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Pseudomonas aeruginosa ATCC 15442 is an environmental strain of the Pseudomonas genus. Here, we present a 6.77-Mb assem-
bly of its genome sequence. Besides giving insights into characteristics associated with the pathogenicity of P. aeruginosa, such
as virulence, drug resistance, and biofilm formation, the genome sequence may provide some information related to biotechno-
logical utilization of the strain.
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Pseudomonas aeruginosa, a ubiquitous Gram-negative bacte-
rium, is widespread in nature, inhabiting soil, water, plants,

and animals (1, 2). Most strains of this species are opportunistic
human pathogens that cause disease in immunocompromised
hosts and individuals with cystic fibrosis (2). So far, whole-
genome sequences of some P. aeruginosa strains, such as P. aerugi-
nosa PAO1, P. aeruginosa PA7, and P. aeruginosa XMG, are pub-
licly available (1–3). Analyses of those genome sequences have
provided some useful information about characteristics related to
the pathogenicity of P. aeruginosa, such as virulence, drug resis-
tance, and biofilm formation (1–3).

Besides the clinical isolates, there are also some environmental
P. aeruginosa strains. For example, P. aeruginosa ATCC 15442 was
originally isolated from an animal room water bottle. This strain
was neither invasive nor cytotoxic (4). It was thus used as the
reference strain in disinfectant testing (5). To better understand
the pathogenicity of P. aeruginosa and to further improve its bio-
technological applications, we sequenced the genome of P. aerugi-
nosa ATCC 15442.

The draft genome sequence of P. aeruginosa ATCC 15442 was
obtained using the Illumina GA system; sequencing was per-
formed by the Chinese National Human Genome Center at
Shanghai in China, with a paired-end library. The reads were as-
sembled by using Velvet software (6). Primary coding sequence
extraction and initial functional assignment were carried out us-
ing the Rapid Annotations using Subsystems Technology (RAST)
automated annotation server (7). The G�C content was calcu-
lated using the draft genome sequence. The functional description
was determined using Clusters of Orthologous Genes (8). The
rRNA and tRNA genes were identified by RNAmmer 1.2 (9) and
tRNAscan-SE (10), respectively.

The draft genome sequence of P. aeruginosa ATCC 15442 has a
G�C content of 66.2%. The number of contigs (�100 bp) is 200,
and the number of bases is 6,770,586. There are 63 tRNA genes, 11
rRNA operons, and 6,351 putative coding sequences (CDSs) (934

bp average length) in the genome sequence. The coding percent-
age is 79.6%, and 5,055 CDSs have predicted functions.

There are 573 subsystems represented in the draft genome se-
quence. In contrast to P. aeruginosa PAO1, P. aeruginosa PA14,
and P. aeruginosa XMG, there are no complete pyocyanin produc-
tion genes in the draft genome sequence. Since pyocyanin pro-
duced by P. aeruginosa may contribute to infection (11), the ab-
sence of complete siderophore production genes might explain
the noninvasive and noncytotoxic properties of ATCC 15442.
An lldRPDE operon is also annotated in the lactate utilization
subsystem (12, 13). Biocatalysts containing NAD-independent
L-lactate dehydrogenase (encoded by lldD) and NAD-
independent D-lactate dehydrogenase (encoded by lldE) could
be used in pyruvate production (14–16), kinetic resolution of
2-hydroxy acid racemic mixtures (17, 18), and 2-oxobutyrate
production (19). Therefore, genome scale analysis might be
useful for the metabolic engineering of the environmental
strain ATCC 15442 to enhance its ability to serve as a useful
biocatalyst.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession no. AYUC00000000. The version described in
this paper is the first version, with accession no. AYUC01000000.
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