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Severe stress leads to alterations in energy metabolism with sexually

dimorphic onset or severity. The locus coeruleus (LC) in the brainstem

that mediates fight-or-flight-or-freeze response to stress is sexually

dimorphic in morphology, plays a key role in interactions between

diet and severe stressors, and has neuronal input to the brown

adipose tissue (BAT)—a thermogenic organ important for energy balance.

Yet, little is known on how LC coordinates stress-related metabolic

adaptations. LC expresses receptors for the neuropeptide PACAP (pituitary

adenylate cyclase activating peptide) and PACAP signaling through PAC1

(PACAP receptor) are critical regulators of various types of stressors

and energy metabolism. We hypothesized that LC-PAC1 axis is a sex-

specific central “gatekeeper” of severe acute stress-driven behavior and

energy metabolism. Selective ablation of PAC1 receptors from the LC

did not alter stress response in mice of either sex, but enhanced

food intake in females and was associated with increased energy

expenditure and BAT thermogenesis in male mice. These results show a

sexually dimorphic role of the LC-PAC1 in regulating acute stress-related
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energy metabolism. Thus, by disrupting LC-PAC1 signaling, our studies show

a unique and previously unexplored role of LC in adaptive energy metabolism

in a sex-dependent manner.

KEYWORDS

locus coeruleus, energy expenditure, brown adipose fat tissue, stress, PACAP, PAC1,
metabolism

Introduction

Severe stressors lead to behavior and metabolic dysfunctions
with a sexually dimorphic etiology (Dallman et al., 2003;
Dedert et al., 2010; Nowotny et al., 2010; Farr et al., 2014;
Levine et al., 2014; LeardMann et al., 2015; Michopoulos et al.,
2016; Wolf et al., 2016). Understanding neural mechanisms
of stress-related energy metabolism can allow development
of novel ways of balancing optimal energy metabolism to
reduce maladaptive impact on health and well-being (Breslau,
2002; Raikkonen et al., 2002; Dobie et al., 2004; Tolin and
Foa, 2006; Heppner et al., 2009; Bell et al., 2011; Roenholt
et al., 2012; Kubzansky et al., 2014; Udo et al., 2014; Buta
et al., 2018; Pooley et al., 2018; American Psychological
Association, 2020; Escarfulleri et al., 2021; Kautzky et al.,
2021).

Locus coeruleus (LC) coordinates stress-associated
adaptive/maladaptive arousal (alertness via enhanced blood
pressure, heart rate, and breathing), “fight-or flight-or freeze”
defensive responses, and energy metabolism (Aston-Jones
et al., 1999; Aston-Jones and Cohen, 2005; Jovanovic et al.,
2010; Fullana et al., 2016; Mothersill and Donohoe, 2016;
Borodovitsyna et al., 2018; Kral et al., 2018; Kim et al., 2019). LC
is a major source of norepinephrine (NE) to the entire forebrain
axis and is a sexually dimorphic structure in morphology,
gene expression, and stress responsiveness (Curtis et al., 2006;
Samuels and Szabadi, 2008; Bangasser et al., 2016; Mulvey et al.,
2018). LC activity and energy metabolism are causally linked,
whereby enhanced LC activity decreases feeding, increases
body temperature and oxygen consumption, while LC lesion
decreases weight gain (Guimaraes et al., 2013). Furthermore,
activation of ATP-dependent potassium channel in LC increases
epididymal fat, while binge eating, or consumption of palatable
foods, decrease LC activity (Guimaraes et al., 2013; Bello
et al., 2014). LC also has functional connectivity to the brown
adipose tissue (BAT)—a critical determinant of systemic
energy balance via sympathetic activation and induction of
thermogenic factors such as mitochondrial uncoupling protein
1 (UCP1) (Aston-Jones et al., 1994; Canale et al., 2013; Thorp
and Schlaich, 2015; Atzori et al., 2016; Rabasa and Dickson,
2016; Caron et al., 2018; Naegeli et al., 2018; Rabasa et al.,
2019; Morris et al., 2020; Yang et al., 2021), which is primarily

expressed in brown adipocytes and uncouples oxidative
phosphorylation from ATP synthesis to generate heat (Rousset
et al., 2004; Fedorenko et al., 2012). LC inhibition reduces
BAT thermogenesis and markedly attenuates BAT sympathetic
activity independent of cold stress activity (Almeida et al., 2004).
Despite clinical or preclinical literature strongly informing that
trauma-like stressors contribute to the onset, maintenance,
or aggravation of metabolic dysfunctions potentially via LC
sympathetic pathways (Pervanidou and Chrousos, 2012),
knowledge of combined behavioral and metabolic functions via
LC neuromodulation is incomplete due to poor consideration
of sex differences in animal models of severe stressors. Given
that LC is sexually dimorphic in morphology and regulates
stress-associated behavioral changes, we predicted that LC
mediates long-lasting metabolic consequences to severe
stressors, thereby acting as a switch for arousal and energy
mobilization in humans and animals in a sexually dimorphic
manner (Cannon, 1932; Southwick et al., 1999; O’Donnell et al.,
2004; Borodovitsyna et al., 2018; Li et al., 2018; Grueschow
et al., 2021). Therefore, by using a robust model of trauma-like
stressor, we tested effects on whole body energy metabolism and
BAT thermogenesis via a novel approach of LC neuropeptidergic
modulation.

Several neuropeptides like the corticotrophin releasing
factor are known to regulate LC functions. However, the
receptor PAC1 (gene name ADCYAPR1), which is selective for
the neuropeptide PACAP (gene name ADCYAP1), is highly
expressed in the LC. Yet, PACAP and PAC1’s role in stress
and metabolism has not been previously explored. LC-PAC1
has been shown to be important for regulating somatic
symptoms associated with morphine withdrawal (Otto et al.,
2001; Martin et al., 2010; Zhang et al., 2021). Human genetic
studies have linked PACAP/PAC1 to post-traumatic stress
disorder (PTSD) diagnosis and symptom severity. Specifically,
mutations to the PAC1 gene are associated with PTSD symptom
severity in women (Ressler et al., 2011). PACAP/PAC1 signaling
are also sex-specific sympathetic regulators of a variety of
stressors, energy homeostasis, mood, feeding, appetite, and
metabolism (Beck, 2000; D’Este et al., 2000; Otto et al.,
2001; Lein et al., 2007; Vaudry et al., 2009; Boughton and
Murphy, 2013; Bangasser et al., 2016; Gastelum et al., 2021;
Zhang et al., 2021). PACAP knockout early in development
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is embryonically lethal due to respiratory or metabolic
alterations suggesting its biological importance for survival
(Miyata et al., 1990; Hosoya et al., 1992; Gray et al., 2001;
Cummings et al., 2004). PAC1 knockout in adult mice causes
deficits in lipid metabolism, increase in serum triglycerides,
fatty acids, cholesterol, and leptin indicating their role in energy
metabolism (Gray et al., 2001; Adams et al., 2008; Hawke
et al., 2009; Rudecki and Gray, 2016; Bozadjieva-Kramer et al.,
2021; Chang et al., 2021; Filatov et al., 2021; Maunze et al.,
2022).

We previously reported that amygdalar PACAP/PAC1
signaling regulates fear behaviors in a sexually dimorphic
manner (Rajbhandari et al., 2021). Here, we aimed to unravel the
role of LC-PAC1 on severe stress-associated energy homeostasis
at the level of: (i) behavioral stress response, (ii) whole-body
energy expenditure, and (iii) BAT thermogenesis.

Results

LC-PAC1 does not mediate
sex-dependent regulation of stressor
memory

To comprehensibly determine the role of LC-PAC1 in
fear, we followed a detailed experimental timeline and setup
(Figure 1A). At 12 weeks of age, we conducted stereotaxic
surgeries to microinfuse AAV2-hsyn-GFP-Cre or AAV2-hsyn-
GFP into LC (coordinates L/M: ±1; A/P: −5.4; D/V: −4.2)
for efficient Cre mediated PAC1 knockdown in PAC1loxp/loxp

mice. Following a 3-week recovery period to allow for viral
transfection, mice received 10 foot shocks on Day 1 as the
stressor experience. This protocol produces a long-lasting
fear in rodents (Rau and Fanselow, 2009; Rajbhandari et al.,
2018). Two way ANOVA did not reveal effect of sex [F(1,
70) = 2.493, p > 0.05] or interaction [F(3,70) = 0.32,
p > 0.81). There was a main effect of treatment condition
[F(3, 70) = 24.11, p < 0.05] (Figure 1B). Post-hoc analysis
revealed that in both males and females freezing was
increased (p < 0.05) on day 2 compared to unstressed
animals regardless of the level of PAC1 receptors in the LC
(Figures 1B,C). However, there was no significant effect of
LC-PAC1 deletion on freezing for both males and females
(p > 0.05) (Figures 1B,C). The deletion of PAC1 receptors
was verified using RNAScope mRNA in situ hybridization (see
section “Materials and methods”) for analyzing expression of
PAC1 mRNA, Adcyap1r1, in tissue sections. We conducted
fluorescence microscopy on mRNA puncta of PAC1 and
represented as mean fluorescence (Figure 1D). As shown
in Figures 1D–F, mean fluorescence of Adcyap1r1 was
measured for each image and showed a significant decrease
in Cre injected male and female mice compared to GFP-only
control.

LC ablation of PAC1 mediates
sex-dependent regulation of
stress-associated whole-body energy
metabolism

To determine the role of LC-PAC1 deletion in stress-
induced energy metabolism, we performed indirect calorimetry
using metabolic chambers in stressed or unstressed mice
for 72 h (Figure 2A). Mice were acclimatized to individual
metabolic chambers for the first 24 h, during which all
the groups showed heightened calorimetric data possibly due
to stress in a novel context (Supplementary Figures 1A–
L). Therefore, we removed the first 24 h data from our
calculation. Results of an ANCOVA and ANOVA test on the
rest 48 h showed a main effect of LC-PAC1 deletion in stressed
males (Supplementary Table 1). Post-hoc analysis showed
that stressed males with LC-PAC1 knockdown (CRE S) had
a total respiratory exchange ratio (RER) that was significantly
lower, total energy expenditure (EE), oxygen consumption
(VO2), and carbon dioxide production (VCO2) was significantly
higher than stressed males with intact PAC1 receptors (GFP
S) in the LC (hSyn-Cre S versus hSyn-GFP S; p < 0.05)
(Figures 2B,C and Supplementary Figures 2A,B). The results
of an ANCOVA and ANOVA showed no significant effect of
PAC1 receptor depletion in the LC on food consumption or
locomotion were observed between stressed males, respectively
(hSyn-Cre S versus hSyn-GFP S; p > 0.05) (Supplementary
Figures 2C,D and Supplementary Table 1). Interestingly, our
results show that GFP S mice showed an overall decrease in
EE and increase in RER than other groups (Figures 2B,C),
implicating a possible role of LC-PAC1 in attenuating stress-
induced increase in energy metabolism. For females, results
of an ANCOVA showed that female mice with PAC1 deletion
and acute stressor (CRE S) showed no differences in RER, EE,
VO2, and VCO2 (Figures 2D,E, Supplementary Figures 2E,G,
and Supplementary Table 2) compared to stressed females
with intact PAC1 receptors (GFP S). Females showed enhanced
total daily food intake compared to mice without deletion or
the ones that only received the stress experience (hSyn-Cre
S versus hSyn-GFP S; p < 0.05) (Supplementary Figure 2H
and Supplementary Table 2). No significant differences in
locomotor activity were observed within each group in male
or female mice (hSyn-Cre S versus hSyn-GFP S; p > 0.05), or
across sexes (Supplementary Figures 2C,G and Supplementary
Tables 1, 2).

LC-PAC1 regulates stress-associated
BAT Ucp1 expression

Mitochondrial uncoupling by UCP1 is a critical
determinant of EE (Aston-Jones et al., 1994; Canale et al., 2013;
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FIGURE 1

LC-PAC1 expression does not affect memory of the stressor test. (A) Animals were bilaterally injected with either hSyn-GFP or hSyn-GFP-Cre
into the LC. After a 3 week recovery period, animals were run through a contextual fear protocol. (B,C) Prior stressors significantly increased
freezing in all groups, but no significant effect of LC-PAC1 deletion were observed in memory of the stressor in either males (B) or females (C).
N = 8–11/group. (D) Representative RNAScope in situ hybridization image of merged PAC1 mRNA and DAPI levels in rAAV2-hSyn-GFP and
rAAV2-hSyn-GFP-Cre mice. (E,F) Mean fluorescence of PAC1 mRNA intensity in LC of indicated mouse groups. Injection of
rAAV2-hSyn-GFP-Cre into the LC resulted in a significant reduction of mean fluorescence of PAC1 mRNA in both males and females.
N = 9–10/group. ∗p < 0.05; ∗∗p < 0.01. Scale bar = 1 mm.

Thorp and Schlaich, 2015; Atzori et al., 2016; Rabasa and
Dickson, 2016; Caron et al., 2018; Naegeli et al., 2018; Rabasa
et al., 2019; Morris et al., 2020; Yang et al., 2021). Following
indirect calorimetry, stressed and non-stressed mice with
and without LC-PAC1 deletion were sacrificed under 3%
isoflurane anesthesia, and intrascapular BAT was collected
(Figure 3A). RNA purification, cDNA synthesis, and RT-
qPCR were performed on BAT samples and expression of
genes involved in mitochondrial function, biogenesis, and
thermogenesis were measured. Two Way ANOVA revealed
no effect of sex and condition [F(1,22) = 1.94, p > 0.05) on
the thermogenic gene Ucp1 in non-stressed mice. There was a
main effect of sex and condition [F(1,9) = 6.462, p = 0.0316]

on Ucp1 in stressed mice. Post-hoc analysis showed that there
was a significant increase in thermogenic gene, Ucp1 expression
in stressed LC-PAC1 knockout males compared to stressed
males with intact LC-PAC1 (hSyn-Cre S versus hSyn-GFP S;
p < 0.05) (Figure 3B). Genes encoding proteins important
for mitochondrial function such as Ppargc1a and Cox8B were
also increased (not significant) in male CRE S mice compared
to GFP S mice (Figures 3D–G). Other BAT genes such as
PPARa, Elovl3, Dio2, Clstn3 were comparable between CRE
S and GFP S male mice (Supplementary Figures 3A–H). No
significant differences were observed in BAT expression of Ucp1,
PPARa, Cox8b, Elovl3, Dio2, Clstn3, or PPARGC1a in females
(Figure 3C and Supplementary Figures 3A–H). Our BAT
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FIGURE 2

LC-PAC1 deletion results in sexually dimorphic stress-induced metabolic changes. (A) Animals were bilaterally injected with either hSyn-GFP or
hSyn-GFP-Cre into the LC. After a 3 week recovery period, animals were run through a contextual fear protocol followed by 72 h in the
metabolic chamber. (B,C) In male mice with LC-PAC1 deletion energy expenditure (EE, kcal/h) was significantly increased (B) and respiratory
exchange ratio (RER) was significantly reduced (C) as evidenced by analysis in Sable Promethion metabolic chambers (12 h light/dark cycle, 48 h
total duration, white bar represent light cycle and grey bar represent night cycle). (D,E) No significant differences in energy expenditure (EE,
kcal/h) (D) and respiratory exchange ratio (RER) (E) in females. Analysis was performed in Sable Promethion metabolic chambers (12 h light/dark
cycle, 48 h total duration, white bar represent light cycle and gray bar represent night cycle. For each of these variables a line graph and bar
graph comparing all four groups (hSyn-Cre S, hSyn-Cre NS, hSyn-GFP S, and hSyn-GFP NS) as well as a line graph comparing stressed groups
(hSyn-Cre S and hSyn-GFP S) are displayed. N = 9–10/group. *p < 0.05; **p < 0.01, #p = 0.05, ##p = 0.07. GFP NS, hSyn-GFP No Shock; GFP S,
hSyn-GFP Shock; CRE NS, hSyn-Cre No Shock; and CRE S, hSyn-Cre Shock.

analysis supports our indirect calorimetric data, suggesting that
ablation of PAC1 receptors in LC of male mice increases BAT
thermogenic function in stressed mice which could potentially
led to increase in EE.

Validation of PAC1 receptor deletion
from locus coeruleus

To test if the behavior and energy metabolism changes
were due to sustained PAC1 deletion in LC, after the behavior

and metabolic tests were completed (Figure 4A), mice were
sacrificed, and their brains extracted and immediately stored in
at −80◦C. The brains were sliced at 20 microns in a cryostat and
slices containing the LC were collected on microscope slides.
The deletion of PAC1 receptors was verified using RNAScope for
analyzing expression of RNA in tissue sections. We conducted
fluorescence microscopy on mRNA puncta of PAC1 and GFP
mRNA and represented as mean fluorescence (Figures 4B–D).
Mean fluorescence of Adcyap1r1 was measured for each image
and showed a significant decrease in Cre injected male and
female mice compared to GFP-only control (Figures 4B–D).
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FIGURE 3

PAC1 deletion in the LC result in a stress-induced thermogenic genetic expression increase in males. (A) Animals were bilaterally injected with
either hSyn-GFP or hSyn-GFP-Cre into the LC. After a 3-week recovery period, animals were run through a contextual fear protocol followed by
72 h in the metabolic chamber and BAT harvest. (B–G) Real-time qPCR of indicated genes from male and female BAT of indicated mouse
groups. Stressed male mice with LC-PAC1 deletion showed a significant upregulation in Ucp1 compared to stressed males with intact LC-PAC1
(B). No significant differences in Ucp1 expression were observed in females (C). There were no significant differences in expression of
PPARGC1a in males (D) or females (E). No significant differences in expression of Cox8b were observed in males (F) or females (G).
N = 9–10/group. **p < 0.01. Ucp1, Uncoupling protein 1; PPARa, peroxisome proliferator-activated receptor; Cox8b, cytochrome c oxidase,
subunit VIIIb; Elovl3, elongation of very long chain fatty acids-like 3; Clstn3, Calsyntenin 3; PPARGC1a, Peroxisome proliferator-activated
receptor-gamma coactivator-1 alpha.
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Our data show that sexually dimorphic metabolic perturbation
seen in mice are due to acute stress paired with sustained PAC1
deletion in the LC regions.

Discussion

Our results for the first time show that deletion of PAC1
receptors from the LC does not alter fear expression in male
or female mice. However, PAC1 knockdown in the LC of
male mice led to an increase in EE and decreased RER. PAC1
ablation from LC in female mice significantly enhanced food
intake. We also show that PAC1 deletion in the LC in male
mice increased the Ucp1 gene, a measure of BAT thermogenic
gene program. Overall, these results show a causal role of LC
PAC1 receptors in regulating energy metabolism in a sex-specific
manner.

Measurement of stressor memory in mice with
and without PAC1 deletion in the LC indicates that
these receptors in the LC are not involved in fear
regulation. Both male and female groups showed similar
levels of freezing with and without PAC1 deletion after
acute stressor. It is possible that these receptors are
involved in other behavioral measures of stress-exposure
including fear extinction, grooming, rearing, and other
measures including endocrine measurements such as
corticosterone and catecholamines, which will require further
studies.

Our results on the whole-body energy metabolism showed
a sexually dimorphic effect of LC-PAC1 knockout. Male GFP-
only control showed reduced VO2, VCO2, EE and increased
RER (indicative of decreased fat oxidation and utilization)
compared with male mice with PAC1 deletion and acute
stressor. These results were not attributable to changes in
locomotion. Female mice with PAC1 deletion in the LC and
acute stressor showed enhanced food consumption compared
to GFP-only control mice. Analysis of BAT tissue also
showed that male mice with PAC1 deletion in the LC and
acute stress exposure showed enhanced levels of the Ucp1
gene compared to mice without PAC1 deletion that went
through acute stressor. This indicates that -LC-PAC1 receptors
in male mice regulates energy and fat metabolism but in
female mice food intake, which is in line with a recent
study has showed that LC inhibition increases food intake
in response to acute stressor (Sciolino et al., 2019).These
findings indicate that under stressor, PAC1 receptors in the
LC are important regulators of metabolic functions, whereby
removal of these receptors in female mice increase food intake
but in male mice alter the peripheral regulation of energy
metabolism.

Based on published reports that show LC neurons innervate
the BAT (Morrison and Madden, 2014; Wiedmann et al., 2017)
and given that LC is sexually dimorphic in morphology, we

predict that LC-PAC1 expressing neuronal innervations to BAT
are sexually dimorphic and are altered by severe stressors. One
possibility is that LC-PAC1 receptors are highly expressed on
BAT projecting neurons in male mice that undergo severe
stressors than females or other control groups. Published work
show that acute stressors increase BAT Ucp1 activity (Nozu
et al., 1992; Lkhagvasuren et al., 2011; Kataoka et al., 2014)
and our studies corroborate those findings. We further show
nuanced sex-specific differences in LC-PAC1 regulation of
BAT activity and thermogenic program. However mechanistic
aspects of BAT activity regulation via LC PAC1 remain to
be elucidated. First, multiple physiological signals including
LC-sympathetic pathways innervate BAT through multiple
synapses (Cano et al., 2003; Almeida et al., 2004; Wiedmann
et al., 2017). To gain a better understanding of anatomical
link between LC-PAC1 and BAT, it will be important to
determine how the PAC1 receptor expressing LC neurons
project to BAT and whether LC-PAC1 alters BAT sympathetic
tone to alter thermogenic program. Second, while LC expresses
PAC1 receptors, the source/s of PACAPergic input to LC are
unclear. The nucleus of the solitary tract (NTS), a structure
known to express PACAP99 is a known major source of
preganglionic input to the LC (Van Bockstaele et al., 1999).
NTS integrates peripheral autonomic and endocrine signals
associated with stressors, and regulates LC functions (Ulrich-Lai
and Herman, 2009). The rostral ventrolateral medulla (RVLM)
also contains high PACAPergic cells and innervate the LC, but
their functions are related to cardiorespiratory functions which
could influence metabolic functions indirectly. Thus, it will be
important to discern if there are sex differences in NTS to LC
projections.

In our current studies we did not measure the contribution
of sex hormones in our sex-specific metabolic phenotype upon
LC PAC1 ablation. While sex steroids, specifically estradiol,
influence BAT activity (Heine et al., 2000; Pedersen et al., 2001;
Karastergiou et al., 2012; Hoene et al., 2014; Valencak et al.,
2017), future studies with ovariectomy/hormone replacement
studies to determine roles of ovarian hormones (e.g., estradiol
vs. progesterone) are needed. Besides estrous cycle, other studies
will also be needed to determine if fat mass, lean mass, adult
testicular hormones, gonadal hormonal surges in development,
or the different complement of genes on the sex chromosomes
(McCarthy et al., 2012) influence metabolic functions such as EE
and RER and BAT activity between males and females.

Overall, our studies capture a granular detail of the LC in
integrating severe stressor and metabolic signals via a genetically
defined anatomy of LC via the PAC1 receptors. Our findings
that LC-PAC1 neurons regulate metabolic responses under
trauma-like stressors are important for further understanding
the unique biology of LC via other systematic approach
and consideration of sex differences. These studies are also
important for growing studies in mapping brain and body
interactions under severe stressors.

Frontiers in Behavioral Neuroscience 07 frontiersin.org

https://doi.org/10.3389/fnbeh.2022.995573
https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org/


fnbeh-16-995573 October 5, 2022 Time: 10:35 # 8

Duesman et al. 10.3389/fnbeh.2022.995573

FIGURE 4

Injection of rAAV2-hSyn-Cre results in a sustained reduction of PAC1 receptors in PAC1loxP/ loxP mice. (A) Animals were bilaterally injected with
either hSyn-GFP or hSyn-GFP-Cre into the LC. After a 3 week recovery period, animals were run through a contextual fear protocol followed by
72 h in the metabolic chamber and brain harvest. (B,C) Mean fluorescence of PAC1 mRNA intensity in LC of indicated mouse groups. Injection
of rAAV2-hSyn-GFP-Cre into the LC resulted in a significant reduction of mean fluorescence of PAC1 mRNA in both males (B) and (C) females.
(D) Representative RNAScope in situ hybridization image of PAC1 mRNA, GFP mRNA, DAPI, and merged levels in rAAV2-hSyn-GFP and
rAAV2-hSyn-GFP-Cre mice. ∗p < 0.05; ∗∗p < 0.01. Scale bar = 1 mm.

Materials and methods

Animals

All experimental procedures were conducted in accordance
with guidelines set by the National Institutes of Health and
the Institutional Animal Care and Use Committee at the
Icahn School of Medicine at Mount Sinai. Mice were provided
ad libitum access to food and water in a light- and temperature-
controlled vivarium. Mice (3–4 months) were housed with no
more than five mice per cage as littermates in a vivarium
in a 12 h light:12 h dark cycle. Experiments were performed
between 9 AM and 3 PM. The Adcyap1r1loxP/loxP mouse line
was utilized for all experiments. These mice were generated in
a C57BL/6 background with a conditional knockout (KO) allele
(PAC1loxP/loxP mice) through the NIH-funded knockout mouse
project (KOMP).

Viruses

Mice were either injected with AAV2-hsyn-GFP-Cre for
Cre-mediated deletion of PAC1 or AAV2-hsyn-GFP for control
animals (UNC vector core).

Cre mediated deletion of PAC1
receptors

To ablate PAC1 receptors in neurons, mice were secured
in a stereotaxic apparatus under 2% isoflurane anesthesia
and injected with rAAV2-hsyn-GFP-Cre to achieve neuronal
deletion of PAC1 receptors. Control mice were injected with
rAAV2-hsyn-eGFP. Mice were injected with 0.3 µl of virus
bilaterally into the LC using coordinates (LM: ±1.0; AP:
−5.4; DV: 4.2 from Bregma). Virus was microinfused into
the LC with a 10 µl Hamilton Syringe fitted with a 1 mm
glass pipette with no filament at a rate of 0.2 µl/min. After
completion of infusion the glass pipette was left in position
for 10 min to allow for diffusion. Using the glass pipettes
that are commonly used for electrophysiological recordings
with single cell resolution allowed confining the virus infusion
to the LC. Using this method, we have previously targeted
structures that are smaller than LC (Rajbhandari et al.,
2021). Immediately after surgery, mice were given ad libitum
access to a 0.5/0.1 mg/kg Sulfamethoxazole/Trimethoprim
solution in drinking water for 5 days. The antibiotic regimen
is standard procedure to prevent infections after surgeries.
Since this is administered for 5 days after surgeries and
the experimental procedure do not start until 3 weeks later,
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we do not expect it to have effects on metabolic functions.
Mice also received a subcutaneous injection of the anti-
inflammatory drug Rimadyl (5 mg/kg) immediately after, and
1 day following surgery. Mice were allowed 21 days after surgery
prior to behavioral testing, which allowed for viral expression
sufficient for Cre-mediated deletion of PAC1 receptors in LC
neurons.

Measurement of fear-related behavior

Conditioning apparatus
Mice were run individually in sound and light attenuated

conditioning boxes (Med Associates Inc., Georgia, VT, USA)
(Figure 1). The boxes were equipped with Near Infra-Red
Video Fear Conditioning System and could be configured to
represent different contexts by changing the internal structure,
illumination, and odor. Context A (28 cm × 21 cm × 21 cm)
had a clear Plexiglas back wall, ceiling, and front door
with aluminum sidewalls visibly illuminated with a white
light. It also had a grid floor with evenly spaced stainless-
steel rods. Beneath the grid floor, in Context A, was an
aluminum tray with a paper towel scented with 50% Windex.
The floor in context A was connected to a scrambled foot
shock generator. Context B (28 cm × 21 cm × 21 cm)
had a clear plexiglass door with red walls illuminated
with red colored LED light emitting from the top of the
chamber. Context B also contained a grid floor connected
to a scrambled foot shock generator, but beneath the grid
floor was a paper towel scented with a 1% acetic acid
solution.

Measure of freezing
Freezing is a complete lack of movement except for

respiration (Fanselow, 1980). Freezing was measured
using Ethovision software that performed real-time video
recordings at 18 frames per second. With this program,
adjacent frames are compared to provide the grayscale
change for each pixel and the sum of pixels changing from
one frame to the next constitutes a momentary activity
score. To account for video noise and to approximate
scoring by a trained human observer a threshold is set
at 0.02 activity units so that an instance of freezing is
counted when that the activity score remains below this
threshold for 1 s (Anagnostaras et al., 2001). Percentage
freezing = Freezing Time /Total Time × 100 for a period
of interest. Data are presented as mean percentages
(±SEM).

Behavioral design
We designed our behavioral tests to capture memory of the

stressor. This design was chosen mainly because LC has been
shown to be important for fear generalization (Soya et al., 2017).

Acute stress paradigm

After mice recovered from surgery an acute stress
paradigm was used. On day 1, mice were transported to
the behavioral testing area in their clear plastic home cage
and placed in the chambers set up in Context A. Mice
were then exposed to 10 random foot shocks (1 mA)
over the period of 60 min. This stressor has been shown
to produce long-lasting effects (Rau and Fanselow, 2009).
Mice were transported to the laboratory together in their
home cages. For the behavioral experiments male mice were
always ran before females and chambers were thoroughly
cleaned between mice to avoid effects of pheromones on
behavior.

Memory of stressor test
On day 2 mice were transported to the behavioral testing

room in a round, opaque plastic container which was distinct
from their home cage and placed in chambers set up in Context
B. The animals were placed in a different Context (B) for
four minutes and thirty seconds. Mice were allowed to explore
Context B for 4 min and time spent freezing was measured for
this time-period.

Indirect calorimetry using metabolic
chambers

Three days after administration of the acute stress paradigm,
mice were placed in in indirect calorimetry chambers (Sable
Promethion) for 72 h. Data collected from indirect calorimetry
included oxygen consumption, carbon dioxide production,
energy expenditure (EE), respiratory exchange ratio (RER),
energy balance, food and water intake, locomotor activity,
and body mass. This information highlights changes in
metabolic physiology after severe stressor as a function of
presence/absence of LC-PAC1. The first 24 h of indirect
calorimetry data was excluded from analysis to allow mice to
habituate to the novel environment. Body weight was used as
statistical covariates for the analysis of some indirect calorimetry
measurements in the metabolic chambers such as oxygen
consumption, carbon dioxide production, EE, and food and
water intake. RER value and locomotion were analyzed without
a covariate as they are known to be measures independent of
body weight. The RER value, which is a ratio of the volume
carbon dioxide produced over the volume of oxygen consumed,
show if the predominant source of energy is fat or carbohydrate
after stressor. A higher RER value denotes carbohydrate as the
primary source of energy being utilized, while a lower RER value
indicates fat as a fuel source. We analyzed the data with CalR
(Mina et al., 2018) that considers activity, food intake and other
parameters allowing us to derive accurate indirect calorimetry
values.
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Tissue harvests

Three days after indirect calorimetry mice were food
deprived for 4 hours and anesthetized with isoflurane and
rapidly decapitated. Brain and BAT were collected and rapidly
frozen and stored in a −80 ◦C freezer. Brain tissue with
LC were used to confirm injection sites and loss of PAC1
using RNAScope in situ hybridization routinely used in our
lab58.

RNAscope in situ hybridization

The brains were sectioned at 20 µm in a cryostat at
−20◦C and slices containing the LC were collected on
Fisherbrand Superfrost Plus microscope slides (Thermo Fisher
Scientific) and stored at −80 ◦C. Deletion of PAC1 receptors
was verified using RNAscope for analyzing expression of
RNA tissue sections (ACD Biotechne). Briefly, we performed
in situ hybridization steps following RNAscope R© 2.5 HD
HD Assay - RED protocol for fresh frozen sections. After
completion of the labeling, sections were cover-slipped using
Prolong Gold (Thermo Fisher Scientific) with 4’,6-diamidino-
2- phenylindole (DAPI) and the edges were sealed with
clear nail polish. PAC1 mRNA quantification was carried
out in sections containing the LC that were captured
with a 20X objective on a Zeiss AxioImager Z2M with
ApoTome. Analysis of PAC1 mRNA was conducted using FIJI
software. For quantification, mean fluorescence of PAC1 mRNA
labeled with mCherry inside a standard section inside the
LC was assessed.

RNA purification, cDNA synthesis, and
RT-qPCR

RNA was isolated from BAT using phenol-chloroform
extraction. After isolated, the RNA pellet was washed and
resuspended in diethyl pyrocarbonate (DEPC) water at a
concentration of 200 ng/µL. RNA samples were reversely
transcribed to cDNA using a high-capacity cDNA reverse
transcription kit (Applied Biosystems). Real Time qPCR
was performed by using a real time PCR SYBR green
master mix (Diagenode) and primers for Ucp1, peroxisome
proliferator-activated receptor (PPARa), cytochrome c
oxidase, subunit VIIIb (Cox8b), elongation of very long
chain fatty acids-like 3 (Elovl3), Calsyntenin 3 (Clstn3),
peroxisome proliferator-activated receptor-gamma coactivator-
1 alpha (PPARGC1a). Samples were run and analyzed on
a Quantstudio 5 (Applied Biosystems). The qPCR targets
were normalized to the expression of the housekeeping gene
36B4.

Microscopy for all experiments

The tissue sections were analyzed using a Zeiss AxioImager
Z2M with ApoTome microscope. Images were analyzed with
Fiji image processing software (NIH, Bethesda, MD, USA;
RRID:SCR_002285). Mean fluorescent intensity of PAC1 RNA
was measured on a section of LC tagged with GFP.

Experimental design and the statistical
analyses

We measured freezing for the first 4 min of the session on
day 2 of the acute stress paradigm. For the behavioral and qPCR
experiments, a two-way analysis of variance (ANOVA) was used
to measure differences in means with two between sex and
condition (virus and stress/control) factors. Significant effects
indicated by the ANOVA were further analyzed with a post-
hoc Holm-Sida’s post-hoc analysis. For metabolic experiments,
a two-way analysis of variance (ANOVA) was performed
on measurements not associated with mass (i.e., respiratory
exchange ratio (RER) and locomotor activity) and analysis
of covariance (ANCOVA) with total mass as a covariate for
measurements that are associated with mass [i.e., oxygen
consumption, carbon dioxide production, food and water
consumption, and energy expenditure (EE)]. The level of
significance used for all analyses was p < 0.05.
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SUPPLEMENTARY FIGURE 1

(A–H) Oxygen consumption (VO2, ml/h) (A,B), carbon dioxide
production (VCO2, ml/h) (C,D), respiratory exchange ratio (RER) (E,F),

energy expenditure (EE) (G,H), food consumption (kcal/h) (I,J), and
locomoter activity (beam breaks/h) (K,L), (C) of male and female mice
analyzed in Sable Promethion metabolic chambers (12 h light/dark
cycle, first 24 h total duration, white bar represent light cycle and grey
bar represent night cycle). For each of these variables a line graph
comparing all four groups (hSyn-Cre S, hSyn-Cre NS, hSyn-GFP S, and
hSyn-GFP NS) are displayed. N = 9–10/group. GFP NS (hSyn-GFP No
Shock), GFP S (hSyn-GFP Shock), CRE NS (hSyn-Cre No Shock), and
CRE S (hSyn-Cre Shock). No significant differences were observed in
these variables.

SUPPLEMENTARY FIGURE 2

(A–D) No significant differences were observed in oxygen consumption
(VO2, ml/h) (A), carbon dioxide production (VCO2, ml/h) (B), locomotor
activity (beam breaks/h), locomotor activity (beam breaks/h) (C), and
food consumption (kcal/h) (D) of male mice. (E–G) Similarly, no
significant differences in oxygen consumption (VO2, ml/h) (E), carbon
dioxide production (VCO2, ml/h) (F), and locomotor activity (beam
breaks/h) (G) were observed in females. However, stressed females with
LC-PAC1 deletion showed a significant increase in food consumption
(kcal/h) compared to stressed females with intact LC-PAC1 (H). All data
were collected using Sable Promethion metabolic chambers (12 h
light/dark cycle, 48 h total duration, white bar represent light cycle and
gray bar represent night cycle). For each of these variables a line graph
and bar graph comparing all four groups (hSyn-Cre S, hSyn-Cre NS,
hSyn-GFP S, and hSyn-GFP NS) as well as a line graph comparing
stressed groups (hSyn-Cre S and hSyn-GFP S) are displayed.
N = 9–10/group. ∗p < 0.05; ∗∗p < 0.01. GFP NS, hSyn-GFP No Shock;
GFP S, hSyn-GFP Shock; CRE NS, hSyn-Cre No Shock; CRE S,
hSyn-Cre Shock.

SUPPLEMENTARY FIGURE 3

(A–H) Real-time qPCR of indicated genes from male and female BATs of
indicated mouse groups. No significant differences were observed in
these variables. N = 9-10/group. PPARa, peroxisome
proliferator-activated receptor; Elovl3, elongation of very long chain
fatty acids-like 3; Dio, idothyronine deiodinase 2; Clstn3,
Calsyntenin 3.

SUPPLEMENTARY TABLE 1

Generalized linear model (GLM) ANCOVA and ANOVA tests for the listed
parameters from male mice housed in metabolic chambers.

SUPPLEMENTARY TABLE 2

Generalized linear model (GLM) ANCOVA and ANOVA tests for the listed
parameters from female mice housed in metabolic chambers.
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