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Spatial frequency domain imaging 
for monitoring immune‑mediated 
chemotherapy treatment response 
and resistance in a murine breast 
cancer model
Anup Tank1, Cameron Vergato2, David J. Waxman2 & Darren Roblyer1*

Spatial Frequency Domain Imaging (SFDI) can provide longitudinal, label‑free, and widefield 
hemodynamic and scattering measurements of murine tumors in vivo. Our previous work has shown 
that the reduced scattering coefficient (μ′s) at 800 nm, as well as the wavelength dependence of 
scattering, both have prognostic value in tracking apoptosis and proliferation during treatment 
with anti‑cancer therapies. However, there is limited work in validating these optical biomarkers in 
clinically relevant tumor models that manifest specific treatment resistance mechanisms that mimic 
the clinical setting. It was recently demonstrated that metronomic dosing of cyclophosphamide 
induces a strong anti‑tumor immune response and tumor volume reduction in the E0771 murine 
breast cancer model. This immune activation mechanism can be blocked with an IFNAR‑1 antibody, 
leading to treatment resistance. Here we present a longitudinal study utilizing SFDI to monitor this 
paired responsive‑resistant model for up to 30 days of drug treatment. Mice receiving the immune 
modulatory metronomic cyclophosphamide schedule had a significant increase in tumor optical 
scattering compared to mice receiving cyclophosphamide in combination with the IFNAR‑1 antibody 
(9% increase vs 10% decrease on day 5 of treatment, p < 0.001). The magnitude of these differences 
increased throughout the duration of treatment. Additionally, scattering changes on day 4 of 
treatment could discriminate responsive versus resistant tumors with an accuracy of 78%, while 
tumor volume had an accuracy of only 52%. These results validate optical scattering as a promising 
prognostic biomarker that can discriminate between treatment responsive and resistant tumor 
models.

The preclinical setting allows for the exploration of new anti-cancer therapies while investigating specific treat-
ment response and resistance mechanisms, providing valuable insight for clinical  translation1. Preclinical imag-
ing of intra-tumoral functional and metabolic changes induced by chemotherapy and immunotherapy can 
provide critical information regarding the tumor response and help to identify improved treatment regimens 
and new methods for clinical treatment  monitoring2. Recently, a label-free optical imaging technique called 
Spatial Frequency Domain Imaging (SFDI) has been introduced for preclinical tumor treatment  monitoring3. 
SFDI uses spatially modulated near infrared light to provide non-invasive and wide-field measurements of opti-
cal absorption and scattering  properties4. Optical scattering is sensitive to cellular and tissue microarchitecture 
while absorption is sensitive to tissue concentrations of oxy- and deoxyhemoglobin, which are related to both 
hypoxia and  angiogenesis5. SFDI has several distinct advantages over other preclinical imaging modalities. For 
example, it is uniquely capable of providing non-invasive, contact-free, label-free and widefield optical absorption 
and scattering maps of tissue. In comparison, microscopy-based intravital imaging methods, such as confocal 
or multiphoton microscopy, have improved spatial resolution (1–10 μm vs ~500 μm for SFDI) but with limited 
penetration depth (~ 1 mm vs ~5 mm for SFDI) and often require the addition of contrast  agents6. Photoacoustic 
Imaging, which has much deeper penetration (up to several centimeters), is insensitive to scattering changes 
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in  tissue7. Fluorescence and bioluminescence imaging can provide deep tissue imaging but require exogenous 
imaging agents or genetically modified animal models, and cannot quantify  scattering8.

Our group has recently advanced SFDI for preclinical oncology imaging and has established optical scattering 
as a promising biomarker of drug treatment  responses3, 9–12. We showed that optical scattering was strongly asso-
ciated with apoptosis and decreased proliferation induced by cytotoxic and antiangiogenic therapies in murine 
breast and prostate  tumors3. Scattering amplitude was positively correlated with cleaved caspase-3, an IHC 
marker for apoptosis, and increased over time in response to treatment. Additionally, scattering power, which 
represents the wavelength dependence of scattering, was negatively correlated with PCNA, an IHC marker for 
proliferation, and decreased over time following treatment. However, an important limitation of this prior work 
is that the changes in the treated tumors were only compared to untreated controls. This does not adequately 
reflect the clinical setting in which all patients are treated (i.e., there are no untreated controls). In order to bet-
ter mimic the clinical setting, models are needed that accurately recapitulate treatment resistance. Examining 
optical changes in the context of specific resistance mechanisms would then help validate optical scattering as a 
relevant imaging biomarker and increase the likelihood of translatability to the clinical setting.

To accomplish this, we imaged a paired responsive resistance breast tumor model developed by our  group13. 
In this model, metronomic dosing of cyclophosphamide (CPA) in mice bearing E0771 breast tumors induced 
an immunostimulatory response characterized by infiltration of CD8 + T-cells coupled with a rapid decrease in 
tumor volume. The treatment response was shown to result from both an immune response and the cytotoxic 
effects of CPA. This was shown by inhibiting the interferon-1 pathway by blocking interferon-α/β receptor-1 
(IFNAR-1) with an antibody during CPA treatment, which greatly inhibited immune cell infiltration, lead-
ing to a lack of tumor regression. Type 1 interferon activation has a direct effect on the innate and adaptive 
response including mediating T-Cell  recruitment14, which was shown to be required for tumor regression. This 
is representative of an immunosuppressive model in which CPA would normally successfully treat the tumor, 
however, the antibody prevented the necessary immune mediated tumor cell death. This paired model of CPA 
vs CPA + IFNAR-1 antibody identifies immune activation as a key mechanism of response and resistance.

In this work, we used SFDI to image this paired model along with an untreated control tumor group to con-
firm that optical scattering can serve as a prognostic imaging biomarker to discriminate between responding and 
resistant tumors. We utilized Generalized Estimating Equations (GEE) to longitudinally model the SFDI data and 
identify differences in optical parameters between treatment-responsive, treatment-resistant, and control tumors. 
Additionally, through the use of linear discriminant analysis, the classification accuracy of optical parameters at 
different timepoints was calculated and compared to the gold standard of tumor volume.

Methods
Spatial frequency domain imaging. Specific details about the SFDI methodology, instrumentation and 
processing have been well described  elsewhere3, 9, 11. The Reflect RS system (Modulim Inc. Irvine, CA) was uti-
lized to conduct the imaging. Briefly, SFDI was used to extract tissue optical properties: the absorption coef-
ficient (μa) and reduced scattering coefficient (μ′s), at each illumination wavelength on a pixel-by-pixel basis 
shown in Fig. 1.

Figure 1.  On the left, schematic of the SFDI system with the projector and camera. On the right is an example 
of intensity images at 731 nm for DC and AC  (fx = 0.1  mm-1). These are demodulated, calibrated against a 
phantom, corrected for both height and angle, and then fit to a two-layer lookup table to calculate the optical 
properties: μa and μ′s.
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SFDI projects spatially modulated sinusoidal illumination patterns onto tissue over a 15 × 20 cm field of 
view. Illumination is provided with LEDs at 659, 691, 731, and 851 nm. For this study, two spatial frequencies, 0 
and 0.1  mm−1, were projected at each wavelength at 3 different phase offsets (0°, 120°, and 240°) using a digital 
micromirror device (DMD). A CCD camera was used to collect the remitted light from tissue. Images were 
demodulated to extract the modulation amplitude envelope for each wavelength-frequency combination using 
a previously established  method4. Prior to tissue measurement, a calibration measurement was taken on a tissue 
mimicking phantom with known optical parameters: (659 nm: μa =0.0086, μ′s = 1.044; 691 nm: μa =0.0088, μ′s = 
1.014; 731 nm: μa = 0.0087, μ′s = 0.980; 851 nm: μa = 0.0074, μ′s = 0.893) to remove the system response and to 
obtain calibrated diffuse reflectance maps. These measurements were additionally calibrated with the use of an in-
frame phantom to correct for any drift that occurs throughout a measurement day, which may span several hours.

The calibrated diffuse reflectance values were then corrected for the height and angle of the  tumor10. The angle 
correction algorithm is able to correct for tissues surface angles up to 40-degrees and any angles greater than 
this threshold were not included in the analysis. The corrected diffuse reflectance values at each pixel were fit to 
a two-frequency, two-layer lookup table (LUT) to determine the tissue optical properties at each illumination 
wavelength. This two-layer LUT was developed to account for fixed mouse skin layer optical properties in order 
to better estimate the underlying tumor optical  parameters9.

The μ′s at each wavelength was fit to a power law of the form:

where a is the scattering amplitude normalized to 800 nm and b is the scattering power. The μa at each wavelength 
was fit using Beer’s Law with the known extinction spectra to calculate chromophore concentrations (μM) of 
oxy-hemoglobin  (HbO2) and deoxy-hemoglobin (HHb).

Additional composite metrics of total hemoglobin (ctTHb =  ctHbO2 + ctHHb) and oxygen saturation 
 (StO2 =  ctHbO2/ctTHb) were also calculated.

An ROI was manually selected over the tumor region of resulting optical property and hemoglobin maps 
using the same procedures that have previously been  described3. Any remaining artifacts in the image were 
removed such as non-physiological data with extremely low absorption. All data analyzed and displayed repre-
sents the means over the ROI. All SFDI processing was conducted using MATLAB R2020b (MathWorks, Natick, 
Massachusetts).

Mouse model, treatment, and ex vivo analysis. Five-to six-week-old female C57BL/6 mice (B6-F, 
Taconic Biosciences, Rensselaer, New York) were implanted orthotopically with 2 ×  105 mouse E0771 mam-
mary carcinoma cells in the fourth mammary fat pad. Mice (n = 26) were randomized to three groups: Control, 
PBS (vehicle) + isotype control (n = 3); CPA, cyclophosphamide (CPA) (Cat # C0768, Sigma-Aldrich, St. Louis, 
MO) + isotype antibody control (n = 9); and CPA + Ab, CPA + IFNα/β receptor-1 (IFNAR-1) antibody (clone 
MAR1-5A3, BioXCell, West Lebanon, NH) (n = 14). Treatment was initiated on Day 0 once the tumor volumes 
reached 250  mm3, based on caliper measurements of tumor length (L) and tumor width (W) and the formula: 
V = (3.14/6) *(L*W)3/2. Vehicle control was administered as 200 μL of PBS every 6 days. Isotype control and anti-
IFNAR-1 were administered as a 1 mg dose on Day-1, 0.5 mg on Day 0, and 0.25 mg every 3 days afterwards. 
CPA was administered on a metronomic schedule every 6 days at 110 mg/kg. Volume and SFDI imaging meas-
urements were taken on Days 0–6 and then every 3 days from Days 9 to 30.

Approximately half of the treated mice (CPA, CPA + Ab) were euthanized on Day 12 and the remaining on Day 
30 for ex vivo analysis. All the Control mice were euthanized by Day 12. Mice were additionally euthanized when 
deemed necessary by veterinarian for animal safety and health. Mice were euthanized through  CO2 asphyxiation 
and confirmed through cervical dislocation. The exact number of mice in each treatment category at each time 
point are shown in Figure S1. All animal work was reviewed and approved by the Boston University Institutional 
Animal Care and Use Committee. All animal experiments were performed in accordance with the necessary 
and relevant guidelines. This manuscript follows the reporting recommendations of the ARRIVE guidelines.

Statistical analysis. Generalized estimating equations (GEE) were used to longitudinally model the SFDI 
optical parameters and tumor volume throughout the course of the study using SAS (SAS institute)15. GEEs 
are a method to model the population averaged effects for longitudinal data with repeated measurements. All 
parameters were normalized to baseline values at day 0 and presented as a percent change from baseline in order 
to normalize inter-mouse differences. The GEE incorporates the information from repeated measurements from 
an individual to better model the population means. The GEE allowed for an unbalanced longitudinal dataset 
with subjects considered as clusters, an autoregressive correlation structure, and a normal model with identity 
link function. Separate models were run for the outcome variables of interest: scattering amplitude (a), deoxy-
hemoglobin concentration (ctHHb), and tumor volume. Separate models were run on the short-term trends 
consisting of all three treatment groups until Day 12, when there are at least 3 mice per treatment category and 
the long-term trends, consisting of the CPA and CPA + Ab group until Day 30. Significance between the model 
parameters was determined at 0.050 and when adjusted for multiple comparisons at 0.017. Post-hoc contrasts for 
outcome variables adjusted for model covariates were compared across treatment groups at each measurement 
day. Significance for the post-hoc contrasts was determined at 0.050 and when adjusted for multiple compari-
sons was at 0.007 for the short-term analysis and 0.003 for the long-term analysis.
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Linear discriminant analysis (LDA) was performed to assess the classification accuracy of the SFDI-derived 
optical parameters to discriminate the different treatment groups relative to the reference of tumor volume. The 
LDA assumed multivariate normal distributions and equal covariances for each group. The analysis utilized 
leave-one-out cross validation to limit biasing the classifier. Similar to the GEE analysis, two separate analyses 
were conducted: (1) a short-term analysis consisting of all treatment groups up to Day 6 and (2) a long-term 
analysis consisting of CPA and CPA + Ab treatment groups up to Day 30. Due to the presence of three groups, 
the figure of merit was classification accuracy ((Correctly Classified Cases)/All Cases).

Results
Regimen specific volume changes. Tumor volume changes are shown in Fig. 2a with day 0 represent-
ing the first day of treatment when tumor volume reached 250  mm3, between 21–24 days after inoculation. The 
CPA group showed an increase in volume until day 3 when the tumor volume began to sharply decrease. The 
Control and CPA + Ab groups had large increases in tumor volume. Control group tumors appeared to undergo 
exponential growth, and all mice in this group were euthanized on Day 12. The CPA + Ab group showed a linear 
increase in tumor volume until approximately Day 9, followed by growth stasis.

Regimen specific ex vivo analysis. The ex  vivo analysis is extensively described in the companion 
 publication13. Briefly, using qPCR and fluorescence activated cell sorting, it was determined that there was a 
transient upregulation of immune stimulated genes such as MX1 and a subsequent infiltration of CD8 + T-Cells 
in the CPA group. This is in contrast to the CPA + Ab group, in which there was limited upregulation of immune 
stimulated genes and a lack of infiltrating CD8 + T-cells.

Regimen specific optical changes. SFDI optical changes were differentially modified by their specific 
treatment. Two parameters, ctHHb and a, manifested markedly different patterns based on treatment, as shown 
in Fig. 2b,c, respectively. ctHHb increased dramatically in the Control group over the early measurement period 

Figure 2.  Longitudinal day 30 volume and optical changes across treatment groups. Percent change in (a) 
tumor volume, (b) ctHHb, (c) a separated by treatment: Control (purple), CPA (blue), CPA + Antibody (yellow). 
Lines represent means and shaded bars represent standard errors.
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(Days 3–6) compared to both treated groups, which both showed a small decrease in the same time period. The 
scattering amplitude, a, increased dramatically over time in the CPA treatment group, while the Control and 
CPA + Ab groups both showed small decreases throughout their respective treatment course. The other longi-
tudinal optical parameters measured by SFDI are shown in Supplemental Figs. 2–5. Representative widefield a 
maps for each treatment group are shown in Fig. 3. The differences between the CPA and other treatment groups 
increased over time for both ctHHb and a.

Longitudinal analysis. GEE Analysis demonstrated that Tumor Volume, ctHHb and a all had significant 
covariates of time * treatment group. Post hoc Analysis of the comparisons between the different treatment 
groups at different time points are shown visualized in Supplementary Tables 1–3. Volume was significantly dif-
ferent between the CPA and Control group starting on Day 3 and the magnitude of the change increased each 
subsequent day. The CPA + Ab group was significantly different from the CPA and Control group starting on Day 
5 and the difference between the groups continued to increase each subsequent day. ctHHb was not significantly 
different between the CPA + Ab and CPA group at any time point. ctHHb was significantly different between the 
Control and both treatment groups during Days 4–6. After Day 6, the changes between the groups started to 
decrease. a was significantly different from the CPA group relative to the other groups starting on Day 5, and the 
differences tended to increase at subsequent time points.

Discriminant analysis. Linear discriminant analysis demonstrated that in the short-term analysis the best 
combination of optical features was ctHHb and a on Day 5 with an accuracy of 0.92 to discriminate between the 
three treatment groups, as shown in Fig. 4. This was only matched by the tumor volume metric on Day 6 with an 
accuracy of 0.92. Additionally, on Days 3, 4, and 5 the ctHHb and a metric had a substantially larger accuracy 
compared to the single feature of volume. The best single optical feature was a, which was equivalent to or out-
performed volume on Days 3, 4, and 5.

For the long-term analysis shown in Fig. 5, a as a single feature was the best optical discriminator between the 
CPA and the CPA + Ab group over the entire study. It was a superior discriminator compared to tumor volume 
for the first five days, after which volume either matched or exceeded classification accuracy for the duration of 
the study. The individual trends in ctHHb and a along with tumor volume on Day 5 are shown in Supplemental 
Fig. 6. These data, color coded by treatment, visually demonstrate how each treatment group displays a distinct 
trend. Figure 6 presents a scatterplot of the relationship between ctHHb and a for individual tumors on Day 5, 
with dashed lines indicating the lines of separation between each group. This figure shows that with an overall 
accuracy of 0.92, there were 2 misclassifications out of 24 subjects: one of each of the CPA and Control groups 
were mistakenly determined to be in CPA + Ab group.

Figure 3.  SFDI maps across treatment groups. Representative wide-field SFDI maps of the changes in a 
parameter  (mm−1) at Day 0 and 12 across the each of the three treatment groups.
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Discussion and conclusion
This works demonstrates the utility of SFDI to identify novel prognostic optical biomarkers for immune-mod-
ulated chemotherapy response and resistance. Specifically, scattering amplitude, a, was shown to be capable of 
accurately discriminating between a paired treatment-responsive and treatment-resistant murine breast cancer 
model at early time points. Dramatic changes in a occurred prior to changes in tumor volume, demonstrating 
its potential prognostic value as an early predictor of tumor response and resistance.

The two treatment groups and one control group exhibited dramatically different longitudinal tumor volume 
trends. The untreated control group showed a large, exponential increase in tumor volume, as expected. The 
CPA + Ab group displayed a steady linear increase in tumor volume until Day 12, when it reached tumor stasis, 
likely representing an immunosuppressive phenotype. The CPA group showed a steady decrease in tumor volume 
after Day 3 and until Day 12, demonstrating a treatment-responsive and likely immunostimulatory phenotype. 
These results demonstrate a paired model of treatment response and resistance directly linked to immune stimu-
lation or inhibition, respectively.

Starting on Day 5, the a parameter showed significant differences through GEE analysis (p < 0.005) when com-
paring the CPA group (9% increase) to both the CPA + Ab (10% decrease) and Control (10% decrease) groups. 
This difference continued to grow throughout the study. This finding builds upon the previous findings by our 
lab that a can serve as a prognostic biomarker of treatment response in both prostate and breast cancer  models3.

The a parameter also showed predictive ability to discriminate between responsive, resistant, and untreated 
control tumors using linear discriminant analysis. The combination of ctHHb and a had high predictive ability 
to separate the three groups and outperformed tumor volume on Days 3, 4, and 5. When comparing the respon-
sive CPA and resistant CPA + Ab, only one CPA mouse was misclassified. This means that all of the resistant 
tumors were accurately identified, which may represent the most important use of this imaging biomarker. The a 
parameter was equal to or outperformed tumor volume as a classification feature on the first 5 days of study when 
discriminating between the CPA and the CPA + Ab group, and demonstrated excellent classification accuracy 
(~ 0.9) throughout the rest of the study. We note that the optical parameters used in the analysis were normalized 
to their pretreatment values and were represented as percent changes from baseline. This may help to improve the 
translatability of these findings as the classification accuracy relied only on relative changes rather than absolute 
tumor optical properties, which are likely to be highly variable in a diverse clinical population.

The changes observed in the a parameter are consistent with our prior work, which demonstrated that 
increases in the a parameter were associated with increased apoptosis as determined by ex-vivo  immunostaining3. 
Apoptosis induces a dramatic shift in the microarchitecture of a  cell16. The chromatin in the nucleus deforms 

Figure 4.  Short term classification accuracy feature selection. Linear discriminant analysis was conducted 
on the short-term cohort (through Day 6) for all 3 treatment groups (Control, CPA, and CPA + Ab). The 
classification accuracy for each timepoint and feature is displayed in text and indicated by shading for each 
metric at each timepoint. The combination of the SFDI parameters ctHHb and a provided higher classification 
accuracy than tumor volume on days 3, 4, and 5.
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into aggregates before the cell nucleus breaks apart into smaller pieces. This in turn increases the local density 
of scattering centers which has been shown to increase the a  parameter17, 18.

We also note that in the companion paper describing the model used here, the CPA treated groups tended 
to show cytotoxic CD8 + T-Cell infiltration by Day 6, (see Fig. 5 of Ref.13), which is approximately when the 
scattering changes between the groups began to differentiate. This suggests that T-Cells contribute to treatment 
response as cytotoxic CD8 + T-cells most commonly kill cancer cells through apoptotic  pathways19. Clinically, 
the presence of tumor infiltrating lymphocytes and specifically CD8 + T-cells has been associated with improved 
 outcomes20, 21. It has previously been shown that the infiltration of CD8 + T-cells in EO771 tumors receiving 
immune checkpoint blockade therapy was necessary for tumor response, and was associated with improved 

Figure 5.  Long term classification accuracy feature selection for responders (CPA) versus resistant (CPA + Ab) 
cohorts. Linear discriminant analysis was conducted on the long-term cohort (through Day 30) for the 
treatment groups. The classification accuracy for each time point and feature is displayed in text and indicated 
by shading for each metric at each time point. SFDI derived parameters predicted earlier ability to discriminate 
responders versus resistance mice compared to tumor volume.

Figure 6.  2 Feature Classification at Day 5. Scatterplot of the 2 best classification features: ctHHb and a for 
individual mice. The color of the individual points indicates its respective treatment: Control (purple), CPA 
(blue), CPA + Ab (yellow). The dashed lines indicate the calculated lines of separation between the different 
treatment groups.
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vessel  perfusion22. Interestingly, in this work, CPA treatment was associated with an increase in ctHHb, ctTHb 
and a drop in  StO2 after day 6 (Figs. 2b and Supplementary Figures S3 and S4), suggesting a higher tumor blood 
volume and a more hypoxic phenotype.

While the study focused on optical scattering changes, it is of note that the changes in ctHHb in the control 
group were significantly different from the treatment groups between Days 3 and 6. The large early spike in ctHHb 
in the control group may be correlated to the rapid tumor growth during this time period, potentially indicating 
high metabolic activity, and the tumor outgrowing its vascular  supply23. Interestingly, after Day 9, ctHHb of the 
CPA group continued to increase through the end of the study, despite the fact that the tumor volume decreased 
or reached stasis. This is in contrast to the CPA + Ab group that approximately followed the same trends as the 
CPA group until Day 15, after which ctHHb started to decrease and then stabilized around a smaller value (25% 
vs 50%). This could potentially be due to the fact that the tumor volume of the CPA + Ab group stabilized at this 
point and was no longer rapidly growing.

There are several limitations to this study. First, this study did not assess the optical properties in healthy tissue 
such as the contralateral fat pad, which may have changed with treatment. Second, this study did not compare 
the tumoral effect of administering the IFNAR-1 antibody in the absence of CPA. The IFNAR-1 antibody blocks 
a major immune pathway, which could have downstream effects on tumor growth and other functional changes. 
We note however that in a prior study in a mouse glioma model that IFNAR-1 antibody had no effect on tumor 
growth in the absence of CPA  treatment24. Here its use was solely to block the immune stimulation caused by 
metronomic  CPA13. Third, a limited number of untreated control mice (n = 3) were utilized. This was because 
the primary aim was to compare the changes between groups receiving treatment. Fourth, SFDI has a relatively 
shallow penetration depth (~ 5 mm) and may not be sensitive to changes in deeper tissue. Fifth depth sectioning 
was not explored with SFDI here, potentially obfuscating spatial heterogeneity such as differences in the core 
compared to the periphery of the tumor. Finally, while SFDI has been extensively used in various clinical applica-
tions including breast cancer treatment monitoring, its limited depth sensitivity could be a significant challenge 
in clinical setting with deeper  tumors25, 26. Instead, other diffuse optical imaging technologies such as frequency 
domain- or time domain-diffuse optical spectroscopy may be better suited for tracking the scattering changes in 
 tumors27. These clinical technologies allow for the potential for translation and validation of biomarkers found 
in the preclinical setting with SFDI. There has been limited clinical work in examining scattering as a prognostic 
biomarker with diffuse optics, representing a potential avenue for future study.

Identification of prognostic biomarkers for treatment response remains a critical factor for improving treat-
ment response. We have demonstrated SFDI derived optical scattering can serve as a promising prognostic 
marker to differentiate immune response and ultimately tumor response. This validates SFDI as a tool to inves-
tigate tumoral functional and metabolic changes when exposed to agents with varying mechanisms of actions 
such as immunotherapies. Importantly, this also raises the potential of using SFDI to discover predictive markers 
of resistance to treatment.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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