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Introduction

Head and neck cancers (HNC) have one of 
the highest incidences worldwide, reaching approx-
imately 932,000 cases in 2020 [1]. The disease takes 
its burden, especially in low- and middle-income 
countries where patients are often diagnosed with 
tumors in advanced stages [2, 3]. In 2016, 67% of 
HNC cases and 82% of HNC-related deaths came 
from these regions [4]. This group of tumors orig-
inates from the mucosal epithelium of the upper 
aerodigestive tract, where it develops in three pri-
mary subsites — oral cavity, pharynx, and larynx. 
Roughly 90% of HNC are squamous cell carcino-
mas (HNSCC) [5]. The primary risk factors for de-
veloping this malignancy are long-term, excessive 
tobacco use and/or alcohol consumption, as well 

as environmental carcinogens and human pap-
illomavirus (HPV) infection [6, 7]. The first ones 
are predominantly linked with tumor formation in 
the oral and larynx localization, whereas the latter 
is primarily associated with the oropharynx [8]. 
Interestingly, undergoing HPV infection was cor-
related with more favorable outcomes [7]. There 
is an urgent need for vaccination programs, espe-
cially among young men from developing coun-
tries, who are increasingly diagnosed with HN-
SCC [7]. Patients are proposed with therapeutic 
approaches consisting of chemo- and radiotherapy, 
surgical resection, and biological medicaments, 
including immunotherapeutics [6]. However, for 
late-diagnosed patients with advanced disease, 
even aggressive multimodal treatment does not 
bring long-term positive results. Belated detection, 
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tumor heterogeneity, and metastasis are the main 
reasons why the mortality rate of HNSCC in 
the first five years from diagnosis is approximate-
ly 50% [6, 9]. Necessity to improve the diagnosis 
process and find more personalized treatments for 
cancer patients led scientists to search for poten-
tial markers or therapeutic targets among some of 
the most crucial and universal regulators of cell bi-
ology — non-coding RNAs (ncRNAs).

One of the most abundant ncRNA subgroups 
consists of microRNAs (miRNAs) - small (approx-
imately 22 nucleotides long), endogenous ncRNAs 
with great power. These molecules are crucial for 
post-transcriptional regulation of gene expression, 
which is required for maintaining cell homeosta-
sis and normal organism development. Over 60% 
of human protein-coding genes have conserved 
one or more miRNA-binding sites, which, com-
bined with numerous non-conserved sites, indicate 
possible miRNA-based control of most of those 
transcripts [10]. Inhibition of target messenger 
RNA (mRNA) expression is caused by miRNA in-
teraction with its 3’ untranslated region (3’ — UTR) 
[11]. Dysregulation of this complex molecular ma-
chinery is associated with many diseases, including 
cancers [11, 12]. That is why it is vital to explore 
the role and possible diagnostic or therapeutic po-
tential of ncRNA. 

This review aims to discuss the current knowl-
edge regarding miRNAs in HNSCC and elucidate 
their possible future usage as molecules in the per-
sonalized medicine service.

miRNA biogenesis 

The canonical pathway of miRNA biogenesis be-
gins in the nucleus with transcription of miRNA 
genes, which in the vast majority are located in in-
trons of non-coding or coding transcripts. Sequenc-
es residing in the introns of protein-coding genes 
usually share promoters with the host. On the oth-
er hand, intergenic sequences are transcribed sep-
arately from the host although controlled by their 
promoters [13, 14]. Each locus encodes two ma-
ture molecules — one on the 5’ and the second on 
the 3’ strand. miRNA genes are transcribed by poly-
merase II (Pol II), which results in the formation of 
long primary transcripts (pri-miRNA) containing 
both future miRNAs enclosed in the local stem-loop 
structure [11]. This process is regulated by tran-

scription factors associated with Pol II and various 
epigenetic regulators [15]. The pri-miRNA mat-
uration process is initiated by the nuclear RNase 
III — Drosha and its cofactor DGCR8, which to-
gether form the Microprocessor complex that can 
cleave molecules in a precisely defined position 
[16]. Complex recognizes pri-miRNA structure 
consisting of terminal loop, approximately 33-35 bp 
long stem, as well as single-stranded tails and crops 
RNA specifically 11 bp from the basal junction 
(junction of the single-stranded tails turning into 
stem) and 22 bp from the apical junction (junction 
below the terminal loop), creating a hairpin-struc-
tured RNA called — pre-miRNA [17, 18]. Both 
described junctions are crucial for determining 
the split site [11, 17, 18]; however, the mecha-
nism of interaction between the Microprocessor 
and pri-miRNA is still unknown.

Subsequently, protein exportin 5 (EXP5) 
and GTP-binding nuclear protein Ran-GTP form 
a “baseball mitt”-like transport complex to export 
pre-miRNA to the cytoplasm for the final steps of 
the maturation process [11, 19, 20]. Translocation 
through the nuclear pore requires GTP hydrolysis, 
which leads to complex disassembly [20]. Released 
into the cytoplasm pre-miRNA is then cleaved close 
to the terminal loop by RNase III-type endonucle-
ase, called Dicer, resulting in the creation of a short 
RNA duplex [21]. Said enzyme consists of an N-ter-
minal helicase domain, the PIWI-AGO-ZWILLE 
(PAZ) domain, two double-stranded RNA (ds-
RNA) binding domains (DUF283, dsRBD), 
and a catalytic center formed by two C-terminal 
RNase III domains [22–25]. The PAZ domain has 
two spatial pockets, which can bind simultaneous-
ly a 5’ end and a two-nucleotide-long overhang at 
the 3’ end of the pre-miRNA [24, 25]. Nevertheless, 
the 5’ end binds to the enzyme only when it is ther-
modynamically unstable due to the lack of strong 
guanine and cytidine base pairing [24]. The region 
between the PAZ and RNase III domains may act as 
a “molecular ruler” [22, 23], which ensures that Di-
cer cleaves processed RNA 21-25 nucleotides from 
the 3’ end and 22 nucleotides from the 5’ end [22, 
24]. This process generates small dsRNA, which 
is then loaded to the Argonaute family protein 
(AGO) in an ATP-dependent process and becomes 
the RNA-induced silencing complex (RISC) [11]. 
The process of miRNA biogenesis is presented on 
Figure 1.
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Figure 1. Canonical and non-canonical pathways of microRNA (miRNA) biogenesis. Short RNA transcripts named  primary-
miRNA transcripts (pri-miRNAs), mitrons, and short hairpin RNAs (shRNAs) shared common and distinct biogenesis 
steps. Pri-miRNAs and shRNAs are cleaved by the Microprocessor complex in contrast to mitrons, which are trimmed 
by spliceosomes. All cropped RNAs are stabilized by exportin 5 (EXP5), which, together with Ran-GTP, transfers RNA 
transcripts from the nucleus to the cytoplasm. Next, pre-miRNAs are cleaved by the Dicer enzyme and, as a mature miRNA, 
loaded into the Argonaute family protein (AGO) complex in canonical biogenesis. In the case of non-canonical pathways, 
the Dicer-dependent step is omitted, and pre-miRNAs are loaded into AGO. Finally, in both cases, a functional complex is 
created with the ability to interact with different types of RNA molecules, creating an RNA interference (RNAi) phenomenon
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In humans, there are four AGO proteins 
(AGO1–4) that can interact with duplex RNA 
and induce target mRNA degradation caus-
ing its translational repression, however, only 
AGO2 has the ability to cleave perfectly matched 
transcripts [26]. These proteins contain 4 func-
tional domains — N-terminal domain, PAZ do-
main, MID domain, and PIWI domain, which are 
required to bind dsRNA and determine which 
strand will be further processed. The transcript 
with high thermodynamic stability and lack of 
uracil at the beginning of the 5’ end isn’t prefer-
entially attached to the AGO, resulting in its un-
winding from the remaining strand (the “guide 
strand”) and degradation [11, 27]. The above 
leads to a strong bias toward the “guide strand” 
generating an imbalance in the mature miRNAs 
expression levels as well as biological activity. 
These molecules tend to be more active and abun-
dant than the ones encoded on the “passenger 
strand”. The selection of RNA strands may vary 
in different tissues due to a phenomenon called 
“arm switching”, which can be generated by al-
ternative Drosha processing [28]. Additionally, 
these molecular species could be co-expressed in 
various tissues and display different modulato-
ry roles in tumorigenic processes independently 
and/or cooperatively [29]. miRNA enclosed in 
the RISC complex is highly stable because AGO 
protects both its’ ends [30]. That is why small 
RNAs need to be unloaded to enable exonucle-
ases to access their termini. The process of ma-
ture miRNA disassembly from AGO isn’t fully 
described yet.

Interestingly, approximately 1% of con-
served miRNAs are produced in processes devi-
ating from the canonical pathway. For example, 
molecules residing in short introns called ‘mir-
trons’ after co-expression with their host genes 
don’t undergo Drosha/DGCR8 cleaving but are 
trimmed by spliceosome instead, and then ex-
ported directly into the cytoplasm (Fig. 1)[13]. 
Experiments studying cells deficient in DGCR8, 
Drosha, or Dicer showed that some of the small 
RNAs could be generated in Microprocessor-in-
dependent or Dicer-independent (e.g. shRNA, 
Fig. 1) ways [11, 31]. This suggests the need for 
evolutionary flexibility in the biogenesis process 
of these short RNA molecules.

Function and interactions 
with molecules

miRNAs are known for their wide scope of func-
tions and the great variety of molecules they inter-
act with [10–12]. In general, these small RNAs bind 
with the specific sequence at the 3’ UTR of mRNAs 
leading to its translational repression, causing 
deadenylation, decapping, and, consequently, deg-
radation [32]. However, miRNAs could also bind 
to the 5’UTR and coding region of target mRNA, 
which results in silencing of the gene expression. 
They can also interact with the promoter, which on 
the other hand, may induce the transcription [33]. 

Gene silencing can be promoted by the mini-
mal miRNA-induced silencing complex (miRISC), 
which is the AGO with the loaded “guide strand” 
[34]. Target mRNA has miRNA response elements 
(MREs), whose sequence is to a different extent 
complementary to a particular short RNA, condi-
tioning the choice of one of the two possible paths. 
The first one is activated when miRNA:MRE com-
plementarity is 100% and leads to target cleavage 
by AGO2 endonuclease activity [35], while the sec-
ond pathway occurs when miRNA:MRE binding 
contains mismatches and uses the ability that all 
AGO proteins have – to mediate RNA interference, 
causing translational inhibition and target degra-
dation [33, 35, 36]. miRNA can affect transcrip-
tional and post-transcriptional gene regulation by 
shuttling from cytoplasm to nucleus through im-
portin-8 or exportin-1 in the form of miRISC via 
interaction with TNRC6A protein [37]. 

Principally, functional miRNA:MRE interac-
tion happens via the miRNA “seed region” located 
at the 5’ end and consisting of nucleotides 2–8 [33, 
36]. One miRNA can interact with numerous mR-
NAs, and one mRNA can have many MREs incor-
porated into its sequence [38]. On the cellular level, 
the relation between all molecules of a particular 
small RNA and the total number of their available 
response elements is described by the term “MRE 
load”. This relation can be manipulated by elevating 
the level of a specific gene or a competing endog-
enous RNA (ceRNA), e.g. long non-coding RNA 
(lncRNA) or circular RNA (circRNA), causing se-
questration of miRNA, as well as whole miRISC, 
from their target transcript leading to its derepres-
sion [39]. Additionally, MREs have different af-
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finity degrees – ones with the higher affinity will 
bind miRNAs for a longer time and lead to mR-
NAs’ increased sensitivity for post-transcriptional 
repression. The above process might provide a sta-
ble gene expression by controlling the high mRNA 
ratio and reducing the expression noise [38]. In-
terestingly, the study by Tian et al. determined 
that miRNA-mediated regulation is more strict for 
tumor suppressor genes than oncogenic ones [40].

In recent years many reports emphasized the rel-
evance of lncRNA and miRNA, as well as their inter-
actions in cancer biology, treatment, and diagnosis 
[41-48]. Apart from acting as a “molecular sponge” 
sequestering miRNA, lncRNAs can compete with 
them by binding to target mRNAs and preventing 
transcriptional repression. Additionally, some ln-
cRNAs can be processed into miRNAs, which is an-
other argument corroborating the fascinating joint 
work of these ncRNAs to control gene expression 
through numerous complex post-transcription-
al mechanisms [41–43, 48].

miRNAs potential — biomarkers 
or therapeutic targets?

High mortality rates and rising incidence of 
HNSCC dictate the necessity for developing ther-

apy tailored to each patient. The first step to per-
sonalized medicine is to discover therapeutic tar-
gets, affecting processes crucial for carcinogenesis 
or further tumor progression, and diagnostic bio-
markers, which could determine not only the oc-
currence of the disease but also assess individuals’ 
response to the applied treatment. miRNAs can be 
used as potential biomarkers and therapeutic tar-
gets in HNSCC, Figure 2.

Promising biomarkers
A growing number of studies describe miRNAs’ 

potential in diagnostics, emphasizing their spec-
ificity, stability of extracellular RNAs in various 
biological fluids, their relatively concise isolation 
process from acquired material, and simple anal-
ysis of obtained results [46, 49–53]. Importantly, 
these molecules can be successfully acquired via 
“liquid biopsy”, which is a non-invasive alternative 
to traditional tumor sampling [51]. Umu et al. de-
termined that serum contains significant amounts 
of ncRNAs, and approximately 45.7% is miRNA 
[54]. Biopsy often doesn’t fully reflect tumor het-
erogeneity [55] or can’t be obtained at all, i.e., when 
neoadjuvant therapy reduces the volume of the neo-
plastic lesion to an undetectable size [56]. Devel-
oping a specific panel of diagnostic, prognostic, 

Figure 2. miRNAs as potential biomarkers and therapeutic targets in head and neck squamous cell carcinomas (HNSCC)
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or predictive biomarkers would be an innovative 
approach leading to improvement of the HNSCC 
detection rate, patients’ life quality, and expectancy. 

Head and neck squamous cell carcinoma 
(HNSCC)

Fadhil et al. described two miRNAs with signif-
icant specificity and sensitivity to distinguish be-
tween patients and healthy individuals. let-7a-5p 
and miR-3928-5p were significantly downregulat-
ed in cancer patients’ saliva compared to controls, 
and their expression levels could be associated with 
the clinical T stage. Interestingly, low let-7a-5p 
levels were linked with the more advanced stage 
as well as the presence of lymph node metas-
tasis, suggesting its prognostic properties [57]. 
The panel of salivary-based biomarkers will be 
a useful non-invasive tool for HNSCC prophylaxis 
and early detection. The study by Ganci et al. fo-
cused on determining whether tumor, peritumoral 
and healthy tissue samples collected from HNSCC 
patients differ in gene expression alterations. De-
spite the lack of histopathological evidence, peri-
tumoral mucosa often presents an abnormal mo-
lecular landscape that could predict recurrence 
development. Out of 35 deregulated miRNAs 
found in the peritumoral tissue, authors identified 
a signature consisting of miR-21-3p, miR-21-5p, 
miR-429, and miR-96-5p, which upregulation 
was linked with significantly shorter local recur-
rence-free survival (RFS) [58]. Furthermore, Vaha-
bi et al. examined the last of mentioned miRNAs 
and discovered that it additionally correlates with 
the most frequently detectable genetic alteration – 
mutation in TP53, as well as increases HNSCC cell 
lines’ resistance to chemotherapeutics and irradia-
tion [59]. Hudcova et al. studied the expression pro-
file of miR-29c-3p, miR-200b-5p, and miR-375-3p 
in tumor and paired healthy margin tissue samples. 
The first molecule was downregulated in cancer, 
and its low levels were associated with worse over-
all survival (OS) and less favorable outcome. De-
creased expression of miR-200b-5p was linked with 
advanced tumor grade, and its reduction in adja-
cent healthy tissue was observed in patients with 
nodal metastasis. These molecules seem to have 
prognostic properties worth further exploring. 
Finally, miR-375-3p was significantly upregulat-
ed in control samples compared to cancer tissue, 
and ROC analysis indicated its sensitivity and spec-

ificity as a biomarker reaching 87.5% and 65%, re-
spectively, which implies the great ability to distin-
guish tumor samples from normal tissue [60]. 

Esophageal squamous cell carcinoma (ESCC)
Qi and Fan described miR-18a-5p as an inter-

esting potential diagnostic molecule in the ESCC. 
Its high expression was linked with more advanced 
disease and worse OS. The ROC analysis indicated 
that miRNAs’ sensitivity and specificity as periph-
eral blood-based biomarkers was 80.7% and 71.9%, 
respectively. Moreover, the authors have emphasized 
the promising prognostic and therapeutic potential 
of the interplay between miR-18a-5p and ATM in 
ESCC [61]. A different molecule that might be help-
ful in ESCC diagnosis is miR-20b-5p. The authors 
demonstrated that serum levels of said miRNA 
could distinguish controls from cancer patients 
with 87.1% specificity and 76.3% sensitivity. In ad-
dition, its expression levels were positively associ-
ated with lymph node metastasis (LNM), advanced 
stages of ESCC, and poor survival rates [62]. These 
findings were corroborated by Xue et al. study, 
which indicated that miR-20b-5p expression lev-
el might predict LNM in patients with T1 stage of 
ESCC better than lymphovascular invasion, inva-
sion depth and tumor differentiation grade, indi-
cating its tremendous prediction potential [63]. 

Laryngeal squamous cell carcinoma (LSCC)
The study by Lucas Grzelczyk et al. revealed 

three miRNAs with exceptional diagnostic poten-
tial. Based on let-7a, miR-31, and miR-33 serum 
levels, patients could be distinguished from healthy 
individuals with nearly 100% accuracy [64]. A bio-
marker panel consisting of these molecules could 
become a helpful tool in LSCC prophylaxis. Where-
as Hu et al. proposed the molecular signature of two 
other molecules — miR-21 and miR-375, which may 
serve as detection biomarkers. Authors indicated 
that, except for the diagnostic properties of men-
tioned miRNAs interplay, miR-21 alone could be 
an independent patients’ OS predictor [65]. Wang 
et al. compared miR-155 expression levels in serum 
and tissue samples from LSCC patients. miRNA 
derived from both sample types had significant di-
agnostic potential, especially in the early stages of 
the disease. However, miR-155 detected in tumor 
specimens manifested higher accuracy compared to 
serum, not only in the whole patient group but also 
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in individuals at the early stages of cancer develop-
ment [66]. The above serves as a promising basis for 
further investigation, which could lead to the cre-
ation of a routine screening panel for LSCC patients.

Nasopharyngeal carcinoma (NPC)
Ye et al. analyzed exosomes present in serum sam-

ples from NPC patients and controls. Obtained re-
sults indicated that vesicles acquired from the first 
group are significantly more enriched in miR-24-3p. 
Additionally, the high expression level of said miR-
NA was correlated with shorter disease-free survival 
(DFS), implying its potential diagnostic value [67]. 
Wen et al. identified two miRNA-based molecu-
lar signatures crucial for NPC diagnosis. The first 
combination consisted of 8 miRNAs: miR-4465-3p, 
miR-4433-5p, miR-3935, miR-188-5p, miR-513b, 
miR-3196, miR-1908, and miR-4284, and enabled 
to distinguish healthy individuals from NPC pa-
tients with 88.9% specificity and 86.1% sensitivity. 
The second one was the combination of 16 miRNAs: 
miR-296-5p, miR-361-3p, miE-4665-3p, miR-4439, 
miR-155-5p, miR-5091, miR-4706, miR-4436b-5p, 
miR-4284, miR-1224-3p, miR-4740, miR-425-5p, 
miR-1973, miR-513b, miR-1908, and miR-1280, 
and allowed to differentiate NPC patients from pa-
tients with other head and neck cancers and controls 
with 72.2% specificity and 94.4% sensitivity. These 
2 signatures could become powerful biomarker 
panels in the future [68]. Recently, Wei et al. identi-
fied molecules with substantial diagnostic potential, 
miR-34a and Ki67 protein. This miRNA was proven 
to be downregulated in the cancer tissue compared to 
the healthy samples, and its decreased levels were as-
sociated with more advanced disease (stage III and IV 
in TNM staging) and bone metastasis. The diagnostic 
value of both molecules was examined with the ROC 
analysis, which indicated that joint detection exceed-
ed the specificity and sensitivity of miR-34a and Ki67 
alone, reaching 82.9% and 73.3%, respectively. Fur-
thermore, survival analysis determined that patients 
with low expression of studied miRNA and high lev-
els of Ki67 had significantly better OS than the group 
with the opposite expression pattern. Authors under-
lined not only diagnostic but also prognostic proper-
ties of the above signature in NPC [69].

Oral squamous cell carcinoma (OSCC)
Scholtz et al. described a promising molecu-

lar signature consisting of three miRNAs, which 

could distinguish healthy individuals from OSCC 
patients with a high accuracy. The combination 
of miR-31-5p, miR-345, and miR-424-3p detected 
from saliva samples could become a very precise 
non-invasive diagnostic tool [70]. Interestingly, Lee 
et al. determined that miR-769-3p could be strongly 
associated with specific subtypes of OSCC. Its high 
expression levels were linked with better treatment 
response, more favorable OS, and less invasive 
phenotype of the tumor [71]. Whereas low levels 
of miR-126 were associated with poor outcomes 
and shorter DFS in cancer patients [72]. Analysis 
of miR-99a presence in serum samples demonstrat-
ed that individuals with OSCC had significantly 
lower expression levels than the control group 
and could be distinguished with specificity and sen-
sitivity reaching 83.6% and 80.2%, respectively. 
Furthermore, decreased miRNA amounts were as-
sociated with shorter OS and RFS as well as more 
advanced TNM stage and histological grade. Anal-
ysis of said miRNAs level in blood samples obtained 
from patients before and after surgery indicated 
post-treatment increase in the studied molecule 
level. The authors emphasized that miR-99a could 
serve as an independent prognostic biomarker of 
OSCC [73].

Tongue squamous cell carcinoma (TSCC)
Chen et al. proposed a diagnostic signature 

consisting of 3 miRNAs: miR-21, miR-139-5p, 
and miR-486-3p, which had exceptional poten-
tial in TSCC detection. These molecules differen-
tiated tumors from healthy tissue with specificity 
reaching 86.7% and 100% sensitivity. However, it is 
worth mentioning that these results require valida-
tion on a larger cohort [74]. Interestingly, an earlier 
study by Duz et al. also underlined the diagnostic 
properties of miR-139-5p. This miRNA was down-
regulated in saliva from cancer patients compared 
to controls and post-operative TSCC individuals. 
Detection of miR-139-5p allowed it to differenti-
ate these groups with significant accuracy, which 
suggests its possible role as a reliable non-invasive 
TSCC biomarker [75]. Another molecule with high 
diagnostic accuracy is miR-196a-5p, whose up-
regulation was identified in TSCC tissue samples. 
Moreover, its high levels were associated with short-
er lymph node metastasis-free survival and early 
stages of the disease, confirming its importance for 
cancer screening and prophylaxis [76].
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Although much work remains to be done in 
the field of miRNA-based diagnostic tools, there 
are many tremendous candidates which might 
become useful biomarker panels in the future. 
It is worth mentioning that a few such assays are 
currently in use, e.g. for distinguishing molecular 
subtypes of breast cancer [77], forms of lung ma-
lignancies [78], or even identifying primary tissue 
of origin for different tumor types [79]. Among 
the molecules described above, let-7a, miR-21, 
miR-29c-3p, miR-31, miR-96-5p, miR-375, 
miR-429, and miR-3928-5p, can be considered 
the most universal for detecting the HNSCC tumor 
group. However, it should be emphasized that most 
of the miRNAs proposed in this review are cur-
rently being investigated for association and possi-
ble diagnostic or therapeutic use in more than one 
type of cancer. More analysis needs to be done to 
precisely identify molecules specific to a given ma-
lignancy, or on the other hand, propose a panel that 
detects cancer in general. Potential diagnostic bio-
markers and their role in the HNSCC are summa-
rized in Table 1.

Beneficial therapeutic targets
miRNAs affect numerous different mole-

cules modulating a variety of pathways and cellular 
processes, which can lead to astounding therapeu-
tic results as well as severe off-target consequences. 
Carefully designed small RNA-based drugs have 
the potential to target not only the multitude of 
proteins that aren’t influenced by any common me-
dicaments but also many compensatory mecha-
nisms participating in the development of therapy 
resistance [80]. However, the above is inevitably 
linked with the so-called “too many targets for miR-
NA effect” (TMTME), which leads to a wide range 
of difficult-to-predict results. Among others, that is 
why miRNA-based therapeutics don’t enter phase 
III of clinical trials [81]. On the other hand, bioin-
formatic tools predicting potential targets and in-
teractions become more and more accurate, giving 
us hope for designing a new drug which would rev-
olutionize modern medicine.

HNSCC
One such future therapeutic molecule might 

be miR-31 described by Lu et al. This molecule is 
upregulated in cancer compared to normal samples, 
and it is directly reducing the expression level of 

ARID1A, a known inhibitor of Nanog/OCT4/Sox2 
stemness factors and epithelial cell adhesion mole-
cules (EpCAM) activity. miR-31/ARID1A interplay 
promotes tumorigenesis and could be correlat-
ed with a worse prognosis. The authors suggested 
that therapeutic induction of ARID1A expression 
is a valuable approach for combating HNSCC [82]. 
Furthermore, the aforementioned miR-96-5p, 
a promising predictor of local recurrence, was 
considered a valuable asset in novel therapeutic 
approach design. Its high levels induced cell mi-
gration, strengthened the resistance to irradiation 
and cisplatin-based chemotherapy, as well as nega-
tively regulated its direct target PTEN, the primary 
inhibitor of the PI3K/AKT/mTOR pathway. Repres-
sion of miR-96-5p expression or induced upregula-
tion of PTEN might be a beneficial new strategy for 
individuals with a high risk of local HNSCC recur-
rence [59]. Chen et al. described different miRNA 
with oncogenic properties of miR-18a-5p. It pro-
moted a malignant phenotype in cancer cell lines 
via SORBS2 expression inhibition, resulting in 
the induction of cell migration and proliferation as 
well as suppression of apoptosis. Forced increase in 
SORBS2 expression hindered miR-18a-5p negative 
impact and implied that therapeutic modulation of 
the described axis could provide interesting new 
directions in the design of personal medicine [83]. 
These reports and the aforementioned diagnostic 
properties in ESCC make miR-18a a fascinating as-
pect of oncology research [84].

On the other hand, Hauser et al. found 
that miR-128 might be a promising tumor suppres-
sor. Its direct negative regulation of PAIP2, BAG-2, 
H3F3B, BMI-1, and BAX mRNA level was associat-
ed with the proliferation inhibition and promotion 
of apoptosis. Authors implied that miR-128 has 
a significant clinical value and its artificial induc-
tion might be beneficial for the patients [85]. Nohata 
et al. showed that miR-1 modulated the expression 
of TAGLN2, a protein with oncogenic properties 
described in different cancers. Induction of miR-
NA caused a decrease in tumor growth and inva-
siveness, proving the importance of further studies 
regarding its possible therapeutic potential [86].

ESCC
miR-20b-5p that was mentioned before is also 

a potential therapeutic target. Yu et al. showed that 
its high expression promoted growth, colony for-
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Table 1. Potential diagnostic biomarkers in the group of head and neck squamous cell carcinoma (HNSCC)

miRNA Cancer 
type Expression Role Sample Ref.

let-7a
let-7a LSCC Upregulated

Discriminates healthy from LSCC patients with almost 
100% specificity and sensitivity. In combination with 
miR-31 and miR-33 create a molecular signature with 

tremendous diagnostic potential

Serum [64]

let-7a-5p HNSCC Downregulated Promising biomarker for early stages of HNSCC Saliva [57]

miR-18a-5p ESCC Upregulated Highly sensitive prognostic biomarker in ESCC Peripheral 
blood [61]

miR-20b-5p

ESCC Upregulated Specific biomarker for lymph node metastasis 
prediction in T1-stage ESCC Serum [63]

ESCC Upregulated

Discriminates healthy from ESCC patients with 
high specificity and sensitivity; additionally, 

positively associated with lymph node metastasis 
and advanced stages of the disease

Serum [62]

miR-21

miR-21

TSCC Downregulated
In combination with miR-139-5p and miR-486-3p 
diagnose TSCC with 86.7% specificity and 100% 

sensitivity
Tissue [74]

LSCC Upregulated
Specific biomarker of LSCC detection. In combination 

with miR-375 distinguishes patients from healthy 
individuals with significantly higher accuracy

Tissue [65]

miR-21-3p HNSCC Upregulated
Potential biomarker of local recurrence in HNSCC 

individually, as well as in combination with miR-21-
5p, miR-429, and miR-96-5p

Tissue [58]

miR-21-5p HNSCC Upregulated
Potential biomarker of local recurrence in HNSCC 

individually, as well as in combination with miR-21-
3p, miR-429, and miR-96-5p

Tissue [58]

miR-24-3p NPC Upregulated Serum-based potential prognostic biomarker in NPC Serum [67]

miR-29c-3p HNSCC Downregulated Future potential biomarker of HNSCC progression Tissue [60]

miR-31

miR-31 LSCC Upregulated

Discriminates healthy from LSCC patients with almost 
100% specificity and sensitivity. In combination with 
let-7a and miR-33 create a molecular signature with 

tremendous diagnostic potential

Serum [64]

miR-31-5p OSCC Upregulated Biomarker with great potential to detect early 
malignant oral lesions Saliva [70]

miR-33 LSCC Upregulated

Discriminates healthy from LSCC patients with 100% 
specificity and sensitivity. In combination with let-
7a and miR-31 creates a molecular signature with 

tremendous diagnostic potential

Serum [64]

miR-34a NPC Downregulated
In combination with Ki67 creates a highly specific 

and sensitive molecular signature for NPC diagnosis 
and prognosis

Tissue [69]

miR-96-5p

HNSCC Upregulated
Potential biomarker of local recurrence in HNSCC 

individually, as well as in combination with miR-21-
3p, miR-21-5p and miR-429

Tissue [58]

HNSCC Upregulated Predictive biomarker for local HNSCC relapse; 
additionally correlated with TP53 mutation status Tissue [59]

miR-99a OSCC Downregulated
Highly specific and sensitive potential biomarker 
with the ability to differentiate cancer tissue from 

the healthy sample
Serum [73]

miR-126 OSCC Downregulated Potential prognostic biomarker associated with 
advanced OSCC Tissue [95]

miR-139-5p TSCC

Downregulated Saliva-derived and highly accurate biomarker for 
TSCC detection Saliva [75]

Upregulated
In combination with miR-21 and miR-486-3p 

diagnose TSCC with 86.7% specificity and 100% 
sensitivity

Tissue [74]
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miRNA Cancer 
type Expression Role Sample Ref.

miR-155 LSCC Upregulated Serum or tissue-derived biomarker for LSCC detection 
with the potential to early stage identification

Serum  
and tissue [66]

miR-196a-5p TSCC Upregulated Biomarker with the potential to diagnose delayed 
lymph node metastasis in early stages of TSCC Tissue [76]

miR-200b-5p OSCC Downregulated Potential predictor of nodal metastasis in HNSCC Tissue [60]

miR-296-5p NPC Downregulated

In combination with miR-361-3p, miE-4665-3p, miR-
4439, miR-155-5p, miR-5091, miR-4706, miR-4436b-
5p, miR-4284, miR-1224-3p, miR-4740, miR-425-5p, 

miR-1973, miR-513b, miR-1908, and miR-1280 
creates valuable diagnostic signature to distinguish 

NPC patients from other head and neck patients 
and healthy individuals with 72.2% specificity 

and 94.4% sensitivity

Whole 
blood [68]

miR-345 OSCC Upregulated Highly specific molecule for early OSCC diagnosis Saliva [70]

miR-375

miR-375 LSCC Downregulated
Highly specific biomarker of LSCC detection. In 

combination with miR-21 distinguish patients from 
healthy individuals with higher accuracy

Tissue [65]

miR-375-3p HNSCC Downregulated Distinguishing HNSCC cancer samples from normal 
tissue with high specificity Tissue [60]

miR-424-3p OSCC Downregulated
In combination with miR-31-5p and miR-345 

distinguish healthy and cancer patients with high 
sensitivity and specificity.

Saliva [70]

miR-429 HNSCC Upregulated
Potential biomarker of local recurrence in HNSCC 

individually, as well as in combination with 
miR-21-3p, miR-21-5p and miR-96-5p

Tissue [58]

miR-486-3p TSCC Upregulated
In combination with miR-21 and miR-139-5p 

diagnose TSCC with 86.7% specificity and 100% 
sensitivity

Tissue [74]

miR-769-3p OSCC Upregulated Potential prognostic biomarker for specific OSCC 
phenotype Tissue [71]

miR-3928-5p HNSCC Downregulated Promising biomarker for early stages of HNSCC Saliva [57]

miR-4665-3p NPC Upregulated

Together with miR-4433-5p, miR-3935, miR-188-5p, 
miR-513b, miR-3196, miR-1908, and miR-4284 creates 
powerful diagnostic signature to distinguish healthy 
individuals from NPC patients with 88.9% specificity 

and 86.1% sensitivity

Whole 
blood [68]

ESCC — esophageal squamous cell carcinoma; HNSCC — head and neck squamous cell carcinoma; LSCC — laryngeal squamous cell carcinoma; 
NPC — nasopharyngeal carcinoma; OSCC — oral squamous cell carcinoma; TSCC — tongue squamous cell carcinoma

Table 1. Potential diagnostic biomarkers in the group of head and neck squamous cell carcinoma (HNSCC)

mation, and invasion process in cancer cell lines 
through negative regulation of RB1 and TP53INP1. 
Nude mice after injection with cells overexpress-
ing miR-20b-5p developed a stronger metastasis 
burden than the control group, emphasizing miR-
NAs’ oncogenic character. A therapeutic approach 
focusing on reducing miR-20b-5p expression level 
would be a valuable addition to protocols of person-
alized oncology treatment [62]. Nourmohammadi 
et al. described an interesting strategy for dimin-
ishing the negative impact of miR-200c, a known 
tumorigenic miRNA. Reduction of miRNAs’ ex-
pression level through repressing EZH2 led to a de-
crease in EMT-related proteins, such as N-cadherin, 

Zeb2, or Vimentin. This strategy might substantial-
ly improve patients’ survival rates by attenuating 
ESCC malignant phenotype [87]. Another miRNA 
that could significantly repress the process of me-
tastasis is miR-27b-3p. It exerts tumor suppressor 
function by targeting Nrf2 and inhibiting N-cad-
herin, Vimentin, and Claudin-1 expression levels. 
Upregulation of miR-27b-3p could be beneficial for 
patients with advanced, metastatic stages of tumor 
development [88].

LSCC
Niu et al. described miR-154 as one of the po-

tential therapeutic targets in LSCC. Its low ex-
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tial is miR-24a-3p. It was significantly enriched 
in serum exosomes of NPC patients compared to 
controls, leading to repression of FGF11, which 
affected the proliferation and differentiation of 
various T cells. This mechanism supporting can-
cer immune evasion is still unclear, however, ob-
tained results lay a valuable foundation for de-
signing an antitumor exosome-based therapy in 
the future [67].

OSCC
Henson et al. demonstrated that simultaneous 

overexpression of miR-100 and miR-125b affects 
the growth and development of OSCC cell lines. 
Moreover, this modification caused alteration in 
expression levels of numerous direct and non-di-
rect target genes, which were associated with 
crucial cellular processes. An artificial increase 
in miR-100 expression level might diminish OSCC 
radioresistance, emphasizing tremendous thera-
peutic potential [95]. Sasahira et al. determined 
that miR-126 is a promising biomarker as well as 
an interesting target. The significant association of 
its low expression level with tumor progression, 
VEGF-A-related angio- and lymphangiogene-
sis, and unfavorable prognosis of OSCC patients 
suggest its potential, especially in advanced cas-
es. Further research regarding miR-126 can in-
spire new treatment approaches [72]. Recently 
Zhao et al. presented the miR-617/SERPINE axis, 
which artificial regulation might be beneficial for 
patients. Mentioned miRNA was downregulated 
in OSCC, and its low expression level was linked 
with advanced stages of tumor development. Its 
induction led to a reduction of SERPINE1 ex-
pression and diminished its oncogenic effect on 
the proliferation, viability, and apoptosis of cancer 
cell lines [96]. 

TSCC
Liu et al. indicated that miR-222 is strongly as-

sociated with the migration and invasion ability of 
TSCC. Identified mechanism of this carcinogenic 
effect primarily depended on MMP1 expression 
regulation which happened directly through miR-
NA targeting MMP1 mRNA, or indirectly via mod-
ulating SOD2 levels [97]. Moreover, miR-222 neg-
atively modulated ABCG2 expression, which led to 
enhanced sensitivity to cisplatin [98]. Therapeutic 
induction of the miR-222/ABCG2 axis might be 

pression levels were associated with an unfavor-
able prognosis and manifestation of a malignant 
phenotype. Induced overexpression caused down-
regulation of GALNT7, resulting in decreased 
proliferation, clonogenicity, and migration of 
cancer cell lines, as well as promotion of cell cycle 
arrest. Strategy for miR-154/GALNT7 regulation 
could provide beneficial cancer treatment [89]. 
The study by Li et al. showed that miR-744-3p 
was significantly upregulated in LSCC patients 
compared to controls and negatively correlat-
ed with PTEN and PDCD4 levels. High expres-
sion of of miRNA was linked with cervical LNM 
and increased invasion, which resulted from 
MMP-9 overexpression via activation of AKT 
and NF-κB. Reducing miR-744-3p could attenuate 
the LSCC malignancy [90]. A recent article by Tu 
et al. indicated that miR-129-5p directly regulates 
OTX1 oncogene. Overexpression of said miRNA 
resulted in OTX1 reduction and, consequently, 
a decrease in migration and invasion ability of 
cancer cell lines. A therapeutic approach modu-
lating the described axis could substantially re-
duce the metastatic character of LSCC [91].

NPC
Ou et al. determined that miR-21 promoted 

proliferation and suppressed apoptosis in NPC 
cell lines. It exerts an oncogenic function modu-
lating AKT phosphorylation through regulation 
of PTEN expression level. Authors suggest the sig-
nificant therapeutic potential of studied miRNA 
[92]. Xu et al. demonstrated that miR-375 neg-
atively regulates PDK1 expression, inhibiting 
tumor progression. Enhancement of PDK1 ex-
pression diminishes miRNas’ antitumor effect 
in NPC cell lines via PI3K/AKT axis, promoting 
proliferation and migration, and inhibiting apop-
tosis. Modulating miR-375/PDK1/PI3K/AKT 
axis might be a promising treatment strategy 
for NPC patients [93]. A similar interplay be-
tween miR-375 and USP1 was described by 
the same authors a year later. However, in the case 
of miR-375/USP1/PI3K/AKT axis, the oncogenic 
effect of USP1 overexpression could be reversed 
by the administration of selective PI3K inhibitor 
(S2739) [94]. The above indicates the possibility 
of restoring the positive miR-375 effect in NPC 
through multiple molecular strategies. A differ-
ent miRNA with substantial therapeutic poten-
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profitable for patients burdened with metastat-
ic and chemoresistant cases of TSCC. A differ-
ent miRNA with substantial therapeutic potential 
is miR-27b whose direct target for ITGA5 mRNA 
was positively associated with poor prognosis, 
EMT, and advanced stages of the disease. Stimu-
lated high expression of miRNA resulted in sup-
pression of malignant phenotype and could provide 
another valuable strategy for combating metastatic 
TSCC [99].

There is a long way from finding the appropri-
ate target to design the suitable drug form, dose, 
and route of administration. Then comes the last, 
most crucial step — clinical trials — a stage where 
only a few molecules are currently at and where many 
potentially promising miRNAs have failed so far 
[100]. The list of miRNA-based therapeutic targets 
in the HNSCC is presented in Table 2.

Conclusions

The above numerous examples underline the po-
tential of miRNAs both in the field of diagnostics 
and oncological therapy. Unfortunately, along with 
the wide range of functions comes the challenge 
of designing a drug modulating the desired path-
way without disastrous off-target effects. Lack of 
standardization, burdensome drug delivery de-
sign, and difficult-to-predict results of TMTME 
are primary reasons why currently, miRNA-based 
therapy attempts are succeeding mostly in the cell 
line models and then stop at the early stages of 
clinical trials [81,100]. Although the above data 
favors miRNAs utility as biomarkers, we are con-
vinced that finding the suitable molecule, whether 
with diagnostic or therapeutic potential, will be 
a significant step towards the oncology treatment 

 Table 2. Promising therapeutic targets in the group of head and neck squamous cell carcinomas (HNSCC)

miRNA Cancer 
type Expression Possible therapeutic effect Target Ref.

miR-1 HNSCC Downregulated
Upregulation of miR-1 might lead to a significant decrease in 
tumor invasiveness and proliferation ability through negative 
regulation of TAGLN2 expression

TAGLN2 [86]

miR-18a-5p HNSCC Upregulated Induced upregulation of SORBS2 reduces the oncogenic effect 
of miR-18a-5p high expression level in HNSCC cell lines SORBS2 [83]

miR-20b-5p ESCC Upregulated
Therapeutically decreased miRNA levels could significantly 
attenuate tumor proliferation, migration, and invasion in ESCC 
patients

RB1 
and TP53INP1 [62]

miR-21 NPC Upregulated
A decrease in miR-21 level would repress tumor growth 
and promote apoptosis through modulation of AKT 
phosphorylation

PTEN [92]

miR-24-3p NPC Upregulated
Reduction of exosomal miR-24-3p levels could inhibit 
mechanisms of immune evasion via increasing FGF11 levels 
which promotes T cell proliferation and differentiation

FGF11 [67]

miR-27b TSCC Downregulated Enhancement of miR-27b expression represses the EMT process in 
TSCC via targeting ITGA5 ITGA5 [99]

miR-27b-3p ESCC Downregulated Upregulation of miR-27b-3p might attenuate the EMT process by 
inhibiting Nrf2 expression level Nrf2 [88]

miR-31 HNSCC Upregulated
Inhibition of miR-31 could promote ARID1A expression leading 
to a decrease in Nanog/OCT4/Sox2/EpCAM levels diminishing 
oncogenicity and stemness, as well as improving patient survival

ARID1A [82]

miR-96-5p HNSCC Upregulated
Induced downregulation of miRNA or upregulation of PTEN might 
lead to a reduction in cell migration ability as well as sensitize 
cancer cells to irradiation and cisplatin-based chemotherapy

PTEN [59]

miR-100 OSCC Downregulated Overexpression inducement could inhibit cancer proliferation 
and lead to a decrease in the radioresistance of OSCC cells

ID1, EGR2, 
MMP13, 
and FGFR3

[95]

miR-125b OSCC Downregulated Upregulation of this miRNA expression reduces tumor growth 
and development

KLF13, 
CXCL11, 
and FOXA1

[95]
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of tomorrow - early administered personalized 
therapy with minimal side effects that will signifi-
cantly improve the quality and extend the lives of 
HNSCC patients.
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miRNA Cancer 
type Expression Possible therapeutic effect Target Ref.

miR-126 OSCC Downregulated
A high expression level of miR-126 could inhibit tumor 
progression via modulating VEGF-A-related angio- 
and lymphangiogenesis

VEGF-A [72]

miR-128 HNSCC Downregulated Induced upregulation leads to the suppression of tumor growth 
and promotion of apoptosis

PAIP2, BAG-2, 
H3F3B, BMI-1, 
and BAX

[85]

miR-129-5p LSCC Downregulated
Overexpression of miR-129-5p might cause a decrease in 
migration and invasion ability of cancer cell lines via OTX1 
expression reduction

OTX1 [91]

miR-154 LSCC Downregulated
Enhancement of miR-154 expression attenuates proliferation, 
and migration, and promotes cell cycle arrest through a decrease 
in GALNT7 expression

GALNT7 [89]

miR-200c ESCC Upregulated Inhibition of miR-200c expression through EZH2 might 
significantly reduce EMT in ESCC

EZH2, CDH1, 
FN1, and ZEB2 [87]

miR-222

TSCC Downregulated Upregulation of miR-222 represses migration of TSCC cells via 
modulating MMP1 and SOD2 expression levels

MMP1, SOD2, 
and p27 [97]

TSCC Downregulated Therapeutically increased miRNA levels could reduce TSCC cell 
lines invasion and resistance to cisplatin treatment ABCG2 [98]

miR-375 NPC Downregulated

Induced overexpression or reduction of PDK1 expression level 
might lead to inhibition of tumor growth and promote apoptosis

PDK1, PI3K, 
AKT, and USP1

[93]

Upregulation of miRNA or inhibiting USP1 expression through 
a selective PI3K inhibitor may result in attenuated cell migration 
and higher apoptosis rates

[94]

miR-617 OSCC Downregulated
Promoting miR-617 expression could lead to a reduction 
of SERPINE1 and its oncogenic effect on proliferation, viability, 
and apoptosis

SERPINE1 [96]

miR-774-3p LSCC Upregulated

Repressing expression of miR-774-3p might suppress 
the malignant phenotype of LSCC through inactivating 
AKT/mTOR and NF-κB (p65) signaling cascade, and as 
a consequence, inhibiting MMP-9 level

PTEN 
and PDCD4 [90]

ESCC — esophageal squamous cell carcinoma; HNSCC — head and neck squamous cel carcinoma; LSCC — laryngeal squamous cell carcinoma; 
NPC — nasopharyngeal carcinoma; OSCC — oral squamous cell carcinoma; TSCC — tongue squamous cell carcinoma; Ki67 (MKI-67) — marker of proliferation 
Ki-67; TP53 — tumor protein P53; TAGLN2 — transgelin 2; SORBS2 — sorbin and SH3 domain containing 2; RB1 — RB transcriptional corepressor 1; 
TP53INP1 — tumor protein P53 inducible nuclear protein 1; PTEN — phosphatase and tensin homolog; AKT — protein kinase B; FGF-11 — gibroblast 
growth factor 11; EMT — epithelial-mesenchymal transition; ITGA5 — integrin subunit alpha 5; Nrf2 — nuclear factor erythroid 2-related factor 2 (NRF2); 
ARID1A — AT-Rich interaction domain 1A; Nanog — homeobox transcription factor Nanog; OCT4 (POU5F1) — POU domain, class 5, transcription Factor 1; 
Sox2 — SRY-Box transcription factor 2; EpCAM — epithelial cell adhesion molecule; ID1 — inhibitor of DNA binding 1; EGR2 — early growth response protein 
2; MMP — metalloproteinase; FGFR3 — fibroblast growth factor receptor 3; KLF13 — KLF transcription factor 13; CXCL11 — C-X-C motif chemokine ligand 11; 
FOXA1 — forkhead box A1; VEGF — vascular endothelial growth factor; PAIP2 — Poly(A) binding protein interacting protein 2; BAG-2 — BAG cochaperone 2; 
H3F3B — H3.3 histone B; BMI-1 — B lymphoma Mo-MLV insertion region 1 homolog (BMI1 proto-oncogene); BAX — BCL2 associated X, apoptosis regulator; 
OTX1 — orthodenticle homeobox 1; GALNT7 — polypeptide N-acetylgalactosaminyltransferase 7; EZH2 — enhancer of zeste 2 polycomb repressive complex 
2 subunit; CDH1 — cadherin 1; FN1 — fibronectin 1; ZEB2 — zinc finger e-box binding homeobox 2; SOD2 — superoxide dismutase 2; ABCG2 — ATP binding 
cassette subfamily G member 2 (Junior Blood Group); PDK1 — pyruvate dehydrogenase kinase 1; PI3K — phosphoinositide 3-kinase; USP1 — ubiquitin specific 
peptidase 1; SERPINE1 — serpin family E member 1; mTOR — mammalian target of rapamycin; NF-κB — nuclear factor kappa beta; PDCD4 — programmed cell 
death 4

Table 2. Promising therapeutic targets in the group of head and neck squamous cell carcinomas (HNSCC)
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