “aggregate” together and form stable clusters.
Misfolding may happen upon mutations or other external
causes, and lead to “protein diseases”. Aggregates may be
structured (amyloid) or unstructured (amorphous), although
various intermediate forms can also be observed [63].

Amyloid formation is suggested to have a pathogenic role
in a range of disorders, including Azheimer’s and Parkinson
disease, metabolic diseases, and diabetes [64]. In recent years,
formation of structured amyloid forms has been suggested to
be a generic property of proteins, which means that any pro-
tein could be potentially driven toward forming amyloids [65],
and as so, be used as a model to study the process in details.
Inhibiting amyloid formation or disruption of amyloid struc-
tures by small ligands has been the subject of numerous stud-
ies in the past two decades, and based on these reports, there
have been attempts to classify ligands and identify the struc-
tural prerequisites that make suitable anti-amyloid compounds
[66–72].

One of the research subjects that could provide useful in-
formation for drug design is the study of structural changes
that occur in proteins and result onto amyloid formation.
Disruption of the native and functional architecture of the
protein may start from specific locations, and aggregation-
prone sites in proteins have an important role in triggering
aggregates formation. Predicting those regions has been (and
still is) the subject of multiple computational studies which
have resulted onto design of various tools [73–83]. An alter-
native to these tools is the application of molecular dynamics
simulation methods to proteins and monitor the changes that
happen in their structures under various deleterious condi-
tions. We have applied this method to insulin [84] and two
forms of myoglobin (native and glycated) [85] and could spot
specific regions that seem to be initiators in the structural
change process. In both cases, high temperatures were
employed in order to reach the unfolded state more easily
[86]. For insulin, different conditions (presence and absence
of KCL andNaCL) were tested, at high temperature and acidic
pH (obtained by changing the protonation state of the protein).

For the actual run, MOE (Molecular Operating Environment
MOE.2010.10), and the implemented MMFF94x force field
were used for 15 ns runs of each condition. To check the
conformational change over time, secondary structure content
was analyzed by using various methods including DSSP [87],
STRIDE [88], PALSSE [89], P-SEA [90], STICK[91], and
XTLSSTR [92]. For myoglobin too, the same program
(MOE.2010.10), and the implemented MMFF94x force field
were used. In this case, in addition to secondary structure
content (computed by DSSP), structures’ RMSDs were also
compared in order to find the most stable regions. Our subse-
quent ongoing research projects focus on shorter proteins with
the aim of pinpointing specific residues in well-defined sec-
ondary structure segments. These in silico methods could also
provide a mean to screen potential stabilizing ligands that
could counteract these structural changes to some extent [un-
published results].

In vitro methods provide the possibility to generate amy-
loid forms of various proteins, and to test potential anti-
amyloid molecules. Phenolic, polyphenolic, and other cyclic
compounds have been tested in our past (collaborative) stud-
ies on various proteins including polygalacturonase, albumin
[93], myoglobin [94], and insulin [95].

Molecules that were found to inhibit proteins fibrillation,
were then tested in vivo, on a rodent model of AD. In order to
simulate part of the AD signs, abeta amyloid is injected to the
animals hippocampus, which results into plaque formation
and troubles in learning. Candidate ligands that were admin-
istered to the AD animal models, and could attenuate their
symptoms to some extent included indole and trans-chalcone
[96], sylimarin [97], metformin [98], thymol [99], and eugenol
[100]. Based on our experience in generating amyloid struc-
tures in insulin, we have also proposed a modification in the
generation of rodent AD-like model : instead of injecting
abeta amyloids to the animals brains, we used insulin amy-
loids which are easier formed at a lower cost [101].

Insulin amyloid formation is a problem in patients who
have to inject the protein subcutaneously to control their blood
glucose levels. We found that chemical modification of insu-
lin by anhydrides at its lysine residue could attenuate its am-
yloid formation, while insulin still remained functional with
one of the modifiers (succinic anhydride) and with another, a
delayed onset of insulin action was observed [102]. In another
set of experiments, we simulated the condition that is observed
in diabetic patients by injecting insulin amyloid to rodents.
This resulted onto formation of masses composed of adipose
cells in which amyloid deposits could be observed [103]. A
subsequent test showed turmeric to be effective in reducing
the size of those masses [104] and further studies are now
conducted in order to further develop this model and check
the effect of other compounds. Recently, our method was used
by other researchers to assess the effect of serine proteases on
amyloid fibrils [105].

J Diabetes Metab Disord



Concluding Remarks

In the two main research subjects that have been discussed
here, interdisciplinary work was needed, which is strongly
dependent on extensive collaborations; whenever the projects
included a higher diversity of specialty, more interesting view-
points were found, and overall better results were obtained. In
another set of researches (not discussed here), we had the
opportunity to collaborate with clinicians and geneticists,
where we could provide a “basic science” insight onto genetic
diseases that were manifesting themselves at protein level.
After a case was identified, the faulty gene was investigated,
and we had a look at the (computed) protein structure of the
mutated gene. This experience led us to define a new research
section where we try to see whether our used in silico methods
can provide more precise information on the proteins’ muta-
tion effects on its structure.

While in silico and in vitro methods have serious limita-
tions, and in vivo disease models are still far from the reality of
pathogenic conditions in human bodies, it is still possible to
relate (to some extent) the data obtained from these different
methods. We are still a long way from the ideal situation
where everything could be computed and there would be no
need to perform other experiments, but in order to get closer to
that aim, we need to gather more data, and continue to interact
between disciplines.
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