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Abstract: γ-Valerolactone (GVL) was selected as a renewable green solvent to prepare membranes
via the process of phase inversion. Water and ethanol were screened as sustainable non-solvents
to prepare membranes for nanofiltration (NF). Scanning electron microscopy was applied to check
the membrane morphology, while aqueous rose Bengal (RB) and magnesium sulphate (MgSO4)
feed solutions were used to screen performance. Cellulose acetate (CA), polyimide (PI), cellulose
triacetate (CTA), polyethersulfone (PES) and polysulfone (PSU) membranes were fine-tuned as
materials for preparation of NF-membranes, either by selecting a suitable non-solvent for phase
inversion or by increasing the polymer concentration in the casting solution. The best membranes
were prepared with CTA in GVL using water as non-solvent: with increasing CTA concentration
(10 wt% to 17.5 wt%) in the casting solution, permeance decreased from 15.9 to 5.5 L/m2·h·bar while
RB rejection remained higher than 94%. The polymer solubilities in GVL were rationalized using
Hansen solubility parameters, while membrane performances and morphologies were linked to
viscosity measurements and cloudpoint determination of the casting solutions to better understand
the kinetic and thermodynamic aspects of the phase inversion process.

Keywords: bio-based solvent; green solvent; polymer solubility; polymeric membranes; nanofiltration

1. Introduction

Membrane technology offers separations in the chemical industry and water treatment
of small molecules (solutes) from solvent or water streams by using membranes and
providing an economically viable alternative for separation and purification [1,2]. In
nanofiltration (NF), the separation process is run under pressure, rejecting molecules with
a molecular weight of 200–1000 Da.

Several techniques have been applied to prepare polymeric membranes, including
temperature and non-solvent induced phase separation (TIPS and NIPS) [3–5]. Among all
techniques, NIPS is the most versatile and widely used. In the NIPS process, a film cast
from a polymer solution is immersed in a coagulation bath. Upon immersion, demixing
occurs, resulting in the solidification of the polymer and creation of a porous structure.
Controlling the process of demixing in the polymer film allows the desired membrane
morphology to be fine-tuned [6–18]. NF membranes are asymmetric and often prepared via
NIPS. Asymmetric membranes consist of a thin active separation layer on a much thicker,
more open support to provide mechanical strength. NF is used for water softening, micro
pollutant removal, dye removal, pretreatment for desalination and heavy metal removal.

As membrane processes are appearing increasingly in industrial applications, it is
becoming more important that membrane preparation itself becomes “green” [19–22]. Mem-
brane manufacturing currently produces over 50 billion liters of contaminated wastewater
annually [21]. The European Chemicals Agency (ECHA), classified toxic solvents into a
REACH list [2,23]. Tetrahydrofuran (THF), N,N-dimethylformamide (DMF), 1-methyl-
2-pyrrolidone (NMP) and other conventional solvents are usually used in membrane
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preparation due to the good solubility of common polymers [18,24], but have all been
classified as highly concerned solvents by ECHA [2,23]. Industrial use of DMF and THF is
expected to be banned soon by the European Union, while NMP is on a watch list [25,26].

According to principles 5 and 7 of the 12 principles of green chemistry, safer solvents
and auxiliaries and use of renewable feed stock are main aspects of green chemistry [27,28].
Not much work has been done yet in membrane preparation to implement sustainable
solvents [5,29]. Some alternative solvents have been proposed to substitute DMF (by
dimethyl sulfoxide) and 1,4-dioxane (by acetone) [30]. Green solvents, like methyl/ethyl
lactate [31], ionic liquids [32–34], triethyl phosphate [35] and γ-butyrolactone [36] have
been proposed to substitute conventional solvents in phase inversion.

γ-Valerolactone (GVL) is a non-toxic solvent with high boiling point (207 ◦C) [37,38]
and has been applied in chemical processes and as flavor additive in perfumes [37–39].
GVL is obtained from acid hydrolysis of cellulose based biomass (wood). It is prepared
from levulinic acid through a catalytic cyclization reaction via dehydration. During this
reaction, an unstable intermediate is formed which is converted to GVL on hydrogenation,
while levulinic acid is produced from hydroxymethylfurfural through a dehydration
reaction [40].

A related lactone-based solvent, γ-butyrolactone, has already been used for NF mem-
brane preparation via NIPS and TIPS [36,41]. In the current study, focus is laid on the
application of GVL as potential bio-based, sustainable solvent for the preparation of NF-
membranes, either by selecting a suitable non-solvent for phase inversion or by using high
polymer concentrations in the casting solution.

2. Materials and Methods
2.1. Chemicals

Polysulfone (PSU, Udel P-1700 LCD) and polyimide (Matrimid) and were provided
by Solvay (Belgium) and cellulose triacetate by Eastman (Belgium). Cellulose acetate,
polyethersulfone and GVL were purchased from Sigma-Aldrich (Belgium). All polymers
were dried for 24 h at 105 ◦C. Molecular weight (MW) and the structure of the polymers,
feed solutes and solvent used in this work are given in Table 1.

Table 1. Molecular weight (MW), structure of polymers, feed solutes and solvent used in this work.

Polymer/Solvent MW (kDa) Structure

Polyimide (PI) 90–134
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2.2. Membrane Preparation

All polymers were dissolved in GVL at room temperature and stirred magnetically
over 24 h by dissolving 10–20 wt% of the polymer (except for cellulose triacetate (CTA),
where 17.5 wt% was found to be the upper concentration limit) in GVL, for details see
Table 2. A wet casting thickness of 225 µm at a 1.5 m/minute speed on a polyethylene
(PE)/polypropylene (PP) non-woven fabric (Novatexx 2413) impregnated with GVL was
used to cast the solution. After casting, the films were instantaneously immersed in the
non-solvent bath. All membranes were kept below 20 ◦C in distilled water until filtration.
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Table 2. Concentration of polymer in the casting solutions, the applied non-solvent and the membrane
ID. γ-Valerolactone (GVL) was used as solvent for all membrane preparations.

Membrane ID Polymer Type and Concentration Non-Solvent

CA10W 10 wt% CA water
CA15W 15 wt% CA water
CA20W 20 wt% CA water
CA10E 10 wt% CA ethanol
CA15E 15 wt% CA ethanol
CA20E 20 wt% CA ethanol

CTA10W 10 wt% CTA water
CTA15W 15 wt% CTA water

CTA17.5W 17.5 wt% CTA water
CTA10E 10 wt% CTA ethanol
CTA15E 15 wt% CTA ethanol

CTA17.5E 17.5 wt% CTA ethanol
PI10W 10 wt% PI water
PI15W 15 wt% PI water
PI20W 20 wt% PI water
PI10E 10 wt% PI ethanol
PI15E 15 wt% PI ethanol
PI20E 20 wt% PI ethanol

PES10W 10 wt% PES water
PES15W 15 wt% PES water
PES20W 20 wt% PES water
PES10E 10 wt% PES ethanol
PES15E 15 wt% PES ethanol
PES20E 20 wt% PES ethanol

PSU10W 10 wt% PSU water
PSU15W 15 wt% PSU water
PSU20W 20 wt% PSU water
PSU10E 10 wt% PSU ethanol
PSU15E 15 wt% PSU ethanol
PSU20E 20 wt% PSU ethanol

2.3. Viscosity Measurements

The viscosity or rheological measurements for all polymer samples were done on a
Anton Paar MCR 501 (Austria) with cone-plate geometries and evaporation blocker, as
described in literature [8,10,42].

2.4. Cloudpoint Determination

The procedure for cloudpoint determination was adapted from literature, as described
elsewhere [8,10,42] using water as non-solvent.

2.5. Filtrations

Filtrations were performed at 23 ◦C under pressures from 2 to 16 bar permitting
filtrations of 16 membrane coupons simultaneous with a high-throughput filtration set-
up [43,44]. Each membrane coupon had an active surface area of 0.000172 m2. Solutions
of 35 µM rose Bengal (RB) or 16.7 mM MgSO4 in distilled water (H2O) were taken as
feed (Table 1). Permeance is measured by the quantity of liquid that passes through
the membrane per unit of area, time and pressure. Equation (1) is used to calculate
permeance. Retention (rejection) is a dimensionless parameter, expressed in percentage
(in % from 0 to 100%) with respect to feed solution. Equation (2) is used to determine
retention, in which CF represents initial feed concentration and CP represents permeate
concentration. RB-concentrations were measured on a Perkin-Elmer ultraviolet–visible
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(UV/VIS)-spectrophotometer at a wavelength of 548 nm. In the case of MgSO4, a Consort
K620 conductometer was used to measure the concentration of permeate and feed.

Permeance
(

L/m2 · h · bar
)
=

Vol [L]
membrane area [m2]× ∆p[bar]× time(h)

(1)

Retention (R) =
(

1 − CP
CF

)
× 100 [%] (2)

2.6. Membrane Morphology

For membrane morphology studies, membrane samples were broken in liquid ni-
trogen and coated with 2–5 nm gold/palladium as conductive layer using a Jeol-AFC
HR-sputter coater. Images were acquired using a JEOL JSM 6010LV scanning electron
microscopy (SEM).

2.7. Solubility Parameters

The Hansen solubility parameters (HSP) are used to describe the affinity between a
polymer and GVL, as discussed earlier [39,42,45,46]. Ra (solubility parameter distance)
was calculated using Equation (3), which is a measure for affinity between polymer (1) and
solvent (2).

Ra =

[√
4(δD2 − δD1)

2 + (δP2 − δP1)
2 + (δH2 − δH1)

2
]

(3)

Values for GVL are taken from literature [39,46–48]. See supporting information, for
the details of HSP and RED (Relative energy difference) values (Tables S1–S5). Solubility
parameters difference (Ra) of GVL and non-solvent is given in Table S6.

3. Results and Discussion
3.1. Phase Inversion Behavior of Polymer/γ-Valerolactone (GVL) Systems
3.1.1. Introduction

To understand the role of polymer concentration in NIPS, both kinetic and thermo-
dynamic aspects are studied in detail to see the effect on final membrane morphology
and performance. Kinetics play a role in phase inversion via the diffusion of non-solvent
into the polymer solution and of solvent out of the cast polymer film. These diffusion
rates obviously depend on the molecular size and the viscosity of the polymer solution.
Depending on this solvent/non-solvent exchange rate and the strength of the non-solvent
(higher RaNS−P or RaS−NS values) to phase-separate the polymer solution, two different
types of demixing processes can be distinguished. In the case of instantaneous demixing,
a membrane with a porous skin-layer, often with finger-like or pear-shaped macrovoids
over the full cross-section, is generally formed, while denser membranes with a dense skin
having sponge-like substructure are formed in delayed demixing [6,49].

3.1.2. S-NS (Solvent and Non-Solvent) and NS-P (Non-Solvent and Polymer) Interaction
Distance Parameters

All polymers were dissolved in GVL at room temperature with polymer concentra-
tions from 10 wt% to 20 wt%. However, it was impossible to dissolve CTA concentrations
higher than 17.5 wt%. Two different non-solvents, i.e., water and ethanol, were used in
the coagulation bath to further tune the membranes toward NF-performance. To better
understand the role of solvent, non-solvent and polymer in the NIPS process, the interac-
tion distance (Ra) between solvent/non-solvent and between non-solvent/polymer were
calculated (Table 3) and plotted in Figure 1.
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Table 3. Solubility parameters of the polymers, GVL and non-solvents.

Polymers/Solvent
HSP Values Ra (NS−P)

(MPa1/2)
Ra (S−P)
(MPa1/2)

δD
MPa1/2

δP
MPa1/2

δH
MPa1/2 H2O C2H5OH GVL

CA 18.6 12.7 11.0 30.1 6.1 11.0
CTA 18.4 11.9 10.1 32.9 11.1 9.9

PI 20.9 11.3 9.7 34.7 14.2 13.0
PSU 19.7 8.3 8.3 35.9 13.6 9.3
PES 19.6 10.8 9.2 34.5 12.9 10.5
GVL 15.5 4.7 6.6
H2O 15.5 16.0 42.3

C2H5OH 15.8 8.8 19.4
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Figure 1. Interaction distance between solvent and non-solvent (RaS−NS) vs. the interaction distance between non-solvent
and polymer interaction (RaNS−P ).

Replacing water by ethanol as non-solvent increased the affinity of the polymer for
the non-solvent drastically (shift to the left in Figure 1). Ethanol is thus a weaker NS and a
more delayed demixing can be expected, which is supposed to lead to a more sponge-like
membrane structure. In contrast, ethanol clearly has a stronger affinity for GVL (shift
to the bottom in Figure 1). This should increase the driving force for NS to enter the
polymer/solvent system, which would lead to more instantaneous demixing, inducing
more macrovoids. These contradicting impacts of thermodynamics thus render prediction
of expected membrane structures and performance very difficult.
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3.2. Phase Diagrams

Phase diagrams of the polymer-GVL-water ternary systems were obtained by the
titration method via cloud point determination, using GVL as a solvent system and wa-
ter as a non-solvent until the visual appearance of turbidity in the polymer solution
(Figure 2) [6,7,50]. Cellulose acetate (CA)/GVL was the most stable system among all
polymers since large amounts of water as non-solvent were required to cause turbidity [51].
The stability order of the polymer systems toward the addition of non-solvent (water) was
CA > CTA > PES > PSU ≥ polyimide (PI) [52–54]. The RaS−P values of CA, CTA, PES, PSU,
and PI were above 9.0. Therefore, in theory at least, no solubility was expected. But still,
these polymers were readily soluble in GVL.
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3.3. Kinetic Aspects of Non-Solvent Induced Phase Separation (NIPS) Process

Kinetic aspects of NIPS can partially be understood with rheological (viscosity) mea-
surements of the casting solutions. The viscosities of the polymer solutions logically
increased with increasing polymer concentrations (Figure 3). Polymer chains entangle
more in high polymer concentration solutions, and a certain minimal level of entanglement
is essential to prepare sufficiently strong, defect-free membranes [55–57].

3.4. Membrane Performance and Morphology
3.4.1. Influence of Cellulose Acetate (CA)

The influence of CA concentration was noticeably seen in the permeances of the
membranes. A permeance around 1.6 L/m2·h·bar was found for CA10W which logically
decreased to 0.70 and 0.30 L/m2·h·bar respectively with RB rejection increasing from
49% to 95% for CA15W and CA20W membranes (Figure 4). When water was replaced
with ethanol, both permeances and rejections improved. CA15E had a RB- rejection of
96% with a permeance around 2.0 L/m2·h·bar, qualifying very well for NF. CA20E had a
lower permeance around 0.35 L/m2·h·bar and a slightly higher rejection of 98%. All CA
membranes prepared via NIPS using either water or ethanol as non-solvent had a spongy
structure (Figure 5).
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decreased to 0.70 and 0.30 L/m2·h·bar respectively with RB rejection increasing from 49% 
to 95% for CA15W and CA20W membranes (Figure 4). When water was replaced with 
ethanol, both permeances and rejections improved. CA15E had a RB- rejection of 96% with 
a permeance around 2.0 L/m2·h·bar, qualifying very well for NF. CA20E had a lower per-
meance around 0.35 L/m2·h·bar and a slightly higher rejection of 98%. All CA membranes 
prepared via NIPS using either water or ethanol as non-solvent had a spongy structure 
(Figure 5). 
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 Figure 4. Influence of cellulose acetate (CA) concentration on membrane performance in terms of
rose Bengal (RB) rejection and permeance. Striped lines represent membranes prepared using ethanol
as non-solvent and full lines those with water as non-solvent.
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membranes cast from using (a) water as non-solvent and (b) ethanol as non-solvent.

3.4.2. Influence of Cellulose Triacetate (CTA)

As with CA, all CTA-membranes had sponge-like structures. However, also some
macrovoids appeared now when using water as NS. With water as NS, RB rejection slightly
increased from 94.4% to 96.8% with increasing polymer concentration but permeance
decreased strongly from 15.9 to 5.5 L/m2·h·bar. All membranes thus had very good
permeances with RB rejections over 94%, clearly suitable for NF purposes (see Figure 6).
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Using ethanol as NS, the spongy morphology of the CTA-membrane did not really
change with increasing CTA concentration in the casting solution (see Figure 7). Permeance
decreased from 158 L/m2·h·bar to 62 L/m2·h·bar on increasing CTA concentration, while
RB rejection increased slightly but remained very low. These low rejections are in contract
with the results of the CA-membranes.
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and (b) ethanol as non-solvent.

3.4.3. Influence of Polyimide (PI)

Using water as NS, PI-membrane morphology remained spongy even with chang-
ing polymer concentration. However, the influence of increasing polymer concentra-
tion was seen in membrane performance. As usual, permeances decreased from 76.5 to
10.5 L/m2·h·bar, while RB rejection increased from 16% to 65% but thus remained below
the NF-threshold.

On increasing the polymer concentration, RB rejections above 97% were realized with
permeances around 2.6–1.3 L/m2·h·bar. Although the effect of non-solvent could not
be seen in membrane morphology, it is thus very visible in membrane performance (see
Figure 8). When water was replaced by ethanol as NS, morphology of the PI-membranes
did not change either (see Figure 9).
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and permeance. Striped lines represent membranes prepared using ethanol as non-solvent and full
lines these with water as non-solvent.
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Figure 9. Influence of PI concentration on cross-section of the SEM images of PI membranes cast from using (a) water as
non-solvent and (b) ethanol as non-solvent.

3.4.4. Influence of Polyethersulfone (PES)

With ethanol as NS, a similar change in morphology could be observed. Due to
the effect of NS, RB rejection drastically improved above 95% for PES15E and PES20E
membranes, with 2.6–1.2 L/m2·h·bar (Figure 10) permeances. These membranes thus
qualified for NF.
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Figure 10. Influence of polyethersulphone (PES) concentration on membrane performance in term
of RB rejection and permeance. Striped lines represent membranes prepared using ethanol as
non-solvent and full lines those with water as non-solvent.

Using water as NS, a membrane with macrovoids is formed for the lowest PES
concentration (Figure 11), but macrovoids totally disappeared and a sponge-like structure
was formed on increasing PES concentration in the casting solution. The effect of increasing
PES concentration was also seen in a permeance reductions from 151 to 100 L/m2·h·bar.
However, RB rejection remained very low.
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3.4.5. Influence of Polysulfone (PSU)

When water was replaced by ethanol as NS, very unusual morphologies were found
for the lowest concentrations. In particular, the PSU10E membrane looked defective, as
also confirmed by its performance (Figure 12). Permeances of the membranes decreased
to 1.3 L/m2·h·bar with increasing polymer concentration in the casting solution, while
RB-rejection increased to 98.5% (see Figure 12).
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Figure 12. Influence of polysulphone (PSU) concentration on membrane performance in term of RB
rejection and permeance Striped lines represent membranes prepared using ethanol as non-solvent
and full lines those with water as non-solvent.

Using water as NS, a spongy structure was found with a quite obvious denser top layer.
PES and PSU membranes are very different with respect to morphology (Figure 13). While
the permeance of PSU membranes decreased from 103 to 10.5 L/m2·h·bar with increasing
PSU concentration, RB-rejection increased from 5% to 65%, and hence was not high enough
for NF.

3.5. Overall Comparison

The membranes which qualified for NF (having RB rejection above 90%), were also
tested using a MgSO4/H2O feed solution. None of the membranes had MgSO4 rejection
above 90%. These membranes are thus clearly suitable for loose NF and a comparison of
current membranes with a selection of commercial or membranes from literature is given in
Figure 14 (permeances vs. RB-rejection) and Figure 15 (permeances vs. MgSO4 rejections)
(for more details, see S.I. Tables S7 and S8).
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When aiming for a high-permeance, CTA membranes (CTA10W, CTA 15W and
CTA17.5W) are the best option (permeances ranging from 15.9 to 5.5 L/m2·h·bar) with
all RB rejections above 90%. When selectivity is more important, PES membranes are
preferred with 68% MgSO4 and a permeance of 1.1 L/m2·h·bar. Permeances and MgSO4
rejections are in general low as compared to commercial membranes which typically range
from 1.0 to 16.3 L/m2·h·bar and 60.0% to 99.2% rejections [58]. The current membranes
had comparable permeance, however, the MgSO4 rejections were lower.

CTA10W is the best membrane having a permeance around 15.9 L/m2·h·bar with
a 94% RB-rejection among all membranes prepared from polymer/GVL systems, while
PES15E is the best based on performance in terms of MgSO4 rejection.

When sustainability is concerned with membrane preparation, bio-based materials
(i.e., CA or CTA) with sustainable solvents are always suggested over petroleum-based
ones. However, there is currently a tradeoff still between selectivity and sustainability.

To combine high rejection with a high permeance seems challenging for polymer/GVL
systems within the studied parameters space of polymer type, polymer concentration
and NS choice. However, other parameters like, e.g., membrane annealing, coagulation
bath temperature and composition, co-solvent addition in the casting solution can still
be screened to further optimize these properties. γ-butyrolactone (GBL) was previously
used in membranes preparation, e.g., polyvinylidene flouride (PVDF) membranes were
prepared via TIPS and polyetheretherketone (PEEK-WC) membranes via NIPS. However,
the use of GBL was limited to these 2 polymers. While GVL not only replaced GBL, but it
also provided more opportunities to prepare NF membranes as it can be combined with
common membrane polymers, like CA, PI, PES, CTA and PSU, making it an interesting
solvent for membrane preparation, superior to GBL.
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4. Conclusions

NF membranes based on CA, PI, CTA, PES and PSU have been successfully prepared
using GVL as a bio-based green solvent via NIPS.

For all polymer types, the NF-criterion with RB-rejections above 90% could be fulfilled
by tuning the membrane preparation using water or ethanol as non-solvent. The best mem-
brane, CTA10W, was prepared using water as a non-solvent, from low CTA concentration.
It had a permeance of 15.9 L/m2·h·bar and a 94% RB-rejection. Other membranes prepared
from PES, PI, PSU and CA had a reasonable permeance with RB-rejection over 90%.

Loose NF membranes prepared by using polymer/GVL systems still have potential
to be further tuned toward tight NF, but can obviously already serve as a ultrafiltration
membrane or as a support layer in thin film composite preparation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/membranes11060418/s1, Table S1: Hansen solubility parameters and relative energy difference
(RED) for CA. Table S2: Hansen solubility parameters and relative energy difference (RED) for
PI. Table S3: Hansen solubility parameters and relative energy difference (RED) for PSU. Table
S4: Hansen solubility parameters for PES and relative energy difference (RED) for PES. Table
S5: Hildebrand/Hansen solubility parameters of GVL and interaction distance for CTA. Table
S6: Solubility parameters difference (Ra) of GVL and non-solvent. Table S7: Comparison of the
overall membranes performance of current membranes and a selection of lab-made and commercial
membranes. Table S8: Comparison of the overall membranes performance of current membranes
and a selection of lab-made and commercial membranes using MgSO4 feed solution. References for
supporting information are cited in the supplementary materials separately [1–30].
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