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Abstract

Large scale gene expression (transcriptome) analysis and genome-wide association studies (GWAS) for single nucleotide
polymorphisms have generated a considerable amount of gene- and disease-related information, but heterogeneity and
various sources of noise have limited the discovery of disease mechanisms. As systematic dataset integration is becoming
essential, we developed methods and performed meta-clustering of gene coexpression links in 11 transcriptome studies
from postmortem brains of human subjects with major depressive disorder (MDD) and non-psychiatric control subjects. We
next sought enrichment in the top 50 meta-analyzed coexpression modules for genes otherwise identified by GWAS for
various sets of disorders. One coexpression module of 88 genes was consistently and significantly associated with GWAS for
MDD, other neuropsychiatric disorders and brain functions, and for medical illnesses with elevated clinical risk of depression,
but not for other diseases. In support of the superior discriminative power of this novel approach, we observed no
significant enrichment for GWAS-related genes in coexpression modules extracted from single studies or in meta-modules
using gene expression data from non-psychiatric control subjects. Genes in the identified module encode proteins
implicated in neuronal signaling and structure, including glutamate metabotropic receptors (GRM1, GRM7), GABA receptors
(GABRA2, GABRA4), and neurotrophic and development-related proteins [BDNF, reelin (RELN), Ephrin receptors (EPHA3,
EPHA5)]. These results are consistent with the current understanding of molecular mechanisms of MDD and provide a set of
putative interacting molecular partners, potentially reflecting components of a functional module across cells and biological
pathways that are synchronously recruited in MDD, other brain disorders and MDD-related illnesses. Collectively, this study
demonstrates the importance of integrating transcriptome data, gene coexpression modules and GWAS results for
providing novel and complementary approaches to investigate the molecular pathology of MDD and other complex brain
disorders.
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Introduction

Major depressive disorder (MDD) is a common psychiatric

disease with an estimated prevalence of 5.3% for a 12- month

period and 13.2% for a lifetime disorder [1], a high rate of

recurrence [2], a higher prevalence in women [3], and a

heritability of 37% (95% CI=31%–42%) [4]. Transcriptome

(the set of all expressed genes in a tissue sample) and genome-wide

association studies (GWAS) have separately provided clues to

mechanisms of MDD, although not to the anticipated extent.

Transcriptome studies mostly focus on changes in gene expression

in disease states (altered expression), but also provide unique

opportunities for assessing the less-investigated changes in the

coordinated function of multiple genes (altered coexpression) [5].

GWAS seek to identify genetic markers for diseases, and have

generated some findings in MDD [6,7,8,9,10], but overall results

from GWAS meta-analyses have been disappointing [11,12],

potentially due to the complexity of the disease and heterogeneity

of patient cohorts. GWAS and transcriptome studies are highly

complementary in that they provide unbiased and large scale

investigation of DNA structural [single nucleotide polymorphisms

(SNP) and other variants] and functional (RNA expression)

changes across conditions, although these two approaches are

only beginning to be integrated [13,14,15,16,17].
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Gene arrays allow for the unbiased quantification of expression

(mRNA transcript levels) for 10,000 to 20,000 genes simulta-

neously. Since gene transcript levels represent the integrated

output of many regulatory pathways, the study of all expressed

genes provides an indirect snapshot of cellular function under

diverse conditions. For instance, using postmortem brain samples,

this approach has implicated dysregulated BDNF, GABA,

glutamate and oligodendrocyte functions in MDD

[18,19,20,21,22]. However, current studies are still few, were

performed in heterogeneous cohorts, and utilized early and

rudimentary versions of gene arrays. Moreover, gene array studies

are subject to similar limitations as early GWA studies, in that

large number of genes are tested in few subjects (n = 10–100).

Typical analyses identify 1–10% of genes affected in the illness

(differentially expressed genes), are characterized by high rates of

false discovery, and may be confounded by numerous clinical

(drug exposure, subtypes, duration, etc.), demographic (age, sex,

race), technical parameters (RNA integrity, brain pH, postmortem

interval for brain collection), or other potential co-segregating

factors of unknown origin (See [13] for discussion). Conditions of

postmortem brain collection also preclude the reliable identifica-

tion of acute state-dependent gene changes, but are appropriate

for investigating stable long-term disease-related homeostatic

adaptations.

Gene coexpression studies offer complementary perspectives on

gene changes in the context of transcriptome studies. Here, two

genes are defined as coexpressed in a dataset if their patterns of

expression are correlated across samples. Coexpression reflects

possible shared function between genes, and may arise through

multiple biological pathways including cellular coexpression and

common regulatory pathways (e.g., hormone signaling, transcrip-

tion factors) [23,24]. Hence, coexpression links have been used to

build gene networks, and to identify communities, or modules, of

genes with shared functions [25,26]. Notably, by incorporating

multiple interactions among a large number of genes, the study of

gene coexpression networks provides an approach to tackle the

complexity of biological changes occurring in complex polygenic

disorders [24]. See [5] for a general review.

Concepts and methods for integrating functional (transcrip-

tome) and structural (DNA polymorphism GWA) studies of the

molecular bases of complex neuropsychiatric disorders such as

MDD need to be developed to harness the potential of systematic

large-scale molecular and genetic investigations of the brain. Here,

our central hypothesis states that stable brain co-regulation

modules identified through meta-analysis of multiple transcrip-

tome studies may overlap with sets of genes and associated SNPs

related to MDD. Based on the continuum of pathological changes

between MDD and other brain disorders [27] and co-morbidity

with selected medical illnesses including cardiovascular diseases

and metabolic syndrome [28,29], we also predicted that MDD

coexpression modules may be enriched in genes identified by

GWAS for other psychiatric and brain disorders and potentially

for medical illnesses related to depression, together identifying

functionally-coherent gene sets implicated in MDD-related disease

processes.

Materials and Methods

Figure 1 illustrates the meta-clustering and validation methods

of the approach. In step I, we identified 50 robust co-regulation

modules in human brains by combining 11 transcriptome datasets

collected from several brain regions in different cohorts of subjects

with MDD and non-affected comparison subjects. Steps II and III

were performed to identify MDD-related gene modules, and

exclude other gene modules linked to biological functions not

related to MDD. In step II, we collected different sets of genes

located nearby SNPs identified by GWAS for MDD, neuropsy-

chiatric disorders, related traits, and for systemic diseases often

associated with psychiatric disorders, and performed gene set

analysis to identify MDD-related gene modules. In step III, we

performed functional annotations of gene module members by

using 2,334 gene sets collected from MSigDB (http://www.

broadinstitute.org/gsea/msigdb/). We also organized genes iden-

tified by SNPs in published GWAS into three categories (cancer

studies, human body indices and unrelated diseases) and treated

them as a non-MDD-related negative control gene sets in step IV.

Transcriptome Data Sets
Eleven MDD microarray datasets generated in our lab were

used here. Cohorts and brain areas investigated are listed in

Table 1 and details were provided in [30,31]. Among these

studies, six used Affymetrix Human Genome U133 Plus 2.0

platforms (Affymetrix Inc., Santa Clara, CA), two used Affymetrix

Human Genome U133A platforms, and the remaining three used

Human HT-12 arrays from Illumina (Illumina Inc, San Diego,

CA). Figure S1 provides a diagram and results of the

transcriptome dataset preprocessing procedures. Data has been

deposited to the NCBI Geo database with accession numbers:

GSE54562, GSE54563, GSE54564, GSE54565, GSE54566,

GSE54567, GSE54568, GSE54570, GSE54571, GSE54572 and

GSE54575.

For gene matching across studies, when multiple probes or

probe sets match to one gene symbol, we choose the probe set with

the largest variation (largest interquartile range; IQR) to represent

the gene [32]. See below and Figure S3 for probe overlap

assessment. For preprocessing, data were log-transformed (base 2).

Non-expressed (small mean intensity) and non-informative (small

standard deviation) genes were filtered out. To perform such

filtering for 11 studies simultaneously, we calculated the ranks of

row means and row standard deviations of each gene in each

single study. The ranks were summed up across 11 studies and

used as criteria to filter out non-expressed and non-informative

genes. Note that ideally we should map the probes across

platforms to large overlapped locations so we make sure they

measure the same signal. There are, however, several reasons that

doing so may not be possible or optimal. First, Affymetrix

probesets are designed with combination of multiple short probes

and Illumina arrays use a single and longer probe. As a result,

Affymetrix probes have large ‘‘target regions’’ (044–728 KB, 95%

coverage of the 88 genes of module #35 we investigated in Figure

S3) which are covered by multiple short probes, while Illumina’s

probe is only around 50 bp. Secondly, many other factors affect

signal detection efficiency, including exact probe sequence,

integration of multiple probeset in Affymetrix arrays, hybridization

efficiency, GC content, cross hybridization, etc. As a whole these

differences can affect the consistency of the results and potentially

decrease the final signal. For the purpose of running the meta-

analysis (as opposed to single study analysis) it has been

recommended to use the probe set with the largest IQR to

represent a gene symbol [32]. We want to point out that if the

IQR probe matching procedure had introduced large errors, the

meta-analyzed modules would not have been detected by chance.

Meta-clustering of Transcriptomic Data to Construct Co-
expression Gene Modules
The 11 transcriptome studies were combined to construct co-

expression gene modules using a meta-clustering technique

described below. We denoted by Xgsk the gene expression intensity
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Figure 1. Overall analytical strategy. In step I, 50 co-regulation modules were generated using meta-clustering of gene clusters identified by the
‘‘penalized K-medoids’’ method across 11 transcriptome MDD and matched controls studies. In step II, modules enriched from most of the selected
GWAS studies related to MDD, neuropsychiatric disorder and traits, including systemic disease linked to psychiatric disorders were identified. In step
III, the biological functions represented by genes included in each module were defined by pathway analysis from 2,334 gene sets of MSigDB (www.
broadinstitute.org/gsea/msigdb). In step IV, SNPs from the Catalog of GWAS were organized into three categories: cancer GWAS, human body indices
GWAS and GWAS for common diseases and medial illnesses unrelated to MDD or other brain function. Three additional categories were defined as
non-MDD-related negative control gene sets. (Note: In order to increase the performance of the heatmap in module #35, we first performed the
hierarchical clustering with ‘‘complete’’ agglomeration method to aggregated samples with similar expression among all 88 genes, and the genes
were sorted by the correlation from high to low of selected genes in the top.).
doi:10.1371/journal.pone.0090980.g001

Table 1. Description of cohorts in 11 MDD microarray platforms.

Cohort Region Code Platform # of probe sets # of genes # of subjects

1 ACC MD1_ACC Affymetrix Human Genome U133 Plus 2.0 40,610 19,466 32

2 AMY MD1_AMY Affymetrix Human Genome U133 Plus 2.0 40,610 19,621 28

3 ACC MD2_ACC Illumina HumanHT –12 (v3) 48,803 25,159 20

4 ACC MD3_ACC Illumina HumanHT –12 (v3) 48,803 25,159 50

5 AMY MD3_AMY Illumina HumanHT –12 (v3) 48,803 25,159 42

6 ACC BA25_F Affymetrix Human Genome U133 Plus 2.0 53,596 19,572 26

7 ACC BA25_M Affymetrix Human Genome U133 Plus 2.0 53,596 19,572 26

8 DLPFC BA9_F Affymetrix Human Genome U133 Plus 2.0 53,596 19,572 32

9 DLPFC BA9_M Affymetrix Human Genome U133 Plus 2.0 53,596 19,572 28

10 OFC NY_BA47 Affymetrix Human Genome U133A 20,338 12,703 24

11 DLPFC NY_BA9 Affymetrix Human Genome U133A 20,338 12,703 26

ACC, anterior cingulate cortex; AMY, amygdala; DLPFC, dorsolateral prefrontal cortex, OFC, orbital ventral prefrontal cortex.
doi:10.1371/journal.pone.0090980.t001
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of gene g, sample s and study k, and Xgk= (Xg1k,…, XgSk) the vector

of gene expression intensities of gene g and study k. We defined the

dissimilarity measure between gene i and gene j for a given study k

as d
(k)
i,j ~ 1{Dcor Xik,Xjk

� �
D, where cor(Xik, Xjk) is the Pearson

correlation of the two gene vectors. To combine the dissimilarity

information of the K= 11 studies, we took the mean of meta-

dissimilarity measure between gene i and gene j as

d(gi,gj)~Mean(d
(1)
ij ,d

(2)
ij ,:::,d(K)

ij ). Given the meta-dissimilarity

measure, the ‘‘Penalized K-medoids’’ clustering algorithm was

then applied to construct co-expression gene modules [33]. The

target function to be minimized by Penalized K-medoids is shown

below

L Cð Þ~
XG

i~1

X

gi[Ch

d gi,�gghð Þzl:DSD

where the clustering result C~(C1, � � � ,CH ,S) contains H non-

overlapping gene clusters (i.e. H gene modules C1, � � � ,CH ) and a

set of scattered genes S that cannot be clustered into any of the

tight gene modules, �ggh denotes the medoid gene of cluster h such

that its average dissimilarity to all other genes in the cluster is

minimal, DSD is the size of the scattered gene set S and l is a tuning

parameter controlling tightness of detected gene modules and the

number of scattered genes discarded to S. The first term of the

target function L(C) calculates the total sum of within-cluster

dispersion and is essentially the K-medoids algorithm (an extended

form of K-means using arbitrary non-Euclidean dissimilarity

measure). The second penalty term allows scattered genes not to

be clustered into any gene module. For example, if the distances of

a gene gi to all cluster medoids are greater than l, minimizing L(C)

will assign the gene into the scattered gene set S, instead of into any

gene cluster. Intuitively, smaller l generates tighter clusters and

allow more genes into scattered gene set S. The rationale for the

choice of this approach was based on finding in the literature,

where comparative studies show that many genes are not tightly

co-expressed with any gene clusters and methods that allow

scattered gene assignment generates tighter gene modules that are

biologically more informative [34].

Parameter Selection and Evaluation of Meta-clustering
We tested different parameter settings of H=50 or 100

modules, and l such that b=0%, 25% or 50% of genes are left

to scattered gene set S. In all performance of the 263= 6

combinations for the meta-clustering method, a biological

validation was performed using biological pathway information.

We searched ten keywords (‘‘GABA’’, ‘‘Insulin’’, ‘‘Diabetes’’,

‘‘Immune’’, ‘‘Thyroid’’, ‘‘Estrogen’’, ‘‘Depression’’, ‘‘Alzheimer’’,

‘‘Parkinson’’ and ‘‘Huntington’’) in MSigDB and finally obtained

98 MDD-related pathways. In each clustering result, Fisher’s exact

test was applied to each module to correlate with each of the 98

MDD-related pathways and eight GWAS gene lists and the p-

values were generated. Wilcoxon signed rank test was used to

compare any pair of clustering results (from different parameter

setting) so that the best parameter setting could be determined.

Evaluation of Robustness and Stability of Meta-clustering
Method
To evaluate the robustness of the meta-clustering results, we

used the Adjusted Rand Index (ARI) as a measurement of

consistency between two clustering results [35]. Specifically, ARI

calculates the proportion of concordant gene pairs across two

clustering results (i.e. two genes are clustered together in both

clustering results or not clustered together in both) among all

possible gene pairs and the index is standardized between 0 and 1,

where 0 reflects expected similarity measure of two random

clustering and 1 reflects similarity measure between two identical

clustering. We randomly selected a subset of studies (n = 8, 9 or 10)

from 11 MDD studies and calculated the ARI to assess the

similarity of the obtained modules compared to those obtained

using the 11 MDD studies. The procedure was repeated 100 times

and the average ARI was calculated. For the stability of meta-

clustering method, the mean and standard deviation of ARIs were

obtained by bootstrapping method [36] (sampled with replace-

ment to obtain the same number of samples for each single study),

where the 11 MDD studies were bootstrapped 100 times.

Genome-wide Association Studies (GWAS)-related Gene
Categories
Eight neuropsychiatry-related candidate gene lists and three

gene lists from presumably unrelated disorders or traits were

identified from relevant GWAS. Individual genes were identified

by the presence of GWAS significant SNPs within a given

nucleotide distance from the coding region of that gene (UCSC

hg18 with build 36.3 was used for all GWAS).

– The first gene list was obtained from a published GWAS for

neuroticism [37]. Neuroticism is a personality trait that reflects

a tendency toward negative mood states, and that is linked to

several internalizing psychiatric conditions. That GWAS

involved 1,227 healthy individuals with self-report of no

diagnosis or treatment for schizophrenia, schizoaffective

disorder or bipolar disorder and personality measures of

neuroticism. Genotyped data were generated from Affymetrix

GeneChip Human Mapping 500 K using BRLMM algorithm.

449 SNPs were selected by p-value less than 0.001, and 155

genes were identified to have contained one or more selected

SNPs in the 10 kilobases (kb) up- and down-stream extension of

the coding regions.

– The second gene list was obtained from the MDD 2000+
project that included a meta-analysis of MDD studies with

2,431 MDD cases and 3,673 controls [38]. Similarly, 532 SNPs

with p-value less than 0.001 were mapped to gene coding

regions (including 10 kb upstream and downstream regions)

and 159 genes were identified.

– The third gene list was obtained from a mega-analysis of

GWAS for MDD [11]. The associated 202 SNPs’ p-values

were less than 1025 and 52 genes were identified using the

University of California Santa Cruz Human Genome Browser,

hg18 assembly (UCSC hg18) with build 36.3. Gene symbols

from the build version 36.3 in the National Center for

Biotechnology Information (NCBI) database were used.

– The fourth candidate gene list was obtained from a mega-

GWAS of bipolar disease which contained 7,481 patients and

9,250 controls [39]. 6,887 SNPs were identified when p-value

less than 0.001. By mapping the SNPs to gene coding region

using SNPnexus software (http://snp-nexus.org/), 602 genes

were obtained.

– For the fifth to eighth gene lists, we interrogated the Catalog of

Published Genome-Wide Association Studies [40] (http://

www.genome.gov/gwastudies/). The database (as of 01/31/

13; time of the latest data analysis update) contained 10,183

entries of disease- or trait-associated SNPs with p-values

smaller than 1025 in 1,491 GWAS studies. We manually

regrouped the disorders and traits into 4 categories: (1) all

MDD-related studies, (2) all neuropsychiatric disorder studies,

A BDNF/GABA/Glutamate Gene Meta-Module in Depression
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(3) all neurological disorder and brain phenotypes studies, (4)

all medical illnesses sharing increased risk with MDD. Note

that the genes in the list #3 were included in the list #2, and

genes in the list #2 were included in the list #1, which is the

larger category (see more detail list in Table S1). Lists #4 is

independent and non-overlapping with others. The associated

four gene lists were then compiled, and genes were uniquely

included when the mapped SNP was within the gene region

including a 100 kb upstream and downstream.

– As negative controls, we identified in the catalog of published

GWAS three gene sets presumably not related to psychiatric

diseases: (a) 65 publications (270 genes) of cancer GWAS

studies; (b) 42 publications (459 genes) of human body indices

GWAS studies (HBI: genetic phenotypes for human, for

example: height, weight, eye color, etc.); and (c) 33 publications

(187 genes) of GWAS studies for common disease traits not

related to brain function or major mental illnesses (Table S2).

Meta-analysis to Aggregate Evidence of Association of
each Module with the GWAS Gene Lists
We performed Fisher’s exact test to examine the significance of

the association of genes within each coexpression module with

individual GWAS-derived gene lists, using the 10,000 genes

evaluated in transcriptome meta-analysis (Figure S1) as back-

ground. To assess statistical significance of association of each

identified module from meta-clustering method, we applied the

Stouffer’s method to combine the p-values obtained from Fisher’s

exact test of the association between gene modules and eight

GWAS gene sets. The Stouffer’s statistics TStouffer~

Pk

i~1
w{1(Pi)ffiffi
k

p

where w is the cumulative distribution function of a standard

normal distribution [41]. The p-values were assessed for each of

the 50 modules from non-parametric permutation analysis by

randomly selecting the same number of genes from the whole

genome without replacement (using genome background 10,000

genes) for each of the 50 modules and the analysis is repeated for

500 times.

Pathway Analysis and Enrichment Analysis of GWAS
Gene Lists
For biological association, 2,334 annotated pathways (gene sets)

were obtained from MSigDB (www.broadinstitute.org/gsea/

msigdb/), which consists of 880 canonical pathways (217 Biocarta

gene sets, 180 KEGG gene sets, 430 Reactome gene sets and 53

other gene sets) and 1,454 pathways from Gene Ontology (GO).

For each of the gene module, gene set (pathway) analysis was

performed for the 2,334 pathways and 11 GWAS gene lists

(including 3 negative controls). Fisher’s exact test was performed to

assess the biological association between gene modules and given

gene sets. To account for multiple comparisons, Benjamini and

Hochberg procedure was used to control the false discovery rate

(FDR) [42].

Results

Data Preprocessing and Parameter Determination
16,443 genes were retained after gene matching across the 11

studies. Cohorts 10 and 11 were from older platforms with fewer

probesets representing only 12,703 genes (Figure S1). In order to

minimize the loss of information from gene matching, we allowed

20% missing values during matching, i.e., we kept genes with at

least 9 existing measurements out of 11 studies. 13,500 genes were

retained after filtering out lower sum rankings of median row

means, and 10,000 genes after further filtering out lower sum

rankings of median row standard deviations. We then tested

different parameter settings for the number of modules (H=50 or

100), and genes (tuned the l values for controlling tightness of

detected gene modules and the number of scattered genes set) for

b=0%, 25% or 50% of genes left out of the gene set S. In all tests

of the Penalized K-medoids meta-clustering method (263= 6

combinations), we performed a validation by biological pathway

information content. For all clustering results, Fisher’s exact test

was applied to each module to correlate with each of the 98 MDD

pathways and eight GWAS gene lists described in the methods,

and p-values were generated. The Wilcoxon signed rank test was

used to compare any pair of clustering results (from different

parameter settings) so that the best parameter setting could be

determined. The result shows that there was no significant

difference (by Wilcoxon signed rank test) between H=50 and

H=100 clusters except b=0% (i.e., keep all genes), and the

minimum p-value of gene set analysis in H=50 was always lower

than that in H=100 in b=25% and b=50%. It is reasonable to

set the noise level in clustering method because noise will increase

if we combined more studies. We chose H=50 because the mean

of the –log10(p) in 50 modules (3.2793) was higher than 100

modules (3.0224) in b=25%, and the mean of the –log10(p) in 50

modules (3.1896) was higher than 100 modules (3.0588) in

b=50%. 50 modules also provide adequate number and sizes of

gene modules for the purpose of further analyses. Given H=50,

we compared the performance with different choices of b.
b=25% performed better than b=0% (p= 0.0004 using

Wilcoxon signed rank test), and there was no significant difference

between b=25% and b=50% (p= 0.0856). Finally, we selected

H=50 and tuning parameter l such that b=25% genes are left to

scattered gene set S throughout this paper (Table S3).

Construction of 50 Meta-modules from 11 MDD Studies
Using the parameters determined above, we performed a meta-

analysis of module gene membership to identify the top 50 meta-

analyzed coexpression modules across 11 MDD transcriptome

studies. A total of 10,000 genes were clustered using the Penalized

K-Medoid method. 7,797 genes were clustered into K=50

modules and 2,203 genes (b=,25%) were determined as

scattered genes with no coherent expression pattern. We

performed subsampling and bootstrap methods to assess the

stability of the resulting clusters. Subsets (n = 8, 9 or 10) of the 11

studies were randomly selected and the meta-clustering procedure

was similarly applied. The resulting meta-modules were compared

with the meta-modules obtained using the 11 MDD studies using

adjusted Rand index (ARI= 0.47, 0.52 and 0.63 for n = 8, 9, 10).

We also generated bootstrapped samples in each study and

repeated the meta-clustering procedures. Comparison of meta-

modules generated from bootstrapped samples with original

samples generated an average ARI= 0.45 (standard deviation

0.025) in 100 repeated bootstrapping simulations. In the literature,

an ARI of ,0.5 is interpreted as reproducible clustering result

[34], hence demonstrating good stability under data perturbation

(subsampling and bootstrapping) for the 50 meta-modules

obtained by combining 11 studies.

Association of Meta-modules with Eleven GWAS-
determined Gene Lists
We examined association of the 50 meta-modules with the eight

GWAS gene lists using Fisher’s exact test. The results are shown in

Table S4. Module #35 is found to have significant associations

(p,0.05) with the six psychiatric disorder related GWAS gene sets

(p = 0.03 for the neuroticism GWAS gene set; p = 0.03 for MDD
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2000+ project; p = 0.0001 for Mega-GWAS MDD; p=0.03 for

Mega-GWAS of bipolar disorder; p = 0.008 for the catalog of

GWAS studies of neuropsychiatric disorder; p = 0.03 for the

catalog of GWAS studies of neurological disorders and brain

phenotypes) and two studies with borderline p-values (p = 0.05 for

the catalog of MDD-related GWAS studies; p = 0.05 for the

catalog of GWAS studies of Medical illnesses sharing clinical risk

with MDD). We combined the p-values of the eight psychiatric

disorder related GWAS gene sets by Stouffer meta-analysis

method. The p-value of module #35 is 4e205 after the

permutation test (25,000 resamples). In contrast, there was no

association with cancer (p = 1.00), human body indices (p = 0.18)

and other control diseases (p = 0.46) GWAS gene sets. Figure 2
(a) shows the heatmaps of log-transformed p-values from

enrichment analysis for the 50 modules obtained from MDD

cases and controls combined analysis. It shows that module #35

(highlighted in green) from the combined cases and controls

analysis is enriched in genes contained in six MDD-related GWAS

gene sets, but not enriched in the three negative control GWAS

gene sets. None of the other 49 modules showed such consistent

pattern.

During the review process, a new GWAS meta-analysis for

schizophrenia was published by the Psychiatric Genomics

Consortium (PGC) using 1,000 genome Project imputation [43].

Accordingly, we independently examined the reported 52,509

SNPs spanning 2,507 genes under the p-value threshold of 1023

(Table S9). Module #35 was significantly enriched in genes

associated with this new study (p= 0.0013).

Pathway Analysis of Meta-module #35
Table S6 lists detailed information of the 88 genes in module

#35 and their overlap with the eight GWAS gene lists. Many

GWAS-hit genes were related to synaptic function, signal

transduction, and neuronal development and morphogenesis

(Table 2). Of specific interest, and consistent with current

hypotheses for the molecular pathology of MDD, was the inclusion

of brain-derived neurotrophic factor (BDNF) and other factors

implicated in development and maintenance of cell circuits

(Ephrin receptors EPHA3 and EPHA 5; Netrin G1 (NTNG1);

SLITRK3 and SLITRK5), of GABA-related genes (GABBR2,

GABRA4 and CALB1), glutamate receptors (GRM1 and GRM7)

and other signaling neuropeptides previously implicated in

mechanisms of psychiatric disorders [reelin (RLN) and gastrin-

releasing peptide (GRP)] (Table 2). Results from a pathway

enrichment analysis confirmed the role of genes in module #35 in

overall signaling mechanisms (Table 3). Together, these results

suggest that module #35 may include multiple components of

functionally-relevant local cell circuits.

Control Studies
To demonstrate the improvement of meta-clustering versus

single study clustering, we compared the histograms of p-values

obtained under those different conditions. In Figure 3, the

histogram of the minus log-transformed p-values of the Stouffer

statistic was first plotted for the 50 meta-modules obtained from

the case and control combined analysis. Module #35 with 88

genes is shown to have an aggregated minus log-transformed p-

value at 4.4 (i.e. p = 4e-05). We then applied the penalized K-

medoid method with the same parameter setting (K= 50 clusters

and 25% of scattered genes) for each single study. The 11 single

Figure 2. Consistent association of genes in module #35 with MDD-related gene categories. (a) Heatmap of log10-transformed p-values
from Fisher’s exact test for 50 modules obtained from MDD cases and matched controls and 8 MDD related GWAS and 3 negative controls. (b)
Heatmap of log10-transformed p-values from Fisher’s exact test for 50 modules obtained from controls and 8 MDD related GWAS and 3 negative
controls. The green rectangle identifies module #35.
doi:10.1371/journal.pone.0090980.g002
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study histograms of Stouffer p-values showed overall much weaker

statistical significance than for module #35. Particularly, none of

the 550 modules from 11 single study cluster analysis was enriched

(p-value threshold 0.05) in more than three GWAS results

(Figure 3). Only four out of the 550 modules had more than

14 genes (,15% of the 88 genes; indicated by blue arrows in

Figure 3) that overlapped with module #35. Hence, the meta-

clustering approach efficiently combined weak signals in single

studies to identify a stable and biologically more meaningful gene

module. In other words, module #35 would not have been

discovered without combining 11 studies.

We next tested the meta-clustering approach using transcrip-

tomic data from control subjects only (i.e., removing all MDD

subjects) from the same 11 studies. Out of the 50 modules

generated, no module was enriched in more than two GWAS

studies (p-value threshold 0.05) among the eight GWAS results (see

Table S5 and heatmap in Figure 2 (b)), indicating that the

inclusion of the MDD cases was necessary for the detection of

significant module/GWAS overlap (i.e. module #35). We note

that this comparison is not a ‘‘proof’’ of the significance of module

#35 since the ‘‘control-only’’ analysis contains only half the

sample size of the ‘‘cases+controls’’. To investigate the impact of

the sample size, we randomly sampled half cases and half controls

to perform ‘‘cases+controls’’ versus ‘‘control-only’’ comparisons.

We meta-analyzed the p-values of the eight enrichment analyses

(using Stouffer’s method) in each module and retain the most

Table 2. Functional groups of 88 gene in module #35.

Functional groups Gene Symbols

Transmembrane cellular localization CLSTN2, SYT4, LRRC8B, GPR6, TMEM158

ST8SIA3, GABBR2, NRN1, ST6GALNAC5

GLT8D2, MPPE1, GNPTAB, PVRL3, SLC35B4

SLC35F3, KCNG3, SLC30A9, PTGER4, CYP46A1

GABRA4, UST, LOC646627, NTNG1, TMEM200A

TMEM70, RFTN1, GRM1, TMEM132D, KCNV1

EPHA3, CDH12, EPHA5, BEAN, SLITRK3

FREM3, GRM7, CD82, SLITRK5, VLDLR

Neuronal development and morphogenesis BDNF, SLITRK3, RPGRIP1L, MAEL, NTNG1,

RELN, LAMB1, SLITRK5, MYCBP2d

GABA and glutamate GRM1, GRM7, GABBR2, GABRA4

Cell adhesion PPFIA2, CDH12, FREM3, CLSTN2, PVRL3, RELN

LAMB1

Transcription regulation EGR3, DACH1, HDAC9, ATOH7, SLC30A9

ATF7IP2, ZNF436, MYCBP2

Annotations are based on Gene Ontology. See Table 3 for a separate analysis of pathway enrichment.
doi:10.1371/journal.pone.0090980.t002

Table 3. Top 15 enriched pathways in module #35.

Pathways P-values

METABOTROPIC_GLUTAMATE_GABA_B_LIKE_RECEPTOR_ACTIVITY 0.0003

REACTOME_CLASS_C3_METABOTROPIC_GLUTAMATE_PHEROMONE_RECEPTORS 0.0005

G_PROTEIN_SIGNALING_COUPLED_TO_CAMP_NUCLEOTIDE_SECOND_MESSENGER 0.002

CAMP_MEDIATED_SIGNALING 0.002

GLUTAMATE_RECEPTOR_ACTIVITY 0.003

G_PROTEIN_COUPLED_RECEPTOR_PROTEIN_SIGNALING_PATHWAY 0.003

G_PROTEIN_SIGNALING_COUPLED_TO_CYCLIC_NUCLEOTIDE_SECOND_MESSENGER 0.008

CYCLIC_NUCLEOTIDE_MEDIATED_SIGNALING 0.01

NEUROPEPTIDE_HORMONE_ACTIVITY 0.015

REACTOME_GPCR_LIGAND_BINDING 0.02

KEGG_NEUROACTIVE_LIGAND_RECEPTOR_INTERACTION 0.03

G_PROTEIN_COUPLED_RECEPTOR_ACTIVITY 0.03

SECOND_MESSENGER_MEDIATED_SIGNALING 0.04

HORMONE_ACTIVITY 0.04

REACTOME_EICOSANOID_LIGAND_BINDING_RECEPTORS 0.04

doi:10.1371/journal.pone.0090980.t003
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significant one (i.e. smallest p value) among the 50 modules. The

procedure was repeated for 20 times. The result shows that meta-

coexpression analysis using case and control samples combined has

better detection power to identify modules associated with

neuropsychiatric diseases. In Figure S2, the red cross shows

result of ‘‘control-only’’ and the histogram shows the 20

subsampled ‘‘cases+controls’’. The result from the full ‘‘cases+
controls’’ is also shown for reference (blue cross). We also tested

the meta-clustering approach using transcriptomic data from

MDD subjects only (i.e., removing all control subjects) from the

same 11 studies. Among the 50 modules generated, one module

(module #15 with 169 genes) was enriched in six out of the 8

GWAS categories (p,0.05) but notably not in the gene set

corresponding to the Mega GWAS MDD (p= 0.29) and to MDD-

related studies (p = 0.43) in the catalog of GWAS (Table S7). This
module only has 3 genes overlapped with the 88 genes (ST8SIA3,

GRM7 and MYCBP2) of module #35 extracted from the case

and control combined analysis. Pathway analysis of this module

indicated an over-representation of signal transduction pathways

(Table S8). Overall, the statistical significance of results using

MDD data only was lower and potentially inconclusive (i.e. at

background noise level).

Together these results indicate that combining MDD and

control subjects in meta-clustering approaches increased the

significance and robustness of the results, as demonstrated by

the identification of the tight module of 88 genes with high

relevance to current biological knowledge about MDD.

Discussion

Using methods we developed to identify meta-analyzed

coexpression modules across transcriptome datasets, we report

the identification of a module consisting of 88 genes that is

significantly enriched in genetic variants located nearby genes

otherwise associated with major depression and related pheno-

types. The finding of a significant intersection of two unbiased

large-scale approaches (transcriptome and GWAS) provide robust

evidence for the putative recruitment and contribution to

molecular and cellular mechanisms of MDD of a biological

module that is formed by the identified gene set. This module

includes numerous genes encoding proteins implicated in neuronal

signaling and structure, including glutamate metabotropic recep-

tors (GRM1, GRM7), GABA-related proteins (GABRA2, GA-

BRA4, CALB1), and neurotrophic and development-related

Figure 3. Histograms of the –log10(p) of the Stouffer statistic from 50 modules of meta-analysis of 11 MDD studies and each single
study.Module#35 with 88 genes (red arrow and double-cross) have largest –log10 transformed p-value of Stouffer’s statistic 4.4. The other four blue
arrows and double crosses indicated that these four modules in all single studies have more than 14 (15% of the 88 genes in module #35)
overlapped with module #35. See detailed description in text.
doi:10.1371/journal.pone.0090980.g003
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molecules [e.g., BDNF, reelin (RELN), Ephrin receptors (EPHA3,

EPHA5)]. These findings are consistent with current hypotheses of

molecular mechanisms of MDD, notably with the GABA,

glutamate and neurotrophic hypotheses of depression

[27,44,45,46,47]. This biological ‘‘internal validation’’, combined

with control studies showing that these results could not be

achieved using single studies (due to weak signal) demonstrates that

integrating transcriptome data, gene coexpression modules and

GWAS results can provide a novel and powerful framework to

improve understanding of MDD and other complex neuropsychi-

atric disorders. This approach also provided here a set of putative

interacting molecular partners, potentially reflecting a core

biological module that is recruited and implicated in biological

mechanisms of MDD.

The meta-clustering approach in this paper has the following

novelty and advantages. (1) Meta-analysis: Our result indicated that

a meta-analysis of gene clustering to combine multiple transcrip-

tome studies can identify more accurate and robust gene modules,

since the same clustering method applied to single studies did not

lead to the identification of any significant and/or neuropsychi-

atry-related module. (2) Cluster analysis allowing ‘‘scattered genes’’:

Gene coexpression modules were identified by penalized K-

medoid. This clustering technique searches for tight gene modules

and allows some genes to be scattered. This means that they are

not included in the final set of modules/clusters, unlike other

traditional clustering methods, such as hierarchical clustering, K-

means or self-organizing maps that force all genes into clusters. In

genomic applications, it was shown that allowing scattered genes

can improve clustering performance with better biological

knowledge discovery [34]. (3) Integration and validation with external

databases: Integration with rich GWAS and pathway knowledge

databases for biological and disease interpretation identified a

robust module with 88 genes that is consistent with current

knowledge about depression, hence providing some level of

‘‘internal control’’ for the methods. (4) Case and control combined co-

expression analysis: We showed that the combination of case and

control coexpression analysis was necessary to reveal the co-

expression perturbation originating from the disease. This is an

important observation as coexpression studies rely on subtle

differences in expression patterns compared to differential

expression between two groups. Hence disease-related coexpres-

sion modules could have been predicted to be unique to the

disease groups and ‘‘diluted’’ when combined with control data.

However, we show that the opposite is true, resulting in increased

power in the combined dataset. For technical validation, we have

performed the following: First, we fine-tuned the parameters to be

used in the final meta-clustering analysis (i.e. number of modules,

percentage of allowed scattered genes in penalized K-medoid

method) and tested those parameters in three studies using

‘‘surrogate’’ information, i.e. gene families and biological pathways

broadly associated with psychiatric disorders (See Methods).

Second, subsampling and bootstrap simulation were applied to

investigate the stability of the identified gene modules. Third, three

non-psychiatric related GWAS gene sets (cancer, human body

indexes and disease traits unrelated to mental functions) served as

negative controls.

Coexpression links between genes are inferred from microarray

expression studies but do not refer to any specific mechanism

underlying these correlations. In fact, any mechanism that

synchronously regulates transcription of multiple genes may

potentially generate coexpression relationships, including biophys-

ical sources (e.g., transcription factors, spatial configuration of

chromosomes, mRNA degradation, miRNA or other upstream

regulation, histone acetylation and methylation patterns), technical

effects (e.g., batch processing, RNA quality), cell biological sources

(e.g., cellular admixture of the sampled tissue, brain region), and

importantly synchronized activities across cells under homeostatic

equilibria corresponding to ‘‘control’’ states, trait conditions, or

chronic disease states for instance. Here, results in module #35

identify a set of genes whose products are distributed across cell

types, cellular compartments and biological processes (Tables 2–
3) that together contribute to various and potentially complemen-

tary biological processes, and whose collective function may be

related to pathological processes implicated in depression.

The biological content of the identified gene module is notable

in that it brings together multiple genes that have been otherwise

associated with depression and other neuropsychiatric disorders

through multiple studies both in humans and animal models, in

addition to the genetic links (i.e., GWAS) that were used here to

identify them. Such commonly associated genes include those

coding for BDNF, and GABA- and glutamate receptors, for

instance [18,19,20,21,22]. Prior findings often refer to differential

expression, e.g. reduced BDNF [22], or reduction in calbindin

(CALB1) positive GABA neurons [48]. Here, reports of conserved

co-regulated patterns between these genes suggests that changes in

the fine-tuning and synchronization of the function of these gene

products across cells and pathways may contribute to pathophys-

iological mechanisms related to brain dysfunction in MDD. The

fact that these results implicate genes that are likely to be expressed

across cell types or to regulate ensembles of cells (i.e. neurotrophic

and neuro-maintenance factors) is consistent with mechanisms

expected for polygenic complex disorders. Moreover, the identi-

fication of module #35 through overlap with GWAS findings for

traits (i.e. neuroticism) and other neuropsychiatric disorders

(Figure 2) also suggests that those genes may participate in basic

cellular functions that are implicated in a continuum of biological

states (i.e., from normal to disease brain functions), consistent with

a dimensional understanding of biological mechanisms of brain

disorders. The fact that borderline significance in gene overlap was

also observed for categories of disorders sharing clinical risk with

MDD (i.e. cardiovascular diseases, inflammation and metabolic

syndrome) suggest that the same gene sets may also contribute to

dysfunctions in peripheral organs through pleiotropic functions of

common genes, hence providing putative biological links for the

clinical and symptom co-morbidity. Follow-up studies of coex-

pression patterns obtained in datasets across these disorders may

be necessary to further investigate these interesting hints.

So while these studies provide insight into the biology of

complex disorders, one may reasonably ask how they may

contribute to the generation of novel hypotheses and predictions.

Two directions are worth mentioning. First, for the purpose of

therapeutic development and target identification, the application

of graph theory and other network analysis may help identify

critical genes within the identified module or upstream factors, as

potential mediators of the function of this module in disease state.

Preliminary analyses of the network properties of module #35 did

not provide clear insight into hub genes or other parameters of

interest (data not shown); however these studies may be

confounded by circular analyses within the same datasets. Thus,

testing these hypotheses in other large-scale disease related datasets

are needed to, firstly, refine gene membership into the identified

module, in view of the reasonable and significant conservation of

module structure across datasets, although not to absolute levels;

and, secondly, to identify key network nodes with conserved cross-

studies functions, as potential targets to modulate the functional

outcome of the identified gene module. Finally, an additional and

important outcome of these studies is that they provide a focused

set of genes, which can be used for follow-up genetic association
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studies, hence potentially mitigating the problem of reduced

statistical power of large scale genome-wide studies.

There are several limitations to this study. First, there is a bias

when selecting gene sets from the catalog of published GWAS

results since the targeted markers (SNPs) are updated every six

months, and many more SNPs were reported in the past five years

when GWAS have achieved greater sample size (including studies

with more than 10,000 participants) and detection of markers with

very small effect size. However, large sample sizes will also

introduce a bias towards false positive markers. A related

limitation is that the choice of markers (or gene) was based on

fixed and arbitrary thresholds (i.e., p-value and genomic distance).

Moreover, we used only a small fraction of the datasets and pre-

defined pathways related to psychiatric disease to decide on the

number of clusters and sets of scattered genes during the method

development phase, so the result of the clustering approaches may

still show some instability and may vary based on different

numbers of clusters and applied thresholds. Indeed, although we

performed extensive validation analyses to select the clustering

parameters and increase stability of modules, the 88 genes in

module #35 will inevitably vary slightly under additional data

perturbation (e.g., when adding additional MDD or related

studies). An additional limitation is that generating gene coex-

pression modules using cluster analyses is known to be sensitive to

small data perturbation. To mitigate these effects, we combined

multiple studies and concentrated on tight modules by leaving out

scattered genes. While this approach increased the power of the

meta-clustering method, it also meant combining datasets from

different brain regions, hence potentially diluting the effects of

local coregulation patterns that may be important for disease

mechanisms. The integration of multiple datasets comes at the

expense of variable technical platforms, including inclusion of

different probesets across array types. We investigated this

potential issue and showed considerable overlap in genomic

region targeted by the various probes for a same gene (Figure S3),
hence lowering the potential impact of this array differences. So

these results should be considered proof-of-concept, rather than

experimentally and biologically optimized. Finally, it is important

to note that changes in gene coexpression are difficult to confirm

by independent measures. Indeed coexpression links rely on large

sample size and we previously showed that the sample-to-sample

variability in array-based measures of expression is typically lower

than the variability obtained using alternate measures such as

quantitative PCR [24], so the ultimate test of the added value of

these meta-coexpression studies will need to come from additional

independent studies. Nonetheless, this study allowed the identifi-

cation of a focused set of genes for use in future genetic association

studies, and together demonstrates the importance of integrating

transcriptome data, gene coexpression modules and GWAS

results, paving the way for novel and complementary approaches

to investigate the molecular pathology of MDD and other complex

brain disorders.

Supporting Information

Figure S1 Diagram of pre-processing procedure of 11
MDD transcriptiome data sets. Number of samples and

number of matched genes in each single (MDD) study. In

matching step, we allowed 20% missing studies, then 16,443 genes

were identically matched among 11 studies. 13,500 genes were

kept by filtering out lower sum ranks of median row means; 10,000

genes were kept by filtering out lower sum ranks of median row

standard deviations.

(TIFF)

Figure S2 Histogram of minimum log10-transformed p
values from Stouffer’s statistics for 50 modules obtained
from randomly selected MDD cases and matched
controls into half for 20 times. Red cross represents the

minimum log10-transformed p value for controls only study and

blue cross represents the minimum log10-transformed p value for

cases plus controls study.

(TIFF)

Figure S3 Sequence target overlap between Affymetrix
and Illumina array probesets. We have systematically

mapped the respective probes that were chosen by our approach

and used genes in module #35 to specifically look at overlap in

targeted regions. As shown in the individual graphs below, there is

overlap in regions for 94% of the genes, indicating that for a few

exceptions the same transcript region is used. A histogram

represents a chromosomal area of a target sequence in either

affymetrix or illumina platform. Wider histogram means the target

sequence span over DNA sequence more widely. The height of

each histogram shows the number of studies use that specific

probe. See main text for additional information.

(TIFF)

Table S1 Categories of the GWAS.
(XLSX)

Table S2 Disease traits of negative controls from
catalog of GWAS.
(XLSX)

Table S3 Wilcoxon signed rank test of parameter
determination.
(XLSX)

Table S4 Meta modules and GWAS gene lists (cases and
controls).
(XLSX)

Table S5 Meta modules and GWAS gene lists (controls
only).
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Table S6 GWAS-hit genes in module #35.
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Table S7 Meta modules and GWAS gene lists (cases
only).
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Table S8 Pathway analysis.
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Table S9 Meta modules and PGC schizophrenia.
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