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Abstract

The N6-methyladenosine (m6A) RNA modification has gained significant promi-
nence as a new layer of regulatory mechanism that governs gene expression. Over
the past decade, various m6A regulators responsible for introducing, eliminating,
and recognising RNA methylation have been identified. Notably, these m6A reg-
ulators often exhibit altered expression patterns in cancer, occasionally offering
prognostic value. Nonetheless, the complex roles of these regulators in human
cancer pathology remain enigmatic, with conflicting outcomes reported in differ-
ent studies.In recent years, a multitude of inhibitors and activators targeting m6A
regulators have been reported. Several of these compounds have demonstrated
promising efficacy in both in vitro and in vivo cancer models. These findings col-
lectively underscore the dynamic landscape of m6A regulation in cancer biology,
revealing its potential as a therapeutic target and prognostic indicator.
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1 | INTRODUCTION

Epitranscriptomics, the study of dynamic and reversible
chemical modifications at the RNA level, plays a crucial
role in understanding gene regulation.' In mammals,
N6-methyladenosine (m6A) is the most prevalent in-
ternal RNA modification, with a frequency of 3-5 m6A
per mRNA.? Its abundance underscores its significance
in normal physiology. Recent research indicates that ab-
errant m6A modification is linked to disease pathology,
making it a potential therapeutic target.’

Three categories of proteins dynamically and reversibly
regulate the RNA m6A modification process, affecting RNA
biogenesis, stability, nuclear-cytoplasmic export, translation,
and splicing* (Figure 1). m6A writers are methyltransfer-
ases that add a methyl group onto the target adenosine in

cancer, cancer therapy, chemoresistance, N6-methyladenosine (m6A), RNA modification

RNA. m6A erasers are demethylases that remove the methyl
group from the N6-methyladenosine. m6A readers are RNA-
binding proteins that recognise the m6A-marked RNA, de-
termining the functional outcome of the m6A modification.*
This review summarises the known m6A regulators and
briefly discusses their often-opposing roles in promoting
or perturbing cancer progression, chemotherapeutic resis-
tance, and immunotherapy. We also provide an up-to-date
review of potential therapies targeting m6A modification.

1.1 | The m6A writers,
erasers and readers

Before the last decade, studying m6A modification
was limited due to the lack of sequencing techniques,

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.
© 2024 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

Cancer Medicine. 2024;13:¢6989.
https://doi.org/10.1002/cam4.6989

wileyonlinelibrary.com/journal/cam4 1 of 30


https://doi.org/10.1002/cam4.6989
www.wileyonlinelibrary.com/journal/cam4
mailto:
https://orcid.org/0000-0002-7038-5079
http://creativecommons.org/licenses/by/4.0/
mailto:justin.wong@sydney.edu.au

GUAN and WONG

2 of 30 ..
—I—WI LEY_Cancer Medicine _

DIDIN

RNA processing &Q\\:»\.. .
o exosomes sorting "\ i 4
Transcription | | g j AN mRNA degradation
b HNRNPA2B1 i

s = ETTL14
B = )
’ § e METTL3

YTHDC1

oy

HNRNPC/HNRNPG

NUCLEUS

_ YTHDF1-3

Nuclear to N
cytoplasmic export | \

i i, l
s
@ d}/@y ——— RNA pmcessing

|

RNA stabilisation

Translation

//CYTOPLASM

FIGURE 1 Mechanism of m6A modification regulating RNA metabolism. The m6A methylation is catalysed by the writer complex and
the demethylation is catalysed by the erasers. Different readers proteins determine the fate of the RNA modification.

quantitative strategies and knowledge concerning pro-
teins that regulate m6A.° The catalytic component
of the m6A writer, Methyltransferase-Like Protein
3 (METTL3), was identified in 1997, 25years after
the first discovery of m6A modification in 1974.%7
Methyltransferase-Like Protein 14 (METTL14) was then
reported as the second protein in the m6A writer com-
plex, functioning together with METTL3 to enhance its
activity.® Completing the core m6A-methyltransferase
complex, Wilms's tumour 1-associating protein (WTAP)
interacts with the METTL3/METTL14 to allow their
localisation into nuclear speckles.” Other cofactors in-
clude VIRMA (KIAA1429), ZC3H13, HAKAI (CBLL1),
RBM15 and RBM15B."""” VIRMA mediates mRNA
m6A modification in 3'UTR and near stop codon, ex-
plaining the enrichment of m6A modification at these
specific regions of mRNAs.'""'* ZC3H13 interacts with
WTAP, bridging the METTL3/METTL14/WTAP com-
plex to the other cofactors, which is also essential for
localising the complex.'*'* HAKALI is essential for the
stabilisation of core components of the complex where
disruption of HAKAI leads to degradation of VIRMA
and ZC3H13.">'® RBM15 and RBM15B have redundant
functions in interacting with WTAP, responsible for
guiding the complex to the specific RNA target, XIST."

They bind U-rich regions of the RNA,'* but whether they
are essential for all m6A modification by the METTL3/
METTL14 complex remains elusive.

Other m6A writers described act on RNA species other
than mRNAs. METTL16 installs m6A on U6 snRNA and
S-adenosylmethionine (SAM) synthetase pre-mRNA."
While various ncRNAs, IncRNA, and pre-mRNA were
reported to associate with METTL16, whether all these
interactions involved m6A methylation demand further
research.'® Recently, METTL5-TRMT112 complex and
ZCCHC4 were reported to methylate 18S and 28S rRNA,
respectively.'* !

Two established m6A erasers are Fat mass and
obesity-associated protein (FTO) and alkB homologue
5 RNA demethylase (ALKBHS5). FTO is associated with
human obesity and energy homeostasis, demethylat-
ing m6A in cellular mRNA and other RNA species.”*
ALKBHS5, on the other hand, specifically demethyl-
ates m6A-marked mRNA or sometimes m6A-marked
ssDNA, showing minimal activity towards m6A rRNA
or other types of RNA modifications.”* The substrate
specificity of FTO and ALKBHS is influenced by the
conformational diversity of RNA, determined by both
the sequence and the conformational changes due to
m6A modification.*
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The functional outcome of an m6A modification is
predominantly determined by the m6A-binding proteins
that ‘read’ the modification, including the YTH domain-
containing proteins (YTHDC1-2), the YTH domain fam-
ily (YTHDF1-3), the insulin-like growth factor 2 mRNA
binding proteins (IGF2BP1-3), and the HNRNP family
(HNRNPA2B1, HNRNPC, HNRNPG).

Nuclear m6A readers regulate alternative splicing and
nuclear-cytoplasmic export of RNA. YTHDCI1 selectively
targets GG(m6A)CU over GA(m6A)CU?® and recruits the
splicing factor SRSF3 to promote exon inclusion. YTHDC1
also promotes nuclear-cytoplasmic export by recruiting
NXF1.?7 Other nuclear readers involved in pre-RNA pro-
cessing are HNRNPC and HNRNPG.?*? However, the
mechanism of regulation and how they select their targets
remain elusive. HNRNPA2B1 binds m6A-marked primary
microRNAs and promotes miRNA processing and exosome
sorting.”® Interestingly, HNRNPA2B1 has a greater affinity
to non-methylated RNA than methylated RNA, suggesting
a potential ‘m6A-switch’ mechanism for regulating RNA
metabolism rather than an ‘m6A-promoting’ mechanism.*'

Cytoplasmic m6A readers regulate RNA stability and
translation. Only simultaneous knockout of YTHDF1-3
impair RNA degradation, suggesting they redundantly
mediate RNA degradation.’*>* YTHDC2 also promotes
RNA degrada‘tion.35 In contrast, IGF2BPs promote RNA
stability and translation.*® YTHDF1 and YTHDF3 en-
hance mRNA translation by interacting with translation
initiation factors, including eIF3, eIF4A3, and elF4A3.5738
However, neither simultaneous nor independent knock-
out of YTHDF1-3 reduces the translation efficiency, sug-
gesting that they are not regulating translation in cells at
homeostasis.** While the role of YTHDFs in mRNA trans-
lation remains controversial, it appears that they may be
associated with stress granule formation and possibly reg-
ulate m6A-associated translation of a limited number of
mRNAs under stressful conditions in physiological and
pathological conditions, including cancer.**°

2 | THE COMPLEX ROLE OF m6A
REGULATORS AS ONCOPROTEINS
AND TUMOUR SUPPRESSORS

Given their key roles in normal physiology, m6A writ-
ers, erasers, and readers have been implicated in diverse
human cancers. Notably, the m6A regulators often display
opposing roles as oncoproteins and tumour suppressors
(Tables 1-3). In this section, we will discuss the complex
role of some m6A regulators in tumorigenesis, leading
us to explore the prospects of potential therapeutic ap-
proaches in the following section.
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2.1 | m6A writers:
METTL3 and METTL14

METTLS3 is overexpressed in Acute Myeloid Leukaemia
(AML) cells compared to healthy haematopoietic cells.
Promoter-bound METTL3 promotes the translation of
oncoproteins, including SP1, facilitating AML develop-
ment.* METTL3's tumorigenic effect involves wide-
spread mRNA targets, including c-MYC, BCL2, PTEN,
and MDM2.**** Similarly, METTL14 is significantly up-
regulated in AML carrying t(11q23), t(15;17), or t(8;21).*
Mechanistically, METTL14 increases m6A levels on the
MYB and MYC transcripts, preventing cell differentiation
but enhancing survival and proliferation.**

Conversely, METTL3 and METTL14 act as tumour
suppressors in Triple-Negative Breast Cancer (TNBC),
where their downregulation leads to tumour growth and
metastasis. Mechanistically, METTL3 is repressed by miR-
34c-3p in TNBC," and it negatively regulates the expres-
sion of the oncogenic COL3A1.** METTL3 depletion also
contributes to tumour progression in Hormone Receptor
Positive (HR+) and Human Epidermal Growth Factor
Receptor 2 Negative (HER2-) breast cancer.”’ However,
the roles of METTL14 and METTL3 in breast cancer, in
general, are controversial. Despite the tumour-suppressive
functions evidenced in the experimental studies on TNBC
and HR+HER?2- breast cancer, other studies have re-
ported the oncogenic roles. METTL3 enhances the stabil-
ity and translation efficiency of oncoproteins, Bcl-2, SOX2,
CD133, CD144, EZH2, and KRT7, or reduces the stability
of tumour suppressor gene, LATS1.'»*% These studies
covered a wide range of breast cancer subtypes including
TNBC, HER2+, and HR+ breast cancer. METTL14 was
also reported to promote breast cancer cell proliferation,
migration and invasion by methylating miRNAs.>*>* The
complex role of the methyltransferase complex in breast
cancer indicates a need for further exploration of how
mo6A affects carcinogenesis in subtype-specific breast
cancer.

Overexpression of METTL3 in glioblastoma stem
cells (GSCs) has been correlated with a poor progno-
sis for glioblastoma and its silencing in GSCs has been
shown to reduce tumour growth in vivo.”” Multiple
studies consistently highlight that inhibiting METTL3
not only diminishes the self-renewal capacity of GSCs
but also increases their sensitivity to Temozolomide
(TMZ) treatment and radiotherapy, both in vitro and
in vivo.”*® Mechanistically, METTL3 stabilises DNA
repair genes MGMT and APNG, thereby enhancing sen-
sitivity to chemotherapy with TMZ.’® Additionally, it
stabilises SOX2, facilitating SOX2-dependent DNA re-
pair during radiotherapy.>
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TABLE 1 Complex roles of aberrant m6A writers' expression in human cancers.

m6A regulators
METTL14

METTL3

METTLS5

Tumour suppressor
gene(TSG)/Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
TSG

TSG

TSG

TSG

TSG

TSG
Oncogene
Oncogene
Oncogene
TSG
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene
Oncogene

Oncogene

Oncogene
Oncogene
TSG

Oncogene
Oncogene
Oncogene

Oncogene

Oncogene
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Downstream target RNA

MYB, MYC
CXCR4, CYP1B1
AC084125.2
miR-146a-5p

APC

PHLPP2, mTORC2
XIST

ARRDC3

Wild Type P53
SOX4

c-MYC, BCL2, PTEN
SP1

MDM2

COL3A1

KRT7

EZH2
Bcl-2/Oncogene
SOX2, CD133, CD44
LATS1

IncRNA MALAT1
CCNE1

HK?2, SLC2A1

MYC

SOX2

YPELS5

SOCS2

CRB3
pri-miRNA-196b
miR-1246

SOX2, SOX4, EZH2,

ADAM19,MGMT, APNG,

SRSF, MYC

c-MYC

18S rRNA

18S rRNA

c-MYC

Cancer type
AML

Breast cancer

TNBC, ER-, PR-breast cancer

Endometrial cancer

CRC

AML

TNBC

Breast cancer

CRC

Glioblastoma

Lung adenocarcinoma

Hepatocellular carcinoma

Gastric cancer
Breast cancer
HCC

UCEC

Nasopharyngeal carcinoma

(NPC)

Pancreatic cancer
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TABLE 1 (Continued)

Tumour suppressor

m6A regulators gene(TSG)/Oncogene Downstream target RNA Cancer type References
METTL16 Oncogene GPX4 Breast cancer [78]
Oncogene Cyclin D1 Gastric cancer [79]
Oncogene elF4E2 Lung cancer [80]
TSG TME Pancreatic ductal [217]
adenocarcinoma
Oncogene BCAT1, BCAT2 AML [81]
TSG Endocrine system tumours [83]
Oncogene IncRNA RAB11B-AS1 HCC [82]
TABLE 2 Complex roles of aberrant m6A erasers' expression in human cancers.
m6A Tumour suppressor
regulator gene(TSG)/Oncogene Downstream target RNA Cancer type References
FTO Oncogene PDGFB/ERK pathway NPM1-mutated AML [90]
Oncogene ASB2, RARA MLL-rearranged AML [89]
Oncogene TP53INP2 NPM1-mutated AML [88]
Oncogene miR-181b-3p HER+ Breast cancer [86]
Oncogene BNIP3 Breast cancer [84,85]
Oncogene 5't-RF-GlyGCC > FTO, reduce
elF4G1, inhibit autophagy,
promote progression
Oncogene MZF1, c-MYC CRC [218-221]
Oncogene MYC
Oncogene G6PD, PARP1
TSG MTA1
Oncogene AKT Ovarian Cancer [93,222]
TSG
TSG SNAI1 Epithelial ovarian cancer [92]
TSG PDEI1C, PDE4B (blocking cAMP Ovarian Cancer [91]
signalling)
ALKBH5 TSG SLC7A11 CRC [100-103]
TSG FOXO03
TSG PHF20
Oncogene SAV1 MM [223]
Oncogene IncRNA NEAT1, EZH2 Gastric cancer [224-227]
TSG SLC7A2, CGB3
TSG PKMYT1
Oncogene JAK1
TSG YAP NSCLC [98]
TSG TIAM1 Thyroid cancer [99]
Oncogene FOXM1 Glioblastoma [94]
Oncogene TACC3 AML [96]
Oncogene ITPA t(8:21) AML [95]
Oncogene AXL AML [97]
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TABLE 3 Complexroles of aberrant m6A readers expression in human cancers.

me6A reader

YTHDF1

YTHDF2

Tumour suppressor
gene(TSG)/Oncogene
Oncogene

Oncogene

Oncogene

Oncogene

Oncogene
Oncogene
Oncogene
Oncogene
Oncogene

Oncogene

Oncogene
Oncogene
Oncogene
TSG
Dependent
Oncogene

Oncogene

Oncogene

Oncogene

Dependent

TSG

TSG

Oncogene
Oncogene
Oncogene
Oncogene
Oncogene

Oncogene

Oncogene

Controversial

Oncogene
Oncogene
TSG

Oncogene

Oncogene

GUAN and WONG
Target RNA Cancer type References
Cyclin E2 AML [228]
ANLN Hepatocellular carcinoma [109,110,229]
ATG2A&ATG14
PI3K/AKT/mTOR
pathway
E2F8 Breast cancer [48,104,105,129]
PKM2
KRT7
FOXM1
EGFR Intrahepatic cholangiocarcinoma [230]
PLK1, PI3K/AKT Prostate cancer [231]
pathway
ARHGEF2 CRC [232,233]
SH3TC2
CNOT7 Osteosarcoma [234]
HINT2 Oscular melanoma [235]
Snail Gastric cancer [236,237]
USP14
EGR1/p21cipl/wafl/ Multiple myeloma [238,239]
CDK2-cyclin E1
pathway
STAT5A/MAP2K2/p-
ERK pathway
TME-RIG-I(TSG) Bladder cancer [240]
HIF1a/CBSLR/ Gastric cancer [241-243]
YTHDF2/CBS
pathway
FOXC2
PPP2CA
IncRNA FENDRR Endometrial cancer [244,245]
CDKN1B Intrahepatic cholangiocarcinoma [130]
AXIN Cervical cancer [131]
circ_SFMBT2 NSLCL [246]
mTOR/AKT Lung squamous cell carcinomas [247]
FGF14-AS2(decay)/ Breast cancer [108]
RUNX2
AXIN Lung Adenocarcinoma [248,249]
FAMS83D-TGFp1-
SMAD2/3
UBXN1 Glioma [250]
LXRA&HIVEP2 Glioblastoma [251]
EGFR Hepatocellular carcinoma [112,252,253]
Tnfrsf2 AML [254]
t(8;21)AML [255]
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me6A reader gene(TSG)/Oncogene  Target RNA Cancer type References

YTHDF3 Oncogene PFKL HCC [111]
Oncogene CTNNB1 Melanoma [256,257]
Oncogene LOXL3
Oncogene PGK1 Osteosarcoma [258]
Oncogene ZEB1 TNBC [259]
Oncogene CRC [260]
Oncogene ITGA6 Hepatocellular carcinoma [261]
Oncogene EGFR, GJA1, Breast cancer [106,107,262]

ST6GALNACS

IGF2BP1 Oncogene CTP1A Breast cancer [263]
Oncogene SRF, FOXM1, IQGAP3 Gastric cancer [264]
Oncogene TK1 NSCLC [265]
Oncogene EZH2 Neuroendocrine neoplasms (NENs) [195]
Dependent c-MYC Breast cancer (Hypoxic refractory BC) [266]
Oncogene PEG10 Endometrial cancer [267]
Dependent c-MYC Highly metastatic cancer (Colorectal, [268]

breast, ovarian, nasopharyngeal)

Oncogene SRF, PDLIM7, FOXK1 HCC, EOC [269]
Oncogene E2F Pancreatic ductal adenocarcinoma [197]

IGF2BP2 Oncogene NOTCH1 T-ALL [138]

In colorectal cancer (CRC), upregulated METTLS3 is as-
sociated with a poor prognosis and promotes cellular pro-
liferation and metastasis in vitro and in vivo. Examples of
downstream RNA affected are CCNE1 which regulates the
cell cycle,” HK2 and SLC2A1 which are involved in gly-
colysis,®”®! and SOX2 and MYC which interact with key
proliferative pathways such as EGFR, Akt, NOTCH and
Wit signalling.*>®* Notably, METTL3 also decreases the
stability or translation efficiency of tumour-suppressor
genes. Examples include YPEL5, SOCS2 and CRB3.%4%
METTL3 also targets ncRNAs, including pri-miRNA, to
regulate their processing, leading to aberrant expression
of their cognate target oncogenes and tumour-suppressor

In CRC, loss of METTL14 is linked to an unfavour-
able prognosis and has been shown to increase cellular
proliferation and invasion by regulating SOX4, and In-
cRNA XIST.*""! The contrasting effects of METTL3 and
METTL14 on CRC progression despite their complex
formation and catalytic enhancement may be attributed
to their preference for different targets, leading to di-
verse downstream pathways.g’71 Moreover, the tumour-
suppressive role of METTL14 in p53-wild-type CRC cells,
while not significantly affecting p53-mutant or p53-null
CRC cells, highlights the influence of tumour heterogene-
ity on m6A regulators' roles.”” The observed controversies

can be attributed, at least partially, to this heterogeneity.
More examples of the complexrolesof METTL3/METTL14
in diverse cancers are shown in Table 1.

2.2 | Other m6A writers

The recently identified m6A writers, METTL5 and
METTL16, have also been implicated in cancer (Table 1).
METTLS5 is overexpressed in breast cancer,”® pancreatic
cancer,74 uterine corpus endometrial carcinoma,75 and
hepatocellular carcinoma (HCC),” but significantly de-
creased in gastric cancer tissues compared to adjacent nor-
mal tissues and intestinal metaplasia tissues.”” METTL16
facilitates the progression of breast,”® gastric,”” lung,*
AML,?! and liver cancers.?? Conversely, METTL6 expres-
sion is positively correlated with the overall survival of en-
docrine system tumours.*

2.3 | me6A erasers: FTO and ALKBH5

The role of FTO in breast cancer is complex and contra-
dictory. One on hand, FTO promotes breast cancer cell
proliferation, colony formation, cellular invasion, and me-
tastasis in vitro and in vivo.***® FTO demethylates BNIP3
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mRNA and induces its degradation to inhibit apoptosis
while increasing cell proliferation.®> Demethylation of
m6A at miR-181p-3p by FTO inhibits the miRNA func-
tion to allow expression of the oncogenic ARL5B, pro-
moting cellular invasion and migration.*® In this context,
FTO inhibition could be a potential therapeutic strategy
for breast cancer. Conflicting with the above, FTO down-
regulation was also reported in breast cancer, promoting
tumour progression and metastasis via enhancing expres-
sion of mesenchymal markers including SNAI2, VIM,
FN1, NT5E, SNAI1, MMP2 and ZEB1 while decreasing
epithelial markers FSTL3, KRT18 and TJ P1.%” Moreover,
FTO-depleted cells showed increased Wnt signalling and
are sensitive to Wnt inhibitor therapy.®’

FTO is overexpressed in specific subtypes of AML, in-
cluding t(11g23)/MLL-rearranged AML, t(15;17)/Acute
Promyelocytic Leukaemia (APL), and normal karyotype
AMLs carrying NPM1 or FLT3-ITD mutants.®** In these
cases, FTO overexpression leads to the downregulation of
ASB2 and RARA proteins, promoting the overexpression
of oncogenic MLL and the activation of the PDFGRB/ERK
pathway.* The presence of other markers, such as NPM1
mutation type A, would induce FTO expression, resulting
in TP53INP2 upregulation which promotes autophagy
and leukaemia cell survival.*** Such mechanisms sug-
gest potential correlations between m6A regulators and
specific AML subtypes, highlighting the potential for pre-
cision treatments targeting m6A modifications in AML.

FTO is downregulated in ovarian cancer stem cells and
tumours.”> Downregulation of FTO increases the m6A
level in the SNAI1 transcript, enhancing its stability via
an IGF2BPs-dependent manner and promoting epithelial-
to-mesenchymal transition.”” FTO inhibits ovarian cancer
stem cell self-renewal by upregulating PDE1C and PDE4B,
which subsequently block the cAMP signalling pathway.”*
However, FTO was also reported to be upregulated in ovar-
ian tumour tissues, increasing cellular viability and autoph-
agy function but decreasing apoptosis.” Therefore, the role
of FTO in ovarian cancer remains controversial, possibly
due to the different cancer models. The mechanism of ac-
tion of FTO in ovarian cancer demands further research.

Similarly, oncogenic and tumour-suppressive roles of
ALKBHS5 have been reported. ALKBHS5 enhances the ex-
pression of FOXM1viademethylation, promotingstem-like
cell proliferation and tumourigenesis in glioblastoma.” In
AML, overexpressed ALKBHS5 post-transcriptionally re-
duces the stability of TACC3, AXL and ITPA transcripts
to promote cancer stem-cell self-renewal.®>” In contrast,
ALKBHS functions as a tumour suppressor in thyroid can-
cer and Non-Small Cell Lung Cancer (NSCLC) by reduc-
ing the expression of TIAM1 and YAP, respectively.”® In
CRC, downregulation of ALKBHS is associated with poor
prognosis.'®'”! Downstream transcripts were identified to

be PHF20, FOXO03, and SLC7A11, in which the stability of
PHF20 and SLC7A11 are decreased by ALKBHS5 while the
FOXO3 mRNA's stability is enhanced.'?”'>'®® Recently
reported examples of FTO and ALKBH5-mediated cancer
development and progression are detailed in Table 2.

2.4 | m6A readers
The role of m6A readers in cancer is also complex
(Table 3). For example, the overexpression of all
YTHDF1-3 has been implicated in breast cancer pro-
gression and metastasis. In breast cancer, HIFla in-
duced by hypoxia inhibits miR-16-5p, which under
normal conditions targets and inhibits YTHDF1 via
mRNA 3'UTR.'"™ However, hypoxia-induced YTHDF1
overexpression enhances the translation of PKM2 and
subsequently upregulates glycolysis.'® YTHDF1 also
upregulates the translation of oncogenic FOXM1.'*
YTHDF3, a prognostic biomarker for breast cancer, pro-
motes brain metastasis by enhancing the expression of
key metastatic genes including GJA1l, ST6GALNACS,
and EGF.'%*!” YTHDF2 mediates the m6A-dependent
degradation of the IncRNA FGF14-AS2, and patients
with high YTHDF2 and low FGF14-AS2 expression have
worse distant metastasis-free survival.'*®

In HCC, YTHDF1 is upregulated by HIF1la under
hypoxic conditions, facilitating the translation of
autophagy-related genes ATG2A and ATG14 in an m6A-
dependent manner.'” YTHDF1 also positively regulates
ANLN, promoting HCC bone metastasis.!'® YTHDF3 is
overexpressed in HCC and correlates with poor progno-
sis.''! While YTHDF3 is generally accepted to promote
RNA degradation or enhance translation, it was found
to stabilise PFKL mRNA, leading to increased expres-
sion and promoting aerobic glycolysis and carcinogen-
esis.'!! In contrast, YTHDF2 is downregulated under
hypoxic conditions,'? and forced YTHDF2 expression
promotes the degradation of oncogenic EGFR mRNA,
suppressing HCC cell proliferation and growth in vitro
and in vivo."'"> However, contrary to that study, other
research has demonstrated that YTHDF2 is a nega-
tive downstream target of a frequently downregulated
miRNA in HCC, miR-145.113 Recently reported exam-
ples of m6A reader-mediated cancer development and
progression are detailed in Table 3.

3 | M6A REGULATORS ARE KEY
PLAYERS IN CHEMORESISTANCE

Chemoresistance remains a life-threatening obstacle
in cancer biology and clinical practice. Multiple factors
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and mechanisms have been identified, carrying impor-
tant clinical implications. m6A regulators were linked to
chemoresistance (Table 4), providing a potential combi-
nation therapeutic strategy.

Both upregulation and downregulation of METTL3
impact cancer sensitivity to chemotherapy, further
highlighting the intricate role of m6A regulators.
In breast cancer, METTL3 upregulation correlates
with Adriamycin resistance and key downstream tar-
gets were identified to be MALAT1, EGF, and miR-
221-3p.""* " Downregulation of METTL3 has been
reported in HR + HER2- breast cancer, promoting resis-
tance to doxorubicin, paclitaxel, and cisplatin.47 These
seemingly contradictory findings may arise from differ-
ent downstream readers recognising the m6A-marked
mRNA. Despite similarities in DNA-damaging chemo-
therapies’ primary mode of action, each therapy targets
multiple pathways providing additional effects and in-
teractions with cells and the tumour microenvironment
(TME). For instance, doxorubicin induces immunogenic
cell death, stimulating immune responses, and inhibit-
ing regulatory T cells.""” Thus, its anti-tumour effect ex-
tends beyond DNA damage to immunomodulation. The
complexity and the heterogeneity of chemotherapeutic
response in different cancer subtypes contribute to these
conflicting results.

METTL3 mediates resistance to other chemothera-
peutic drugs, including platinum-etoposide in Small Cell
Lung Cancer (SCLC), doxorubicin, 5-fluorouracil (5-FU),
and oxaliplatin in CRC, Idarubicin in AML, and docetaxel
in breast cancer."'*''*'?* Downregulation of METTL3
also associates with resistance to daunorubicin and cytar-
abine in AML."*

The m6A erasers FTO and ALKBHS5 also mediate che-
moresistance in cancer. The upstream regulator STAT3
promotes FTO expression in breast cancer, resulting
in doxorubicin resistance that can be reversed by FTO
knockdown.'*® FTO overexpression targets apoptosis-
inducing factor SIVA1, conferring 5-FU-resistance in
CRC cells."* Consistently, inhibition of FTO pharma-
cologically or genetically reduced the 5-FU tolerance
of CRC xenograft models.'** These results suggest that
FTO inhibitors hold the potential for overcoming che-
moresistance, which is discussed further in the below
section. However, FTO also exhibits a protective role,
its downregulation was found in platinum (Pt)-resistant
ovarian cancer cells and forced expression increases
sensitivity to Pt in vitro and in vivo.'*

ALKBHS5 mediates Temozolomide resistance in glio-
blastoma by demethylating the SOX2 transcript, increasing
its expression.'” In breast cancer, ALKBH5 demethyl-
ates GLUT4 mRNA, enhancing its stability and correlat-
ing with resistance to trastuzumab and lapatinib.'*® In
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addition, ALKBHS5 targets the WIF-1 transcript, enhanc-
ing its expression and activating Wnt signalling, resulting
in gemcitabine resistance in adenocarcinoma.'*’
YTHDF1 overexpressed in cisplatin-resistant CRC
cells, promotes GLS1 protein expression, elevating glu-
tamine metabolism and cisplatin resistance.'*® YTHDF1
knockdown enhances sensitivity to Adriamycin, cisplatin,
and Olaparib in breast cancer cells.'””” YTHDF2 is also in-
volved in cisplatin resistance, the key downstream targets
were found to be AXIN1 in cervical cancer, and CDKN1B
in intrahepatic cholangiocarcinoma.**"*' YTHDF3 is
highly expressed in oxaliplatin-resistant CRC tissue, fa-
cilitating eIF2AK2 and eIF3A recruitment on mRNAs
to regulate translation.'*? In contrast, YTHDCI is down-
regulated in clear cell renal cell carcinoma (ccRCC) and
reduces sensitivity to sunitinib.'** Apart from chemo-
resistance, YTHDF3 and YTHDC?2 correlate with radio-
therapy resistance in cervical cancer and nasopharyngeal
carcinoma. Mechanistically, YTHDF3 promotes RAD51D
translation and YTHDC?2 activates the IGF1R/ATK/S6 sig-
nalling axis, both in an m6A-dependent manner. 3413
The IGF2BPs also mediate chemoresistance.
Overexpression of IGF2BP1 mediates doxorubicin re-
sistance via stabilising the mRNA of oestrogen-related
receptor alpha (ERRa) and ABCB1.'**'*” Similarly,
IGF2BP2 overexpression causes chemoresistance to cy-
tarabine, dexamethasone, vincristine, and venetoclax in
T-cell acute lymphoblastic leukaemia (T-ALL) by rec-

ognising m6A-marked NOTCH1 mRNA and stabilising
it .138

4 | m6A REGULATORS ARE
KEY PLAYERS IN CANCER
IMMUNOLOGY

Cancer immunotherapy has revolutionised the cancer
treatment in the last decade, with notable successes such
as immune checkpoint blockades (ICBs) and CAR-T cell
therapy.*® The influence of m6A regulators extends be-
yond cancer cells to encompass immune cells within the
TME, potentially influencing the outcomes of immu-
notherapies. Consequently, m6A regulators emerge as
promising targets for combination therapy with ICBs or
cell therapies, as detailed in Table 5.

METTL3 suppresses anti-tumour immune response
by reducing granzyme B and interferon gamma-positive
CD8+ T cell infiltration."* METTL3 depletion synergises
with anti-PD-1 blockade, impeding tumour progression in
various in vivo models, including CRC, melanoma, and
HCC. Mo Recently, in vivo models demonstrated that
METTL3 inhibition is equally efficacious to anti-PD-1
therapy and combination of both provide synergism.'*?
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Mechanistically, catalytic inhibition of METTL3 results in
dsRNA formation and potent cell-intrinsic interferon re-
sponses that can stimulate anti-tumour immunity, which
is distinct to the mechanism of the current ICBs and cell
therapy. Importantly, the combination of anti-PD1 and
METTL3 inhibitor can augment antitumor immunity to
eliminate malignant clones insensitive to these agents
alone, suggesting that METTL3 and ICBs work through
distinct but complementary pathways.**

However, conflicting findings suggest that selective
ablation of METTL3 in myeloid cells remodels the TME,
increasing M1/M2-like tumour-associated macrophage
and regulatory T (Treg) cell infiltration."** Moreover,
myeloid-specific METTL3 depletion attenuates efficacy of
anti-PD-1 in melanoma. This level of contradictory might
attribute to the different functions of METTL3 in cancer
and immune cells, underscoring the complexity of target-
ing METTL3 in cancer immunotherapy.

FTO-mediated m6A demethylation, on the other hand,
elevates the expression of transcription factors c-Jun, JunB,
and C/EBPp, thereby enhancing glycolytic metabolism
and inhibiting CD8+ T cell infiltration.'** Others immune
related genes upregulated by FTO-mediated demethyl-
ation includes PD-1, CXCR4, and SOX10.'* Preclinical
models of melanoma and CRC reveal synergism between
FTO inhibition and anti-PD-1 therapy.'**!*> The m6A
eraser ALKBHS5, when deleted, sensitises tumours to ICBs
in vivo.'*® Mechanistically, ALKBH5 positively regulates
Mct4/Slcl6a3 and lactate levels during anti-PD-1/GVAX
treatment, increasing Treg cells and myeloid-derived sup-
pressor cells (MDSCs) accumulation in TME. Moreover,
lower ALKBHS5 expression in melanoma correlates with
better response to anti-PD-1 therapies such as pembroli-
zumab or nivolumab. However, the paradoxical role of
ALKBHS5 in different cancers is evident, as it positively
regulates PD-L1 expression in intrahepatic cholangiocar-
cinoma.'*’” Patients with strong nuclear expression pat-
terns of ALKBHS5 exhibit greater sensitivity to anti-PD-1
therapy, emphasising the diverse functions of m6A regu-
lators across cancer types.

Similarly, the roles of m6A readers vary substantially
in different cancer types. In CRC, YTHDF1 impairs anti-
tumour immunity by negatively regulating CD8+ T cell
infiltration while upregulating CXCL1 to promote MDSCs
infiltration.'*® Consistently, YTHDF1 knockout increases
anti-PD1 efficacy and CD8+ infiltration in CRC.'**'*
However, almost all subsets of tumour-infiltrating
lymphocytes including CD8+ T cells are high in high
YTHDF1 and YTHDF2 lung cancers, suggesting distinct
downstream target genes of m6A readers between cancer
types."*® Further examples of m6A readers influencing an-
titumor immunity are detailed in Table 5.

It is crucial to note that genetic knockout or siRNA-
mediated depletion may differ from pharmacological
inhibition, which holds greater relevance in clinical appli-
cations. The subsequent section will explore the effects of
inhibiting m6A regulators with small molecules in combi-
nation with immunotherapy.

5 | THERAPEUTIC POTENTIAL
While the relationship between m6A and cancer has been
extensively studied, the development of therapeutics tar-
geting m6A regulators is still in its infancy.

51 | M6A writer-METTL3

The study of m6A modulators, including METTL3 in-
hibitors, has gained increasing attention due to their roles
in regulating gene expression in cancer cells. Targeting
METTLS3 based on its diverse functions holds promise for
developing precision cancer therapies (Table 6).

5.1.1 | Competitive inhibitors

METTL3 was extensively reported as an oncoprotein
(Table 1); therefore, METTL3 inhibitors have the poten-
tial to be anti-tumour drugs. The first reported METTL3
inhibitor, adenosine, competitively binds to the SAM
binding site as METTL3 is an S-adenosyl-L-methionine-
dependent methyltransferase.””! Subsequent dock-
ing studies of 4000 adenosine-moiety-containing
compounds into the SAM binding site identified 70
hits."”! Experimental validation of these hits led to the
discovery of 7 candidates with promising inhibitory ef-
fects. However, the anti-tumour efficacy of these aden-
osine derivatives was not tested in cancer cell lines or
mouse models. Furthermore, the selectivity of this class
of inhibitors remains to be examined.

A structure-based drug discovery approach led to the
discovery of the potent and selective UZH1a.">? Co-crystal
of UZH1a-METTL3 revealed a significant conformational
rearrangement (6A displacement) of the Lys513 side chain,
distinguishing it from the Lys513 orientation observed in
the co-crystal structure of METTL3 with sinefungin, a
non-selective inhibitor of SAM-dependent methyltrans-
ferases. This unique conformation of METTL3 induced by
UZH1a is believed to contribute to its selectivity. Notably,
UZH]1a possesses favourable physicochemical properties,
such as low molecular weight and good cellular perme-
ability. Demonstrating high-nanomolar potency in a
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biochemical assay, UZH1a effectively reduces the m6A/A
ratio in the AML MOLM-13 cell line and the osteosarcoma
U10S cell line. However, the anti-tumour effect of UZH1a
has yet to be tested in vitro or in vivo.

Through high-throughput screening (HTS) of
250,000 compounds, STM2457 was identified as a po-
tent (IC50=16.9nM) and selective METTL3 inhibi-
tor.'>* STM2457 competitively binds the SAM binding
pocket. Consistent with the oncogenic role of METTL3 in
AML,**® treatment of mouse and human AML cells with
STM2457 consistently demonstrates growth reduction,
myeloid differentiation, and cell cycle arrest.'>® Moreover,
treatment with STM2457 induces apoptosis in human and
mouse AML cell models but not in normal non-leukaemic
haematopoietic cells, which could be advantageous in
minimising side effects. The result is replicable in in vivo
model, expanding the lifespan of mice with minimal toxic-
ity observed.'*® In addition to the oncogenic role, METTL3
is responsible for SCLC chemoresistance and STM2457
successfully reversed the chemoresistant in vitro and
in vivo.'*!

Very recently, the competitive inhibitor STM3006 was
published.'** It has 20-fold increased cellular potency
compared with STM2457 and potently inhibits prolifer-
ation but induces apoptosis of multiple cell lines. While
STM3006 is structurally distinct from STM2457, they
have very similar binding poses revealed by x-ray crys-
tallography, possibly explaining the high selectivity of
both inhibitors. In addition, STM3006 inhibition results
in a cell-intrinsic interferon response and enhanced
antigen-dependent tumour killing by cytotoxic CD8+ T
cells. STM3006 has rapid metabolism and has no effi-
cacy in vivo but its improved oral availability version,
STC-15, is now under phase I clinical trial in solid can-
cer (NCT05584111).

Virtual screening of 1012 South African natural
products led to the identification of three candidates,
SANCDB0370, SANCDBO0867, and SANCDB1033, de-
rived from Buddleja salviifolia, Croton gratissimus, and
Struthiola argentea, respectively.™ These candidates
exhibit more negative free energy than STM2457. The
in silico analysis suggested that these compounds pos-
sess drug-like properties and lower toxicity compared to
STM2457.1%* It is important to note that while the com-
putational methods provided valuable insights into the
candidates’ properties, wet-lab experiments are yet to be
conducted to validate their activity in vitro or in vivo.

Quercetin, a competitive METTL3 inhibitor with
micromolar potency, was recently discovered through
the virtual screening of natural products.’>> Quercetin
is cell permeable and capable of decreasing mRNA
m6A levels in human pancreatic adenocarcinoma
cells.'> Quercetin’s anti-proliferative effects have been

confirmed in various cancer cell lines, including liver,
lung, breast, and pancreatic cancer cells.*> Notably,
quercetin has been studied for its anti-tumour proper-
ties for over two decades, and clinical trials have shown
no reported toxicity or side effects.”*®'>” However, quer-
cetin is a non-specific inhibitor with pleiotropic effects
and can target multiple enzymes, including DNA meth-
yltransferases and histone deacetylases.'>® Despite its
potential safety as a cancer patient supplement, the lack
of selectivity for METTL3 suggests the need for further
optimization. Virtual screening also revealed Cpd-456,
while it has demonstrated potential in protecting against
renal injury and inflammation, its anti-tumour efficacy
remains unstudied."*’

5.1.2 | Allosteric inhibitors

Besides competitive inhibitors, two allosteric inhibitors
were found to inhibit METTL3. The first allosteric in-
hibitor, known as CDIBA, potently inhibits the METTL3/
METTL14 complex but not the individual METTL3 and
METTL14 subunits, indicating its simultaneous binding
to METTL3 and METTL14.'° In contrast, Eltrombopag
exhibits similar inhibitory activity on the complex and
METTL3 alone but not on METTL14."®" Computational
studies consistently suggested that the putative binding
site of Eltrombopag is on the METTL3.'*" Additionally,
Eltrombopag selectively targets METTL3 over other his-
tone methyltransferases, including DOT1L, G9a, PRMT1,
SETD2, and SMYD3. Both CDIBA and Eltrombopag dem-
onstrated an anti-proliferative effect in the AML cell line
MOLM-13, leading to a reduction in the m6A leve]. 160161

5.1.3 | METTL3 activator

Four potential METTL3 activators were identified via
virtual screening.'®® The series of compounds containing
piperidine and piperazine rings showed high docking ef-
ficiencies. These compounds, which partially occupy the
SAM pocket, seem to activate the methylation activity of
METTL3/METTL14. The ability of these compounds to re-
activate METTL3 to suppress cancer subtypes associated
with METTL3 downregulation remains to be explored.

5.2 | MG6A eraser-FTO

FTO has long been studied as a promising molecular
target for treating obesity.'®® Therefore, more inhibitors
have been developed for FTO than for METTL3 (Table 7).
These FTO inhibitors are primarily competitive, binding
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to either the substrate (i.e. methylated ssRNA/DNA) or
the cofactor (i.e. 2-oxoglutarate (20G)) binding site. To
the best of our knowledge, no allosteric inhibitor has been
reported.

5.2.1 | Competitive inhibitors

Via virtual screening, rhein and N-CDPCB were identified
as competitive FTO inhibitors, increasing the m6A level in
cells.'®*%> Molecular modelling revealed that rhein binds
tom3T, 20G, and Fe2+ binding sites, disrupting the cofac-
tor and substrate binding.'*® Similarly, N-CDPCB binds to
the substrate-binding site by occupying the space between
an antiparallel sheet and the extended C-terminal of the
long loop of FTO.'® Given that the loop of FTO is not con-
served in other mammalian ALKB members, N-CDPCB
is likely to be a selective inhibitor.'®> Another competi-
tive inhibitor, CHTB, also binds to the non-conserved
site of FTO, suggesting good selectivity.'®’ In the ab-
sence of experimental validation, the selectivity profile of
these competitive inhibitors remains largely unknown.
Furthermore, the anti-tumour efficacy of N-CDPCB and
CHTB has not been tested.

More FTO inhibitors were discovered through
structure-based virtual screening, encompassing enta-
capone from FDA-approved drugs, two quinolone de-
rivatives from the ZINC library, and 18,077 and 18,079
from the commercial database Specs (https://www.specs.
net).'®* " Entacapone, an FDA-approved therapy for
Parkinson's disease in combination with levodopa and
carbidopa was found to induce apoptosis in oesopha-
geal cancer cell lines YM-1 and KYSE-30."7"'7* The two
quinolone derivatives, identified as FTO inhibitors, were
originally investigated for supporting the survival of do-
pamine neurons in neurodegenerative disease and their
anti-tumour efficacy requires further studies.'® In vitro
studies demonstrated that 18,097 significantly suppresses
the colony number of cancer cells.'”” Moreover, 18,097 en-
hances the sensitivity of HeLa cervical cancer cells and
MDA-MB-231 breast cancer cells to cisplatin and doxoru-
bicin. It also inhibits cancer cell invasion by downregulat-
ing the expression of matrix metalloproteinase 2 (MMP2),
fibronectin (FN), and vimentin.'”

Meclofenamic acid (MA) is a nonsteroidal anti-
inflammatory drug approved by the FDA in 1980, com-
monly used to treat pain and inflammation associated
with osteoarthritis, rheumatoid arthritis, and menstrual
(:ramps..173 In 2015, it was found to selectively inhibit
FTO's demethylation activity compared to other ALKB
Family members.'”* A prodrug called MA2 has also been
developed, featuring an extra ethyl ester group to increase
cell penetration. Upon hydrolysis of the ester, MA2 yields

MA within cells. Both MA and MA2 have been studied in
cancer models. In mice engrafted with glioblastoma stem
cells (GSCs), MA2 treatment significantly reduced tumour
size, and prolonged survival, suggesting the therapeutic
potential of increasing m6A level through FTO inhibi-
tion.'”* Additionally, MA2 and the previously introduced
Rhein were shown to restore nilotinib sensitivity in tyro-
sine kinase inhibitor (TKI) resistant leukaemia in vitro
and in vivo.'”> MA also reverses Gefitinib resistance in
NSCLC cells, showing synergistic effects with Gefitinib
in Gefitinib-resistant NSCLC cells.'’® Nevertheless, others
have reported the tumour-suppressive role of FTO,'”’ em-
phasising the need for further research before considering
clinical studies involving FTO inhibitors in cancer.

Several competitive FTO inhibitors have been devel-
oped by optimising MA to enhance potency, target se-
lectivity, and pharmacokinetics. Among all synthesised
analogues, FB23 stand out with the highest potency,
showing an approximately 140-fold increase over MA.'”®
The derivative of FB23, named FB23-2, demonstrates im-
proved cellular permeability, leading to increased m6A
levels and exhibits anti-proliferative efficacy in various
AML cell lines.'”® Moreover, FB23-2 inhibits AML pro-
gression in xeno-transplanted mice, resulting in prolonged
survival.'”® The selectivity of MA is retained in these opti-
mised inhibitors by preserving the benzyl carboxylic acid
that interacts with the non-conserved loop in FTO.""+!"8

Subsequent optimisation of FB23 led to the discovery
of Dac51 which forms additional hydrogen bonds with the
FTO protein, improving potency.*** Considering FTO's role
in the TME remodelling and its involvement in immune
surveillance, co-culturing Dac51-pretreated B160VA
melanoma cells with T cells demonstrated enhanced cy-
tokines release and elevated cytotoxic capacity.'** In vivo
treatment with Dac51 increased the proportion of infil-
trated CD8+ T cells in the TME and effectively inhibited
tumour growth. Furthermore, combining Dac51 with an
immune checkpoint blockade significantly prolonged the
survival of mice compared to rnonotherapy.144

The design and synthesis of FB23 analogues, along
with Structure-Activity Studies led to the discovery of
compound 13a. It significantly inhibits FTO demethyla-
tion in vitro, suppresses AML cell proliferation, and im-
proves the survival of MONOMACG6-grafted mice without
displaying apparent off-target effects.'”?

Cao et al. enhanced the efficacy of MA in tumour cells
using nanoparticle technology for targeted delivery.'®
They developed GNCP12, a nanocluster with a 12-mer
peptide (GGGCDLRSAAVC), which specifically targets
C-type lectin-like molecule-1 that overexpressed on AML
cells and CD34+CD38+ leukaemic stem cells (LSCs).
By incorporating GSH-S-DNP, a GSH derivative, as the
imprinting template to create a hydrophobic pocket in


https://www.specs.net/
https://www.specs.net/

GUAN and WONG

the nanoparticle, GNCP12 binds the thiol group of GSH
via ligand exchange in the hypoxic bone marrow. This
triggers the selective release of loaded MA in the pres-
ence of GSH, enabling the targeted killing of AML cells
and LSCs. Combining this nanoparticle therapy, termed
GNPIPP12MA, with PD-L1 blockade effectively inhibited
leukaemia progression and metastasis in the preclinical
mouse model.'*

Huff et al. employed the binding pocket occupied by the
selective MA to rationally design unique inhibitors while
maintaining selectivity."®" They identified the pyrimidine
scaffold as a promising replacement for the benzyl carbox-
ylic group of MA, which provides the necessary selectivity.
Subsequently, fragment growth was directed towards the
unoccupied binding pocket, leading to the discovery of
FTO-4. FTO-4 increases the m6A level of GSCs and im-
pairs self-renewal in GSC-derived neurospheres.'®! Further
optimisation of FTO-4 led to FTO-43, which exhibits anti-
proliferative efficacy in multiple in vitro cancer models, in-
cluding AML, glioblastoma, and gastric cancer.'®

R-2-hydroxyglutarate (R-2HG), a metabolite pro-
duced by mutant isocitrate dehydrogenases (IDHs), has
been shown to inhibit FTO demethylation activity, lead-
ing to the downregulation of the oncogenic MYC.'® In
xenografted mice experiments, both direct injection of
R-2HG and IDH1R132H-mediated R-2HG generation
significantly inhibited AML progression, indicating ther-
apeutic potential. Additionally, Qing et al. showed that
R-2HG inhibits glycolysis in AML by suppressing FTO's
activity.'® This understanding sheds light on how R-2HG
may contribute to resistance to mutant IDH inhibitors.
Consequently, combining a mutant IDH inhibitor with an
FTO inhibitor like R-2HG may hold therapeutic potential
in treating resistant AML.

Saikosaponin-D (SsD), a naturally occurring triter-
penoid saponin found in the roots of Bupleurum falca-
tum, competitively inhibits the demethylation activity
of FTO.'®® Like MA, SsD has shown the ability to over-
come FTO/m6A-mediated leukaemia resistance to TKI.'
Notably, SsD has been used in traditional Chinese med-
icine due to its anti-inflammatory and hepatoprotective
properties, suggesting its potential safety.

5.2.2 | Other FTO inhibitors

FTO inhibitor MO-I-500 has been reported to inhibit
FTO demethylation in vitro, but its precise mode of ac-
tion remains unclear due to the lack of crystal structure.'®
MO-I-500 significantly inhibits cell survival and colony
formation of inflammatory breast cancer SUM149-MA
cells compared to untreated cells or those treated with
an inactive analogue, MO-1-100.'%7 However, resistance
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developed with prolonged co-culture in a glutamine-
free medium, suggesting potential adaptive mechanisms
or cellular changes overcoming the inhibitor's effects.
Moreover, this inhibitory effect was not observed when
cells were cultured in a medium containing glutamine,
indicating that metabolic stress may play a role in MO-I-
500's activity.

CS1 and CS2 are potent FTO inhibitors with undis-
closed modes of action.'®® Both induce apoptosis and GO
phase cell cycle arrest in human cells. In a patient-derived
xeno-transplanted AML model, CS2 treatment reduces
leukaemia infiltration and doubles survival. On the other
hand, CS1 only shows enhanced anti-leukaemia activity
when delivered in micelles.'®® Furthermore, inhibition
of FTO by CS1 or CS2 inhibits immune evasion in AML
cells in vivo. More recently, Phan et al. demonstrated the
in vivo anti-tumour efficacy of CS1 in CRC.'®

5.2.3 | FTO activators

Tricyclic antidepressants (TCAs) are among the first
antidepressants developed.'® Imipramine (IMI) and
Amitriptyline (AMI) activate FTO function and reduce
m6A levels in N2a cells,"”” potentially contributing to
their antidepressant effects. However, further research is
needed to investigate their anti-tumour efficacy.

5.3 | MG6A eraser-ALKBHS5

5.3.1 | ALKBHS5 inhibitors
ALK-04is a selective ALKBHS5 inhibitor identified through
in silico screening and the subsequent structure-activity
relationship studies.'*® Combining ALK-04 with immu-
notherapy significantly reduces tumour growth in mice,
suggesting its potential to overcome anti-PD1 resistance
and enhance immunotherapy effectiveness.'*®

MV1035, a sodium channel blocker, reduced the mi-
gration and invasiveness of U87 glioblastoma cells.'”!
Interestingly, the reference sodium channel blocker TTX
did not produce similar results, indicating that the anti-
tumour effect is unrelated to sodium channel blocking.
The study used SPILLO-PBSS software to explore the un-
derlying mechanism and identified potential off-targets on
a proteome-wide scale. The result indicated that MV1035
competitively binds to the cofactor site of ALKBHS5, lead-
ing to increased cellular m6A-tagged mRNA and reduc-
tion of the oncoprotein CD73 expression.**

In virtual screening of 144,000 compounds from a li-
brary developed by the Institute for Molecular Medicine
Finland identified 2-[(1-hydroxy-2-oxo-2-phenylethyl)
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sulfanyl]acetic acid and 4-{[(furan-2-yl)methyl]amino}-
1,2-diazinane-3,6-dione.'®* In vitro experiments on leu-
kaemic and glioblastoma cells showed their potential as
selective anti-proliferative agents for some cancer cell lines
(i.e. HL-60, CCRF-CEM, and K562), but not for Jurkat or
A172 cells. This highlights the complexity of m6A regu-
lators’ role in cancers, emphasising the need for further
research to understand subtype-specific functions.®?

Compound 20m is a potent and selective ALKBHS5
inhibitor, stabilising ALKBHS5 in human hepatoma cells.
However, its anti-proliferative effects in vitro or in vivo re-
main to be determined.'*

Two compounds, Ena2l and Enal5, were discov-
ered through the HTS of the Enamine Pharmacological
Diversity Set.'”> Docking studies revealed that Ena21 oc-
cupies the cofactor (20G) binding site, suggesting it is a
competitive inhibitor. However, Enal5 does not show
such binding. Enzyme kinetic experiments support this
conclusion. Inhibition of ALKBHS5 with Ena21 and Enal5
successfully inhibits cell proliferation of glioblastoma
multiforme-derived cells and decreases cell population in
the synthesis phase of the cell cycle.'*?

5.4 | MG6A reader-IGF2BPs

54.1 | Allosteric inhibitor

HTS of ~16,190 compounds from three libraries (i.e.
the ChemBridge MicroFormat, the Unversity of Illinois
Marvel library, and the NCI Diversity Set) identified
BTYNB.'* BTYNB specifically targets and inhibits cell
proliferation of IGF2BP1-positive cells but not IGF2BP1-
negative cells in melanoma and ovarian cancer cell lines.
It also impairs cell proliferation and induces apoptosis
in Neuroendocrine Neoplasm (NEN) cells.'®® Testing on
leukaemic cells showed decreased cell viability, increased
cell death, and cell cycle arrest at S-phase.196 In vivo,
BTYNB shows promising anti-tumour efficacy in xeno-
graft models of intrahepatic cholangiocarcinoma and
ovarian cancer.'?%

CuB, identified from HTS of 889 compounds from the
Medicinal Natural Products Library, allosterically binds
IGF2BP1, altering expression of downstream RNA such
as c-MYC, Kras, and FSCN1.*° In vivo, CuB triggers apop-
tosis, recruits immune cells to the TME, and inhibits the
expression of PD-L1."

5.4.2 | Competitive inhibitor

Inhibitors of IGF2BP2 have also been identified through
HTS of ~1200 compounds (Table 8). Ten compounds

were identified, including 4 benzamidobenzoic acid class
and 6 ureidothiophene class compounds, which inhib-
its cell proliferation in CRC cells.”® Three compounds
tested show significant anti-tumour effects in a zebrafish
xenograft model with minimal toxicity.””® However, poor
membrane permeability limited their induction of cell
death and a high dose is required. Virtual screening of
300,000 compounds via docking into the RNA-binding
site of IGF2BP2 followed by cellular assay identified the
inhibitor JX5."** JX5 shows cytotoxicity against Jurkat
cells with IGF2BP2 overexpressed but only mild inhibi-
tion in normal Jurkat cells, suggesting therapeutic poten-
tial for IGF2BP2-positive leukaemia. The anti-leukaemic
effect was also confirmed in vivo.

5.4.3 | Other inhibitors

Another IGF2BP1 inhibitor identified via HTS is known
as 7773.2°" It binds a hydrophobic surface of IGF2BP1, in-
hibiting its binding to Kras RNA and other target RNAs.
As a result, 7773 significantly reduces Kras expression
and affects the downstream pathway, leading to a reduced
pERK/ERK ratio. In vitro, 7773 inhibits cell migration in
H1299, ES2, and HEK293 cell lines while cell proliferation
remains unaffected.

To the best of our knowledge, no inhibitor of IGF2BP3
has been reported. However, Isoliquiritigenin, derived
from the Chinese herb licorice, significantly reduces the
expression of IGF2BP3. Downregulation of IGF2BP3 in-
hibits the downstream TWIST1 mRNA expression, conse-
quently exhibiting an anti-tumour effect in NSCLC.***

6 | LIMITATION OF TARGETING
m6A REGULATORS

All the candidates discussed exhibit the potential to mod-
ulate m6A regulators, with many demonstrating potency
and specificity as inhibitors. However, the inherent com-
plexity of m6A modification poses a potential limitation
for the application of these inhibitors. Much evidence
suggests that targeting m6A regulators can be tumour-
specific to some extent. An example is the overexpression
of METTL3 in AML cells compared to healthy haema-
topoietic cells.*" Pharmacologically inhibiting METTL3
using STM2457 did not show adverse effects in the devel-
opment of normal bone marrow cells.'®® However, this
remains to be seen in other cell types and in conditions
whereby cells are exposed to stress or environments that
can lead to adverse effects upon METTL3 depletion.
METTL3-mediated m6A methylation increases the
maturation of miR-355, promoting stress granule (SG)
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formation and reducing the apoptosis level of injured neu-
rons and cells in acute ischemic stroke.?*® Therefore, target-
ing m6A regulators may not be applicable to all patients,
and the risk of causing stroke needs to be studied carefully.

Moreover, knockdown of YTHDFs was also reported to
reduce SG formation,* potentially leading to adverse ef-
fects if inhibited. However, another study argues that m6A
modification only explains 6% of the variance in SG local-
isation and that it plays a minimal, if any, role in mRNA
partitioning in SG formation. Nonetheless, evaluating the
importance of a biological pathway by how often it occurs
can be quite biased, while the existence of its complemen-
tary process is underappreciated.

Another major argument within the field includes the
opposing role of the m6A regulators in certain cancers,
examples include the conflicting results published around
breast cancer. The reason for the observed inconsistency
is underappreciated, which demands further research.
This inconsistency is evident not only in the contrasting
roles of m6A regulators across different and same cancer
subtypes but also in their potential opposing impacts on
cancer cells and immune cells. In the past decade, im-
munotherapy has brought about a revolutionary shift in
the field of cancer treatment, where immune cells play
a crucial, if not determinative, role in patient prognosis.
Therefore, it becomes imperative to acknowledge the in-
tricacies involved in specifically targeting m6A regulators
within the appropriate immune cell types.

In the future, there are some strategies we can possibly
use: (1) single-cell analysis of cell subsets: an in-depth ex-
ploration at the single-cell level is essential to unveil the
specific functions of m6A regulators within different cell
types and cancer types. This approach allows for a com-
prehensive understanding of the complex roles these reg-
ulators play in diverse cellular contexts; (2) development
of efficient targeted delivery: advancements in biotechnol-
ogy are necessary to enable the precise delivery of drugs;
developing technologies that facilitate targeted delivery
ensures that the impact of m6A modulation is concen-
trated in specific cell types, thus minimising unintended
consequences, and enhancing therapeutic efficacy. (3)
investigating the normal physiological role of m6A regu-
lators: minimising side effects is crucial, especially when
dealing with potentially adverse pathways associated with
m6A mRNA modification.

7 | CONCLUSIONS AND FUTURE
DIRECTIONS

The complex roles of m6A regulators in cancer highlight
the need for further research to unravel their subtype-
specific functions. The diverse landscape of m6A regulators

and their involvement in tumorigenesis underscore the im-
portance of understanding their context-dependent roles in
different cancer types. By investigating the subtype-specific
functions of m6A regulators, we can uncover valuable in-
sights that may guide precision cancer therapeutics.

We have discussed the current understanding of m6A
regulators and their implications in cancer pathology. In
this review, we focused on the potential of targeting these
regulators as a therapeutic strategy, showcasing various
inhibitors that have shown promise in preclinical studies.
However, to fully harness the therapeutic potential of com-
pounds targeting m6A regulators, it is crucial to delve into
their efficacy in specific cancer subtypes, and consider the
effects on immune cells and normal cells which could po-
tentially influence cancer progression and lead to adverse
effects. This precision medicine approach will enable the
development of targeted therapies that address the specific
molecular aberrations within individual tumours.
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